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Abstract

Parser combinator libraries represent parsers as functions and, using higher-order func-
tions, de�ne a DSL of combinators allowing users to quickly put together programs capable
of handling complex recursive grammars. When moving to total functional languages such
as Agda, these programs cannot be directly ported: there is nothing in the original de�ni-
tions guaranteeing termination.

In this paper, we will introduce a `guarded' modal operator acting on types and show
how it allows us to give more precise types to existing combinators thus guaranteeing
totality. The resulting library is available online together with various usage examples at
https://github.com/gallais/agdarsec.

1 Introduction

Parser combinators have made functional languages such as Haskell shine. They are a prime
example of the advantages Embedded Domain Speci�c Languages [8] provide the end user.
She not only has access to a set of powerful and composable abstractions but she is also able
to rely on the host language's existing tooling and libraries. She can get feedback from the
static analyses built in the compiler (e.g. type and coverage checking) and can exploit the
expressivity of the host language to write generic parsers thanks to polymorphism and higher
order functions.

However she only gets the guarantees the host language is willing to give. In non-total
programming languages such as Haskell this means she will not be prevented from writing
parsers which will unexpectedly fail on some (or even all!) inputs. Handling a left-recursive
grammar is perhaps the most iconic pitfall leading beginners to their doom: a parser never
making any progress. Other issues one may want guarantees about range from unambiguity to
complexity with respect to the input's size.

We start with a primer on parser combinators and follow up with the de�nition of a broken
parser which is silently accepted by Haskell. We then move on to Agda [16] and introduce
combinators to de�ne functions by well-founded recursion. This allows us to de�ne a more
informative notion of parser and give more precise types to the combinators commonly used.
We then demonstrate that broken parsers such as the one presented earlier are rejected whilst
typical example can be ported with minimal modi�cations.

Remark: Agda-centric Although we do use some Agda-speci�c techniques in order to have
a codebase as idiomatic as possible, we do not expect the reader to be well-versed in them. We
insert remarks similar to this one throughout the paper to clarify confusing points, and give
pointers to more in-depth explanations to the interested reader.

This work is however not limited to Agda: it can be ported to other dependently-typed
languages and we have already done so for Coq [13] (https://github.com/gallais/parseque)
and Idris [3] (https://github.com/gallais/idris-tparsec).

https://github.com/gallais/agdarsec
https://github.com/gallais/parseque
https://github.com/gallais/idris-tparsec
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2 A Primer on Parser Combinators

2.1 Parser Type

Let us start by reminding ourselves what a parser is. Although we will eventually move to a
more generic type, Fritz Ruehr's rhyme gives us the essence of parsers:

A Parser for Things
is a function from Strings
to Lists of Pairs
of Things and Strings!

This stanza translates to the following Haskell type. We use a newtype wrapper to have
cleaner error messages:

newtype Parser a = Parser {runParser
:: String -- input string
→ [(String , a)]} -- pairs of leftovers and values

It is naturally possible to run such a parser and try to extract a value from a valid run.
Opinions may vary on the exact de�nition of a successful parse: should a run with leftover
characters or an ambiguous result be accepted? We decide against both in the following code
snippet but it is not a crucial point.

parse :: Parser a → String → Maybe a
parse p s = case filter (null ◦ fst) (runParser p s) of
[( , a)]→ Just a

→ Nothing

Once we are equipped with this type of parsers and a function to run them, we can start
providing some examples of parsers and parser combinators.

2.2 (Strongly-Typed) Combinators

The most basic parser is the one that accepts any character. It succeeds as long as the input
string is non empty and returns one result: the tail of the string together with the character it
just read.

anyChar :: Parser Char
anyChar = Parser $ λs → case s of
[ ] → [ ]
(c : s)→ [(s, c)]

However what makes parsers interesting is that they recognize structure. As such, they need
to reject invalid inputs. The parser only accepting decimal digits is a bare bones example. It
can be implemented in terms of guard, a higher order parser checking that the value returned
by its argument abides by a predicate which can easily be implemented using functions from
the standard library.

guard :: (a → Bool)→ Parser a → Parser a
guard f p = Parser $ filter (f ◦ snd) ◦ runParser p
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digit :: Parser Char
digit = guard (∈ "0123456789") anyChar

These two de�nitions are only somewhat satisfactory: the result of the digit parser is still
stringly-typed. Instead of using a predicate to decide whether to keep the value, we can opt for a
validation function of type a → Maybe b which returns a witness whenever the check succeeds.
To de�ne this re�ned version of guard called guardM we can again rely on the standard library:

guardM :: (a → Maybe b)→ Parser a → Parser b
guardM f p = Parser $ catMaybes ◦ fmap (traverse f ) ◦ runParser p

• traverse f of type (String, a) → Maybe (String, b) takes apart a pair, applies f to the
second component and rebuilds the pair under the Maybe type constructor,

• fmap applies this function to all the elements in the list obtained by running the parser p,

• and catMaybes of type [Maybe (String, b)] → [(String, b)] only retains the values which
successfully passed the test.

In our concrete example of recognizing a digit, we want to return the corresponding Int.
Once more the standard library has just the right function to use together with guardM :
readMaybe of (specialised) type String → Maybe Int .

digit :: Parser Int
digit = guardM (readMaybe ◦ (:[ ])) anyChar

2.3 Expressivity: Structures, Higher Order Parsers and Fixpoints

We have seen how we can already rely on the standard library of the host language to seamlessly
implement combinators. We can leverage even more of the existing codebase by noticing that the
type constructor Parser is a Functor, an Applicative [14], a Monad and also an Alternative.

Functor means that given a function of the right type, we can alter the values returned by
a parser. That is, we have a function (which corresponds to the in�x combinators (<$>)):

fmap :: (a → b)→ Parser a → Parser b

Applicative means two things. First, that given a value of type a, we can de�ne a parser
for values of type a. Second, that given a parser for a function and a parser for its argument
we can run both and apply the function to its argument. That is, we have two functions:

pure :: a → Parser a
(<∗>) :: Parser (a → b)→ Parser a → Parser b

Monad means that we are entitled to inspect the result of a �rst parser to decide which
one to run next. This brings us beyond the realm of context-free grammars. That translates
into the existence of one function:

(>>=) :: Parser a → (a → Parser b)→ Parser b

Alternative means that for all type a, Parser a forms a monoid. It allows us to take the
disjunction of various parsers, the failure of one leading to the next being used.
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empty :: Parser a
(<|>) :: Parser a → Parser a → Parser a

Our �rst example of a higher order parser was guard which takes as arguments a validation
function as well as another parser and produces a parser for the type of witnesses returned by
the validation function.

The two parsers some and many turn a parser for elements into ones for non-empty and
potentially empty lists of such elements respectively. They concisely showcase the power of
mutual recursion, higher-order functions and the Functor, Applicative, and Alternative

structure.

some :: Parser a → Parser [a ]
some p = (:)<$> p <∗>many p

many :: Parser a → Parser [a ]
many p = some p <|> pure [ ]

Remark: Non-Commutative The disjunction combinator is non-commutative as ulti-
mately we obtain a list (and not a set) of possible results. As such the de�nitions of some
and many will try to produce the longest list possible as opposed to a �ipped version of many
which would start by returning the empty list and slowly o�er longer and longer matches.

3 The Issue with Haskell's Parser Types

The ability to parse recursive grammars by simply declaring them in a recursive manner is
however dangerous: unlike type errors which are caught by the typechecker and partial covers
in pattern matchings which are detected by the coverage checker, termination is not guaranteed.

The problem already shows up in the de�nition of some which will only make progress
if its argument actually uses up part of the input string. Otherwise it may loop. However
this is not the typical hurdle programmers stumble upon: demanding a non empty list of
nothing at all is after all rather silly. The issue manifests itself naturally whenever de�ning a
left recursive grammar which leads us to introducing the prototypical such example: Expr, a
minimal language of arithmetic expressions.

Expr ::= <Int> | <Expr> `+` <Expr>

The intuitive solution is to simply reproduce this de�nition by introducing an inductive type
for Expr and then de�ning the parser as an alternative between a literal on one hand and a
sub-expression, the character '+', and another sub-expression on the other.

data Expr = Lit Int | Add Expr Expr

expr :: Parser Expr
expr = Lit <$> int <|>Add <$> expr <∗ char '+'<∗> expr

However this leads to an in�nite loop. Indeed, the second alternative performs a recursive
call to expr even though it hasn't consumed any character from the input string.

The typical solution to this problem is to introduce two 'tiers' of expressions: the base ones
which can only be whole expressions if we consume an opening parenthesis �rst and the expr
ones which are left-associated chains of base expressions connected by '+'.

base :: Parser Expr
base = Lit <$> int <|> char '(' ∗> expr ′ <∗ char ')'
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expr :: Parser Expr
expr = base <|>Add <$> base <∗ char '+'<∗> expr ′

This presentation is still sub-optimal; users would traditionally be encouraged to used com-
binators such as chainl to avoid this issue. We will only discuss later in Section 5.3.

This approach can be generalised when de�ning more complex languages by having even
more tiers, one for each precedence level, see for instance Section 6. An extended language of
arithmetic expressions would for instance distinguish the level at which addition and subtraction
live from the one at which multiplication and division do.

Our issue with this solution is twofold. First, although we did eventually manage to build
a parser that worked as expected, the compiler was unable to warn us and guide us towards
this correct solution. Additionally, the blatant partiality of some of these de�nitions means
that these combinators and these types are wholly unsuitable in a total setting. We could,
of course use an escape hatch and implement our parsers in Haskell but that would both be
unsafe and mean we would not be able to run them at typechecking time which we may want
to do if we embed checked examples in our software's documentation, or use compilation-time
con�guration via e.g. dependent type providers [5].

4 Indexed Sets and Course-of-Values Recursion

Our implementation of Total Parser Combinators is in Agda, a total dependently typed pro-
gramming language and it will rely heavily on indexed sets. But the indices will not be playing
any interesting role apart from enforcing totality. As a consequence, we introduce combinators
to build indexed sets without having to mention the index explicitly. This ought to make the
types more readable by focusing on the important components and hiding away the artefacts
of the encoding.

The �rst kind of combinators corresponds to operations on sets which are lifted to indexed
sets by silently propagating the index. We only show the ones we will use in this paper: the
pointwise arrow and product types and the constant function. The second kind of combinator
corresponds to universal quanti�cation: it turns an indexed set into a set.

_−→_ : (I → Set) → (I → Set) → (I → Set)
(A −→ B) n = A n → B n

_⊗_ : (I → Set) → (I → Set) → (I → Set)
(A ⊗ B) n = A n × B n

κ : Set → (I → Set)
κ A n = A

[_] : (I → Set) → Set
[ A ] = ∀ {n} → A n

Remark: Mix�x Operators In Agda underscores correspond to positions in which argu-
ments are to be inserted. It may be a bit surprising to see in�x notations for functions taking
three arguments but they are only meant to be partially applied.

Remark: Implicit Arguments We use curly braces so that the index we use is an implicit
argument we will never have to write: Agda will �ll it in for us by uni�cation.

We can already see the bene�ts of these aliases. For instance the fairly compact expression
[ (κ P ⊗ Q) −→ R ] corresponds to the more verbose type ∀ {n} → (P × Q n) → R n.
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Last but not least, we introduce a type constructor which takes a N-indexed set and produces
the set of valid recursive calls for a function de�ned by course-of-values recursion. By analogy
to modal logic we call it 2 after the �necessity� modality whose interpretation in a Kripke
semantics is eerily similar to our type constructor.

record 2_ (A : N → Set) (n : N) : Set where
constructor mkBox
�eld call : ∀ {m} → .(m < n) → A m

Remark: Record Wrapper Instead of de�ning 2 as a function like the other combinators,
we wrap the function space in a record type. This prevents normalisation from unfolding the
combinator too eagerly and makes types more readable during interactive development.

Remark: Irrelevance The argument stating that m is strictly smaller than n is preceded
by a dot. In Agda, it means that this value is irrelevant and can be erased by the compiler. In
Coq, we would de�ne the relation _<_ in Prop to achieve the same.

This construct can also be understood as analogous to the later modality showing up in
Guarded Type Theory [17]. It empowers the user to give precise types in a total language to
programs commonly written in partial ones (see e.g. the de�nition of �x below). The �rst thing
we can notice is the fact that 2 is a functor; that is to say that given a natural transformation
from A to B, we can de�ne a natural transformation from 2 A to 2 B.

map : [ A −→ B ] → [ 2 A −→ 2 B ]
call (map f A) m<n = f (call A m<n)

Remark: Copatterns The de�nition of map uses the 2 �eld named call on the left hand
side. This is a copattern [1], meaning that we explain how the de�nition is observed (via call)
rather than constructed (via mkBox).

Because less than (_<_) is de�ned in terms of less than or equal (_6_), 6-re� which is
the proof that _6_ is re�exive is also a proof that any n is strictly smaller than 1 + n. We
can use this fact to write the following extract function:

extract : [ 2 A ] → [ A ]
extract a = call a 6-re�

Remark: Counit The careful reader will have noticed that this is not quite the extract we
would expect from a comonad: for a counit, we would need a natural transformation between
2 A and A i.e. a function of type [ 2 A −→ A ]. We will not be able to de�ne such a function:
2 A 0 is isomorphic to the unit type so we would have to generate an A 0 out of thin air. The
types A for which 2 has a counit are interesting in their own right: they are inhabited at every
single index as demonstrated by �x later on.

Even though we cannot have a counit, we are still able to de�ne a comultiplication thanks
to the fact that _<_ is transitive.

duplicate : [ 2 A −→ 2 2 A ]
call (call (duplicate A) m<n) p<m = call A (<-trans p<m m<n)
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Remark: Identi�ers in Agda Any space-free string which is not a reserved keyword is a
valid identi�er. As a consequence we can pick suggestive names such as m<n for a proof that
m < n (notice the extra spaces around the in�x operator (<)).

Exploring further the structure of the functor 2, we can observe that just like it is not quite
a comonad, it is not quite an applicative functor. Indeed we can only de�ne pure, a natural
transformation of type [ A −→ 2 A ], for the types A that are downwards closed. Providing
the user with app is however possible:

app : [ 2 (A −→ B) −→ (2 A −→ 2 B) ]
call (app F A) m<n = call F m<n (call A m<n)

Finally, we can reach what will serve as the backbone of our parser de�nitions: a safe, total
�xpoint combinator. It di�ers from the traditional Y combinator in that all the recursive calls
have to be guarded.

�x : ∀ A → [ 2 A −→ A ] → [ A ]

If we were to unfold all the type-level combinators and record wrappers, the type of �x would
correspond exactly to strong induction for the natural numbers. Hence its implementation also
follows the one of strong induction: it is a combination of a call to extract and an auxiliary
de�nition �x2 of type [ 2 A −→ A ] → [ 2 A ].

Remark: Generalisation A similar 2 type constructor can be de�ned for any induction
principle relying on an accessibility predicate. Which means that a library's types can be
cleaned up by using these combinators in any situation where one had to give up structural
induction for a more powerful alternative.

5 Parsing, Totally

As already highlighted in Section 3, some and many can yield diverging computations if the
parser they are given as an argument succeeds on the empty string. To avoid any such issue, we
adopt a radical solution: for a parser's run to be considered successful, it must have consumed
some of its input. Some nullability can be recovered later (see Section 5.2) when de�ning
combinators where one of the sub-parses is allowed to fail.

This can be made formal with the Success record type: a Success of type A and size n is a
value of type A together with the leftovers of the input string of size strictly smaller than n.

record Success (A : Set) (n : N) : Set where
constructor _^_,_
�eld value : A

{size} : N
.small : size < n
leftovers : Vec Char size
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Remark: Implicit Field Like the arguments to a function can be implicit, so can a record's
�elds. The user can leave them out when building a value: they will be �lled in by uni�cation.

Coming back to Fritz Ruehr's rhyme, we can de�ne our own Parser type: a parser for things
up to size n is a function from strings of length m less or equal to n to lists of Successes of size
m.

record Parser (A : Set) (n : N) : Set where
constructor mkParser
�eld runParser : ∀ {m} → .(m 6 n) → Vec Char m →

List (Success A m)

5.1 Our First Combinators

Now that we have a precise de�nition of Parsers, we can start building our library of combinators.
Our �rst example anyChar can be de�ned by copattern-matching and then case analysis on the
input string: if it is empty then the list of Successes is also empty, otherwise it contains exactly
one element which corresponds to the head of the input string and its tail as leftovers.

anyChar : [ Parser Char ]
runParser anyChar _ s with s
... | [] = []
... | c :: cs = (c ^ 6-re� , cs) :: []

Unsurprisingly guardM is still a valid higher-order combinator: �ltering out results which do
not agree with a predicate is absolutely compatible with the consumption constraint we have
drawn. To implement guardM we can once more reuse existing library functions. Relying this
time on Agda's standard library rather than Haskell's, the set of available function is slightly
di�erent. We use for instance g�lter which turns a List A into a List B provided a predicate
A → Maybe B and combine sequence and Success's map to obtain a function akin to traverse.

guardM : (A → Maybe B) → [ Parser A −→ Parser B ]
runParser (guardM p A) m6n s =
g�lter (sequence ◦ Success.map p) (runParser A m6n s)

Demonstrating that Parser is a functor goes along the same lines: using List's and Success's
maps. Similarly, we can prove that it is an Alternative: failing corresponds to returning the
empty list no matter what whilst disjunction is implemented using concatenation.

_<$>_ : (A → B) → [ Parser A −→ Parser B ]

fail : [ Parser A ] _<|>_ : [ Parser A −→ Parser A −→ Parser A ]

So far the types we have ascribed to our combinators are, if we ignore the N indices, exactly
the same as the ones one would �nd in any other parsec library. In none of the previous
combinators do we run a second parser on the leftovers of a �rst one. All we do is either
manipulate or combine the results of one or more parsers run in parallel, potentially discarding
some of these results on the way.

However when we run a parser after some of the input has already been consumed, we could
safely perform a guarded call. This being made explicit would be useful when using �x to de�ne
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a parser for a recursive grammar. Luckily Parser is, by de�nition, a downwards-closed type.
This means that we may use very precise types marking all the guarded positions with 2; if the
user doesn't need that extra power she can very easily bypass the 2 annotations by using box:

box : [ Parser A −→ 2 Parser A ]

The most basic example we can give of such an annotation is probably the de�nition of a
conjunction combinator _<&>_ taking two parsers, running them sequentially and returning
a pair of their results. The second parser is given the type 2 Parser B instead of Parser B which
we would expect to �nd in other parsec libraries.

_<&>_ : [ Parser A −→ 2 Parser B −→ Parser (A × B) ]

We can immediately use all of these newly-de�ned combinators to give a safe, total de�nition
of some which takes a parser for A and returns a parser for List+ A, the type of non-empty
lists of As. It is de�ned as a �xpoint and proceeds as follows: it either combines a head and a
non-empty tail using _::+_ : A → List+ A → List+ A or returns a singleton list.

some : [ Parser A ] → [ Parser (List+ A) ]
some p = �x _ $ ń rec → uncurry _::+_ <$> (p <&> rec)

<|> (_:: []) <$> p

Remark: Ine�ciency Unfortunately this de�nition is ine�cient. Indeed, in the base case
some p is going to run the parser p twice: once in the �rst branch before realising that rec
fails and once again in the second branch. Compare this de�nition to the Haskell version (after
inlining many) where p is run once and then its result is either combined with a list obtained
by recursion or returned as a singleton:

some :: Parser a → Parser [a ]
some p = (:)<$> p <∗> (some p <|> pure [ ])

5.2 Failure is Sometimes an Option

This ine�ciency can be �xed by introducing the notion of a potentially failing sub-parse. We
use the convention that ? marks the argument of a combinator which is allowed to fail e.g.
<&?> is the version of the conjunction <&> whose second argument is allowed to fail whilst
<?&> may let its �rst argument do so. Which, in terms of types, translates to:

_<&>_ : [ Parser A −→ 2 Parser B −→ Parser (A × B) ]
_<&?>_ : [ Parser A −→ 2 Parser B −→ Parser (A × Maybe B) ]
_<?&>_ : [ Parser A −→ Parser B −→ Parser (Maybe A × B) ]

The some p <|> pure [ ] pattern used in the de�nition of some can be translated in our
total setting to a recursive call which is allowed to fail. This leads to the following rethought
de�nition of some p. The ine�ciency of the previous version has disappeared: p is run once and
dependening on the success or failure of the recursive call it is either added to a non-empty list
of values or returned as a singleton.

some : [ Parser A ] → [ Parser (List+ A) ]
some p = �x _ $ ń rec → cons <$> (p <&?> rec) where
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cons : (A × Maybe (List+ A)) → List+ A
cons (a , just as) = a ::+ as
cons (a , nothing) = a :: []

Remark: Non-Compositional The higher-order parser some expects a fully de�ned parser
as an argument. This makes it impossible to use it as one of the building blocks of a larger, recur-
sive parser. Ideally we would rather have a combinator of type [ Parser A −→ Parser (List+ A) ].
This will be addressed in the next subsection.

The potentially failing conjunction combinator _<&?>_ can be generalised to a more
fundamental notion _&?>>=_ which is a combinator analogous to a monad's bind. On top of
running two parsers sequentially (with the second one being chosen based on the result obtained
by running the �rst), it allows the second one to fail and returns both results.

_&?>>=_ : [ Parser A −→ (κ A −→ 2 Parser B) −→ Parser (A × Maybe B) ]

These de�nitions make it possible to port a lot of the Haskell de�nitions where one would
use a parser which does not use any of its input. Instead of encoding a potentially failing parse
using the pattern p<|>pure v, we can explicitly use a combinator acknowledging the authorized
failure. And this is possible without incurring any additional cost as the optimised version of
some showed.

5.3 Left Chains

The pattern used in the solution presented in Section 3 can be abstracted with the notion of
an (heterogeneous) left chain which takes a parser for a seed, one for a constructor, and one for
and argument. The crucial thing is to make sure not to use the parser one is currently de�ning
as the seed.

hchainl :: Parser a → Parser (a → b → a)→ Parser b → Parser a
hchainl seed con arg = seed >>= rest where

rest :: a → Parser a
rest a = do {f ← con; b ← arg ; rest (f a b)}<|> pure a

We naturally want to include a safe variant of this combinator in our library. However this
de�nition relies on the ability to simply use pure in case it's not possible to parse an additional
constructor and argument and that is something we simply don't have access to.

This forces us to �nd the essence of rest, the auxiliary de�nition used in hchainl : its �rst
argument is not just a value, it is a Success upon which it builds until it can't anymore and
simply returns. We de�ne schainl according to this analysis: it is a bare bones version of
hchainl 's rest where con and arg have already been replaced by a single con function.

schainl : [ Success A −→ 2 Parser (A → A) −→ List ◦ Success A ]

A key thing to notice is that we build a list of Successes at the same index as the input
Success and Parser which will make this combinator compositional (as opposed to some de�ned
in Section 5.2). This as a cost in terms of the readability of the de�nition of schainl. But
ultimately all of this complexity only shows up in the implementation of our library: the end
user can blissfully ignore these details.
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From this de�nition we can derive iterate which takes a parser for a seed and a parser for a
function and kickstarts a call to schainl on the result of the parser for the seed.

iterate : [ Parser A −→ 2 Parser (A → A) −→ Parser A ]

Finally, hchainl can be implemented using iterate, the applicative structure of Parser and
some of the properties of 2.

hchainl : [ Parser A −→ 2 Parser (A → B → A) −→ 2 Parser B −→ Parser A ]

As we have mentioned when de�ning schainl, the combinator hchainl we have just imple-
mented does not expect fully-de�ned parsers as arguments. As a consequence it can be used
inside a �xpoint construction. Both the parser for the constructor and the one for its B ar-
gument are guarded whilst the one for the A seed is not. This means that trying to de�ne a
left-recursive grammar by immediately using a recursive substructure on the left is now a type
error. But it still possible to have some on the right or after having consumed at least one
character (typically an opening parenthesis, cf. the Expr example in Section 3).

6 Fully Worked-Out Example

From hchainl, one can derive chainl1 which is not heterogeneous and uses the same parser for the
seed and the constructors' arguments. This combinator together with the idea of precedence
mentioned in Section 3 is typically used to implement left-recursive grammars. Looking up the
documentation of the parsec library on hackage [11] we can �nd a �ne example: an extension
of our early arithmetic language (corresponding grammar on the right hand side).

expr = term ‘chainl1 ‘ addop
term = factor ‘chainl1 ‘ mulop
factor = parens expr <|> integer

mulop = do {symbol "*"; pure (∗)}
<|> do {symbol "/"; pure (div)}

addop = do {symbol "+"; pure (+)}
<|> do {symbol "-"; pure (−)}

Expr := Term | Term AddOp Expr
Term := Factor | Factor MulOp Term
Factor := <Int> | '(' Expr ')'
AddOp := '+' | '-'
MulOp := '*' | '/'

One important thing to note here is that in the end we not only get a parser for the
expressions but also each one of the intermediate categories term and factor. Luckily, our
library lets us take �xpoints of any sized types we may fancy. As such, we can de�ne a sized
record of parsers for each one of the syntactic categories:

record Language (n : N) : Set where
�eld expr : Parser Expr n

term : Parser Term n
factor : Parser Factor n

Here, unlike the Haskell example, we decide to be painfully explicit about the syntactic cat-
egories we are considering: we mutually de�ne three inductive types representing left-associated
arithmetic expressions.
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data Expr : Set where
Emb : Term → Expr
Add : Expr → Term → Expr
Sub : Expr → Term → Expr

data Term : Set where
Emb : Factor → Term
Mul : Term → Factor → Term
Div : Term → Factor → Term

data Factor : Set where
Emb : Expr → Factor
Lit : N → Factor

The de�nition of the parser itself is then basically the same as the Haskell one. Contrary to
a somewhat popular belief, working in a dependently-typed language does not force us to add
any type annotation except for the top-level one.

language : [ Language ]
language = �x Language $ ń rec →
let addop = Add <$ char '+' <|> Sub <$ char '-'

mulop = Mul <$ char '*' <|> Div <$ char '/'
factor = Emb <$> parens (map expr rec) <|> Lit <$> decimal
term = hchainl (Emb <$> factor) (box mulop) (box factor)
expr = hchainl (Emb <$> term) (box addop) (box term)

in record { expr = expr ; term = term ; factor = factor }

Although quite close to the Haskell version, We can notice four minor changes:
Firstly, the intermediate parsers need to be declared before being used which e�ectively

reverses the order in which they are spelt out.
Secondly, the recursive calls are now explicit: in the de�nition of factor, expr is mapped

under the 2 to project the recursive call to the Expr Parser out of Language.
Thirdly, we use hchainl instead of chainl1 because breaking the grammar into three distinct

categories leads us to parsing heterogeneous left chains.
Fourthly, we have to insert calls to box to lift Parsers into boxed ones whenever the added

guarantee that the call will be guarded is of no use to us. This last point however does not
stand in Coq nor Idris which have a mechanism to declare implicit coercions and where the
typechecker can insert these calls to box automatically for us.

7 More Power: Switching to other Representations

We have e�ectively managed to take Haskell's successful approach to de�ning a Domain Speci�c
Language of parser combinators and impose type constraints which make it safe to use in a
total setting. All of which we have done whilst keeping the concision and expressivity of the
original libraries. A natural next question would be the speed and e�ciency of such a library.

Although we have been using a concrete type for Parser throughout this article, our library
actually implements a more general one. It uses Agda's instance arguments throughout thus
letting the user pick the representation they like best.

Firstly, there is nothing special about vectors of characters as an input type: any sized input
o� of which one can peel characters one at a time would do. Users may instead use Haskell's
Text packaged together with an irrelevant proof that the given text has the right length and
a binding for uncons. This should lead to a more e�cient memory representation of the text
being analysed.

Secondly, there is no reason to limit ourselves to Char as the unit of information to be
processed. Near all of our combinators are fully polymorphic over the kind of tokens they can
deal with. To run the parser, the user will have to de�ne an appropriate tokenizer for their use
case. The library provides a trivial one for Char.

12



agdarsec � Total Parser Combinators Allais

Thirdly, there is no reason to force the user to get back a List of successes: any Functor
which is both a Monad and an Alternative will do. This means in particular that a user may
for instance instrument a parser with a logging ability to be able to return good error messages,
have a (re)con�gurable grammar using a Reader transformer or use a Maybe type if they want
to make explicit the fact that their grammar is unambiguous.

8 Related Work

This work is based on Hutton and Meijer's in�uential functional pearl [9] which builds on
Walder's insight that exception handling and backtracking can be realised using a list of suc-
cesses [18]. Similar Domain Speci�c Languages have been implemented in various functional
languages such as Scala [15] or, perhaps more interestingly for us, Rust [6] where the added
type-level information about ownership can help implement a guaranteed zero-copy parser.

8.1 Total Parser Combinators

When it comes to total programming languages, Danielsson's library [7] is to our knowledge the
only attempt so far at de�ning a library of total parser combinators in a dependently-typed host
language. He rei�es recursive grammars as values of a mixed inductive-coinductive type and
tracks at the type level whether a sub-grammar accepts the empty word and, as a consequence,
whether one can meaningfully take its �xpoint.

The rei�ed approach allows him to de�ne a grammar's semantics in terms of multisets of
words and prove sound a variant of Brzozowski derivatives [4] as well as study the equational
theory of parsers. The current implementation, based on the Brzozowski derivatives, is however
of complexity at least exponential in the size of the input.

Our approach, although not able to tackle certi�cation like Danielsson's, is however more
lightweight. Using only strong induction on the natural numbers, it is compatible with languages
a lot less powerful than Agda. Indeed there is no need for good support for mixed induction
and coinduction in the host language. And although we do rely on enforcing invariants at the
type-level, one could mimic these in languages with even weaker type systems by de�ning an
abstract 2 and only providing the user with our set of combinators which is guaranteed to be
safe.

8.2 Certi�ed Parsing

Ambitious projects such as CompCert [12] providing the user with an ever more certi�ed
toolchain tend to bring to light the lack of proven-correct options for very practical concerns
such as parsing. Jourdan, Pottier and Leroy's work [10] �lls that gap by certifying the out-
put of an untrusted parser generator for LR(1) grammars. This approach serves a di�erent
purpose than ours: parser combinators libraries are great for rapid prototyping and small,
re-con�gurable parsers for non-critical applications.

Bernardy and Jansson have implemented in Agda a fully-certi�ed generalisation of Valiant's
algorithm [2] by deriving it from its speci�cation. This algorithm gives the best asymptotic
bounds on context-free grammar, that is the Applicative subset tackled by parser combinators.
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9 Conclusion and Future Work

Starting from the de�nition of �parsers for things as functions from strings to lists of strings
and things� common in Haskell, we have been able to (re)de�ne versatile combinators. However
the type system was completely unable to root out some badly-behaved programs, namely the
ones taking the �xpoint of a grammar accepting the empty word or non well-founded left
recursive grammars. Wanting to use a total programming language, this led us to a radical
solution: rejecting all the parsers accepting the empty word. Luckily, it was still possible to
recover a notion of �potentially failing� sub-parses via a bind -like combinator as well as de�ning
combinators for left chains. Finally we saw that this yielded a perfectly safe and only barely
more verbose set of total parser combinators.

In the process of describing our library we have introduced a set of type-level combinators
for manipulating indexed types and de�ning values by strong induction. If we want to provide
our users with the tools to modularly prove some of the properties of their grammars, we need
to come up with proof combinators corresponding to the value ones. As far as we know this is
still an open problem.
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