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Abstract
Syntaxes with binding are omnipresent in Programming Languages research but also in the more practical
setting of Embedded Domain Specific Languages. The advanced features available in some languages’
type systems has made it possible to statically enforce well-scopedness. However the user still has to
write a lot of boilerplate code to get common scope safe programs (e.g. renaming, substitution, CPS
transformation, printing with names, etc.) and the proof that they are well-behaved.

Building on an abstract but nonetheless expressive notion of semantics and a universe of syntaxes with
binding, we demonstrate how to implement these traversals once and for all by generic programming, and
how to derive their properties by generic proving. All of this work has been fully formalised in Agda and
is available at https://github.com/gallais/generic-syntax.
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1 Introduction

Nowadays the software programmer writing an embedded DSL [17] and the PL researcher formalis-
ing a calculus both know and leverage the host language’s type system. Using Generalised Algebraic
Data Types (GADTs) or the more general indexed families of Type Theory [15] for their deep em-
bedding, they can statically enforce some of the invariants present in their language. Managing the
scope is a popular use case [6] as directly manipulating raw de Bruijn indices is error-prone.

This paper starts with primers on scope safe terms, scope preserving programs acting on them
and a generic way to represent data types. These introductory sections help us build an understanding
of the problem at hand as well as a toolkit that leads us to the original content of this paper: a universe
of scope safe syntaxes with binding together with a generic notion of scope safe semantics for these
syntaxes. This give us the opportunity to write generic implementations of renaming, substitution
but also elaboration of a surface language to a core one, and normalisation by evaluation. We also
explore opportunities for generic proving by describing a framework to formally describe what it
means for a semantics to be able to simulate another one.
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23:2 A Scope Safe Universe of Syntaxes with Binding

2 A Primer on Scope Safe Terms

Scope safe terms are following a strict discipline which enforces statically that they may only refer
to variables introduced by a binder beforehand. A scope safe language is a programming language
in which all the valid terms are guaranteed to be scope safe.

Bellegarde and Hook [8], Bird and Patterson [10], and Altenkirch and Reus [6] introduced the
nowadays classic presentation of scope safe languages using inductive families [15] to track scoping
information at the type level. Instead of describing the type of abstract syntax trees of the language
as the fixpoint of an endofunctor on 𝐒𝐞𝐭, they used an endofunctor on 𝐒𝐞𝐭𝐒𝐞𝐭 where the 𝐒𝐞𝐭 index
corresponds to the set of variables in scope. Because the empty Set has no inhabitant, it is a natural
representation of the empty scope. Conversely, the functor 𝑀(𝑋) = 1 + 𝑋 is used to extend the
running scope with an extra variable.

This generic presentation of scope safe languages leads to the following definition of the untyped
𝜆-calculus. The endofunctor 𝑇 (𝐹 ) = 𝜆𝑋 ∈ 𝐒𝐞𝐭.𝑋 + (𝐹 (𝑋) × 𝐹 (𝑋)) + 𝐹 (1 + 𝑋) offers a choice of
three constructors. The first one corresponds to the variable case; it packages an inhabitant of 𝑋, the
index 𝐒𝐞𝐭. The second corresponds to an application node; both the function and its argument live in
the same scope as the overall expression. Last but not least, the third corresponds to a 𝜆-abstraction;
it extends the current scope with a fresh variable. The language is obtained as the fixpoint of 𝑇 :

𝐿𝑎𝑚 = 𝜇𝐹 ∈ 𝐒𝐞𝐭𝐒𝐞𝐭 .𝜆𝑋 ∈ 𝐒𝐞𝐭.𝑋 + (𝐹 (𝑋) × 𝐹 (𝑋)) + 𝐹 (1 + 𝑋)

The proof that the fixpoint is functorial then corresponds to renaming whilst the proof that it is
monadic implements substitution: the variable constructor is return and bind defines parallel sub-
stitution.

2.1 A Mechanized Variant of Altenkirch and Reus’ Untyped Calculus
There is no reason to restrict this technique to fixpoints of endofunctors on 𝐒𝐞𝐭𝐒𝐞𝐭 apart from the fact
that renaming and substitution correspond to well-known structures in that specific case. The more
general case of fixpoints of (strictly positive) endofunctors on 𝐒𝐞𝐭𝐼 can be endowed with similar
operations by using what Altenkirch, Chapman and Uustalu [3, 4] refer to as relative monads.

In this paper, we pick 𝐼 = ℕ where the natural number used as an index is straightforwardly the
number of (de Bruijn) variables in scope. This natural number can be seen as a list associating to
each variable in scope an element of the unit type; in a typed setting, it would carry the variable’s
type instead.

Our implementation language is Agda [22] however these techniques are language independent:
any dependently typed language whose logic is at least as powerful as Martin-Löf Type Theory [19]
equipped with inductive families [15] ought to do.

In order to lighten the presentation, we weaponise the observation that the current scope is either
threaded to subterms (e.g. in the application’s case) or adjusted (e.g. in the 𝜆-abstraction’s case) by
introducing combinators to build indexed types. Although it may seem surprising at first to define
infix operators of arity three, they are meant to be used partially applied, surrounded by [_] which
turns an indexed Set into a Set by implicitly quantifying over the index. The first two combinators are
the pointwise liftings of the function space and the product type respectively, both silently threading
the underlying scope. The third one is simply the constant function turning a Set into an indexed
Set by ignoring the index. Finally, the last one makes explicit the adjustment made to the index by a
function. We use Agda’s mixfix operator notation (where underscores denote argument positions) to
suggest its connection to the mathematical convention of only mentioning context extensions when
presenting judgements (see e.g. [19]) and write 𝑓 ⊢ 𝑇 where 𝑓 is the modification and 𝑇 the indexed
set is operates on.
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_ →̇ _ ∶ (𝐼 → 𝖲𝖾𝗍) → (𝐼 → 𝖲𝖾𝗍) → (𝐼 → 𝖲𝖾𝗍)
(𝑆 →̇ 𝑇 ) 𝑖 = 𝑆 𝑖 → 𝑇 𝑖

_×̇_ ∶ (𝐼 → 𝖲𝖾𝗍) → (𝐼 → 𝖲𝖾𝗍) → (𝐼 → 𝖲𝖾𝗍)
(𝑆 ×̇ 𝑇 ) 𝑖 = 𝑆 𝑖 × 𝑇 𝑖

𝜅 ∶ 𝖲𝖾𝗍 → (𝐼 → 𝖲𝖾𝗍)
𝜅 𝑆 𝑖 = 𝑆

_⊢_ ∶ (𝐼 → 𝐼) → (𝐼 → 𝖲𝖾𝗍) → (𝐼 → 𝖲𝖾𝗍)
(𝑓 ⊢ 𝑇 ) 𝑖 = 𝑇 (𝑓 𝑖)

[_] ∶ (𝐼 → 𝖲𝖾𝗍) → 𝖲𝖾𝗍
[ 𝑇 ] = ∀ {𝑖} → 𝑇 𝑖

Figure 1 Combinators to build indexed Sets

For instance, the fairly compact expression [ 𝗌𝗎𝖼 ⊢ (𝑃 ×̇ 𝑄) →̇ 𝑅 ] corresponds to the more
verbose type ∀ {𝑖} → (𝑃 (𝗌𝗎𝖼 𝑖) × 𝑄 (𝗌𝗎𝖼 𝑖)) → 𝑅 𝑖. Using these combinators, the untyped 𝜆-calculus
can be represented using the following definitions:

𝖽𝖺𝗍𝖺 𝖵𝖺𝗋 ∶ ℕ → 𝖲𝖾𝗍 𝗐𝗁𝖾𝗋𝖾
𝗓 ∶ [ 𝗌𝗎𝖼 ⊢ 𝖵𝖺𝗋 ]
𝗌 ∶ [ 𝖵𝖺𝗋 ⟶ 𝗌𝗎𝖼 ⊢ 𝖵𝖺𝗋 ]

𝖽𝖺𝗍𝖺 𝖫𝖺𝗆 ∶ ℕ → 𝖲𝖾𝗍 𝗐𝗁𝖾𝗋𝖾
𝖵 ∶ [ 𝖵𝖺𝗋 →̇ 𝖫𝖺𝗆 ]
𝖠 ∶ [ 𝖫𝖺𝗆 →̇ 𝖫𝖺𝗆 →̇ 𝖫𝖺𝗆 ]
𝖫 ∶ [ 𝗌𝗎𝖼 ⊢ 𝖫𝖺𝗆 →̇ 𝖫𝖺𝗆 ]

Figure 2 Scope Aware Variables and Untyped 𝜆-Terms

The inductive family 𝖵𝖺𝗋 corresponds to well scoped de Bruijn [14] indices. Its first constructor
(𝗓 for zero) states that we have a name to refer to the nearest binder in a non-empty scope. The
second one (𝗌 for successor) lifts a name for a variable in a given scope into a name for it in the
extended scope where an extra variable has been bound. Both of their types have been written using
combinators, altought we will abstain from unfolding them in the future, we do so here in the hope
it will help the reader get acquainted with them: they respectively normalise to ∀𝑛.𝐕𝐚𝐫(𝑠𝑢𝑐(𝑛)) for 𝗓,
and ∀𝑛.𝐕𝐚𝐫(𝑛) → 𝐕𝐚𝐫(𝑠𝑢𝑐(𝑛)) for 𝗌.

The ℕ-indexed family 𝖫𝖺𝗆 is the variant of Altenkirch and Reus’ untyped 𝜆-calculus. The two
interesting constructors are the one lifting variables to terms and the 𝜆-abstraction whose body lives
in an extended context.

3 A Primer on Scope Safe Programs

This scope safe deep embedding of the untyped 𝜆-calculus is naturally only a start: once the program-
mer has access to a good representation of the language she is interested in, she wants and needs to
(re)implement standard traversals manipulating terms. Renaming and substitution are perhaps the
two most iconic examples of such traversals. And now that well-scopedness is enforced in the terms’
indices, all of these traversals have to be implemented in a scope safe manner. These constraints
show up in the type of renaming and substitution which can be defined as follows:

Looking more closely at these two functions’ code, it is quite evident that they have a very similar
structure. In each case, we have used two (function specific) auxiliary definitions named ⟦𝖵⟧ and
𝖾𝗑𝗍𝖾𝗇𝖽 respectively to highlight this fact. Abstracting away this shared structure would allow for these
definitions to be refactored, and their common properties to be proved in one swift move.

Previous efforts in dependently typed programming [9, 2] have precisely achieved this goal and
refactored renaming and substitution, but also normalisation by evaluation, printing with names or
CPS conversion as various instances of a more general traversal. Unpublished results also demon-
strate that typechecking in the style of Atkey [7] fits in that framework. To be able to make sense of
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𝗋𝖾𝗇 ∶ (𝖵𝖺𝗋 𝑚 → 𝖵𝖺𝗋 𝑛) → 𝖫𝖺𝗆 𝑚 → 𝖫𝖺𝗆 𝑛
𝗋𝖾𝗇 𝜌 (𝖵 𝑘) = ⟦𝖵⟧ (𝜌 𝑘)
𝗋𝖾𝗇 𝜌 (𝖠 𝑓 𝑡) = 𝖠 (𝗋𝖾𝗇 𝜌 𝑓) (𝗋𝖾𝗇 𝜌 𝑡)
𝗋𝖾𝗇 𝜌 (𝖫 𝑏) = 𝖫 (𝗋𝖾𝗇 (𝖾𝗑𝗍𝖾𝗇𝖽 𝜌) 𝑏)

𝗌𝗎𝖻 ∶ (𝖵𝖺𝗋 𝑚 → 𝖫𝖺𝗆 𝑛) → 𝖫𝖺𝗆 𝑚 → 𝖫𝖺𝗆 𝑛
𝗌𝗎𝖻 𝜌 (𝖵 𝑘) = ⟦𝖵⟧ (𝜌 𝑘)
𝗌𝗎𝖻 𝜌 (𝖠 𝑓 𝑡) = 𝖠 (𝗌𝗎𝖻 𝜌 𝑓) (𝗌𝗎𝖻 𝜌 𝑡)
𝗌𝗎𝖻 𝜌 (𝖫 𝑏) = 𝖫 (𝗌𝗎𝖻 (𝖾𝗑𝗍𝖾𝗇𝖽 𝜌) 𝑏)

Figure 3 Scope Preserving Renaming and Substitution

this body of work, we need to introduce three new definitions:
A 𝖳𝗁𝗂𝗇𝗇𝗂𝗇𝗀 from 𝑚 to 𝑛 is a function from 𝖵𝖺𝗋 𝑚 to 𝖵𝖺𝗋 𝑛. It is a special case of a notion of

environment that stores values living in a scope 𝑛 for each variable in a scope 𝑚. We introduce
environment as records (this helps the host language’s type inference reconstruct the type of values)
and write (𝑚 ─𝖤𝗇𝗏) 𝒱 𝑛 for such an environment with values in 𝒱 .

𝗋𝖾𝖼𝗈𝗋𝖽 _─𝖤𝗇𝗏 (𝑚 ∶ ℕ) (𝒱 ∶ ℕ → 𝖲𝖾𝗍) (𝑛 ∶ ℕ) ∶ 𝖲𝖾𝗍 𝗐𝗁𝖾𝗋𝖾
𝖼𝗈𝗇𝗌𝗍𝗋𝗎𝖼𝗍𝗈𝗋 𝗉𝖺𝖼𝗄; 𝖿 𝗂𝖾𝗅𝖽 𝗅𝗈𝗈𝗄𝗎𝗉 ∶ 𝖵𝖺𝗋 𝑚 → 𝒱 𝑛

𝖳𝗁𝗂𝗇𝗇𝗂𝗇𝗀 ∶ ℕ → ℕ → 𝖲𝖾𝗍
𝖳𝗁𝗂𝗇𝗇𝗂𝗇𝗀 𝑚 𝑛 = (𝑚 ─𝖤𝗇𝗏) 𝖵𝖺𝗋 𝑛

Figure 4 Environments of Well Scoped Values and Thinnings

𝖳𝗁𝗂𝗇𝗇𝗂𝗇𝗀s subsume more structured notions such as the Category of Weakenings [5] or Order
Preserving Embeddings [12]. In particular, it does not prevent the user from defining arbitrary per-
mutations or from introducing contractions although we will not use such instances. The fact that our
representation is a function space grants us monoid laws “for free” as per Jeffrey’s observation [18].

The □ combinator turns any ℕ-indexed Set into one that can absorb thinnings. It is akin to
Kripke-style quantification over all possible future worlds and □ (𝐷 → 𝐷) indeed corresponds to the
Kripke function space used in normalisation by evaluation via a domain 𝐷. Because we can define
an identity 𝖳𝗁𝗂𝗇𝗇𝗂𝗇𝗀 and 𝖳𝗁𝗂𝗇𝗇𝗂𝗇𝗀s do compose, □ is a comonad.

The notion of𝖳𝗁𝗂𝗇𝗇𝖺𝖻𝗅𝖾 is the property of being stable under thinnings, in other words: 𝖳𝗁𝗂𝗇𝗇𝖺𝖻𝗅𝖾s
are the coalgebras of □. It is a crucial property for values to have if one wants to be able to push them
under binders. Unsurprisingly, from the comonadic structure we get that the □ combinator freely
turns any ℕ-indexed Set into a 𝖳𝗁𝗂𝗇𝗇𝖺𝖻𝗅𝖾 one.

□ ∶ (ℕ → 𝖲𝖾𝗍) → (ℕ → 𝖲𝖾𝗍)
(□ 𝑇 ) 𝑚 = [ 𝖳𝗁𝗂𝗇𝗇𝗂𝗇𝗀 𝑚 →̇ 𝑇 ]

𝖾𝗑𝗍𝗋𝖺𝖼𝗍 ∶ [ □ 𝑇 →̇ 𝑇 ]
𝖽𝗎𝗉𝗅𝗂𝖼𝖺𝗍𝖾 ∶ [ □ 𝑇 →̇ □ (□ 𝑇 ) ]

𝖳𝗁𝗂𝗇𝗇𝖺𝖻𝗅𝖾 ∶ (ℕ → 𝖲𝖾𝗍) → 𝖲𝖾𝗍
𝖳𝗁𝗂𝗇𝗇𝖺𝖻𝗅𝖾 𝑇 = [ 𝑇 →̇ □ 𝑇 ]

𝗍𝗁□ ∶ 𝖳𝗁𝗂𝗇𝗇𝖺𝖻𝗅𝖾 (□ 𝑇 )
𝗍𝗁□ = 𝖽𝗎𝗉𝗅𝗂𝖼𝖺𝗍𝖾

Figure 5 The □ comonad, Thinnable, and the cofree Thinnable.

Equipped with these new notions, we can define an abstract concept of semantics for our scope
safe language. Broadly speaking, a semantics turns our deeply embedded abstract syntax trees into
the shallow embedding of the corresponding parametrised higher order abstract syntax term. We get
various semantics by using different ’host languages’ for this shallow embedding. A semantics with
values in 𝒱 and computations in 𝒞 is meant to give rise to a traversal which, provided a term and an
environment of values for each one of the variables in scope, delivers a computation. The traversal
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𝗌𝖾𝗆 realises this specification generically for all Semantics.
A Semantics is characterised by a set of constraints. First of all, values should be thinnable so that

𝗌𝖾𝗆 may push the environment under binders. Second, the set of computations needs to be closed un-
der various combinators which are the semantical counterparts of the language’s constructors. Here
the semantical counterpart of application is not particularly interesting. However the interpretation of
the 𝜆-abstraction is of interest: it is a variant on the Kripke function space one can find in normalisa-
tion by evaluation. In all possible thinnings of the scope at hand, it promise to deliver a computation
whenever it is provided with a value for its newly bound variable. This is concisely expressed by the
type (□ (𝒱 → 𝒞)).

𝗋𝖾𝖼𝗈𝗋𝖽 𝖲𝖾𝗆 (𝒱 𝒞 ∶ ℕ → 𝖲𝖾𝗍) ∶ 𝖲𝖾𝗍 𝗐𝗁𝖾𝗋𝖾
𝖿 𝗂𝖾𝗅𝖽 𝗍𝗁𝒱 ∶ 𝖳𝗁𝗂𝗇𝗇𝖺𝖻𝗅𝖾 𝒱

⟦𝖵⟧ ∶ [ 𝒱 →̇ 𝒞 ]
⟦𝖠⟧ ∶ [ 𝒞 →̇ 𝒞 →̇ 𝒞 ]
⟦𝖫⟧ ∶ [ □ (𝒱 →̇ 𝒞) →̇ 𝒞 ]

𝗌𝖾𝗆 ∶ (𝑚 ─𝖤𝗇𝗏) 𝒱 𝑛 → (𝖫𝖺𝗆 𝑚 → 𝒞 𝑛)
𝗌𝖾𝗆 𝜌 (𝖵 𝑘) = ⟦𝖵⟧ (𝗅𝗈𝗈𝗄𝗎𝗉 𝜌 𝑘)
𝗌𝖾𝗆 𝜌 (𝖠 𝑓 𝑡) = ⟦𝖠⟧ (𝗌𝖾𝗆 𝜌 𝑓) (𝗌𝖾𝗆 𝜌 𝑡)
𝗌𝖾𝗆 𝜌 (𝖫 𝑏) = ⟦𝖫⟧ (𝜆 𝜎 𝑣 → 𝗌𝖾𝗆 (𝖾𝗑𝗍𝖾𝗇𝖽 𝜎 𝜌 𝑣) 𝑏)

Figure 6 Semantics for Lam and their Fundamental Lemma

Coming back to renaming and substitution, we can see that they do fit in the 𝖲𝖾𝗆 framework. We
also include the definition of a very basic printer relying on a name supply to highlight the fact that
computations can very well be effectful. Both Printing and Renaming highlight the importance of
having a distinct notion of values and computations: the type of values in their respective environ-
ments are distinct from their type of computations.

𝖱𝖾𝗇𝖺𝗆𝗂𝗇𝗀 ∶ 𝖲𝖾𝗆 𝖵𝖺𝗋 𝖫𝖺𝗆
𝖱𝖾𝗇𝖺𝗆𝗂𝗇𝗀 = 𝗋𝖾𝖼𝗈𝗋𝖽

{ 𝗍𝗁𝒱 = 𝗍𝗁𝖵𝖺𝗋

; ⟦𝖵⟧ = 𝖵
; ⟦𝖠⟧ = 𝖠
; ⟦𝖫⟧ = 𝜆 𝑏 → 𝖫 (𝑏 (𝗉𝖺𝖼𝗄 𝗌) 𝗓) }

𝖲𝗎𝖻𝗌𝗍𝗂𝗍𝗎𝗍𝗂𝗈𝗇 ∶ 𝖲𝖾𝗆 𝖫𝖺𝗆 𝖫𝖺𝗆
𝖲𝗎𝖻𝗌𝗍𝗂𝗍𝗎𝗍𝗂𝗈𝗇 = 𝗋𝖾𝖼𝗈𝗋𝖽

{ 𝗍𝗁𝒱 = 𝜆 𝑡 𝜌 → 𝗌𝖾𝗆 𝖱𝖾𝗇𝖺𝗆𝗂𝗇𝗀 𝜌 𝑡
; ⟦𝖵⟧ = 𝗂𝖽
; ⟦𝖠⟧ = 𝖠
; ⟦𝖫⟧ = 𝜆 𝑏 → 𝖫 (𝑏 (𝗉𝖺𝖼𝗄 𝗌) (𝖵 𝗓)) }

𝖯𝗋𝗂𝗇𝗍𝗂𝗇𝗀 ∶ 𝖲𝖾𝗆 (𝜆 _ → 𝖲𝗍𝗋𝗂𝗇𝗀) (𝜆 _ → 𝖲𝗍𝖺𝗍𝖾 ℕ 𝖲𝗍𝗋𝗂𝗇𝗀)
𝖯𝗋𝗂𝗇𝗍𝗂𝗇𝗀 = 𝗋𝖾𝖼𝗈𝗋𝖽

{ 𝗍𝗁𝒱 = 𝜆 𝑡 _ → 𝑡
; ⟦𝖵⟧ = 𝗋𝖾𝗍𝗎𝗋𝗇
; ⟦𝖠⟧ = 𝜆 𝑚𝑓 𝑚𝑡 → 𝑚𝑓 >>= 𝜆 𝑓 → 𝑚𝑡 >>= 𝜆 𝑡 →

𝗋𝖾𝗍𝗎𝗋𝗇 $ 𝑓 ++ ”(” ++ 𝑡 ++ ”)”

; ⟦𝖫⟧ = 𝜆 𝑚𝑏 → 𝗀𝖾𝗍 >>= 𝜆 𝑥 → 𝗉𝗎𝗍 (𝗌𝗎𝖼 𝑥) >>
𝗅𝖾𝗍 𝑥′ = 𝗌𝗁𝗈𝗐 𝑥 𝗂𝗇 𝑚𝑏 (𝗉𝖺𝖼𝗄 𝗌) 𝑥′ >>= 𝜆 𝑏 →
𝗋𝖾𝗍𝗎𝗋𝗇 $ ”λ” ++ 𝑥′ ++ ”.” ++ 𝑏 }

Figure 7 Renaming, Substitution and Printing as Instances of 𝖲𝖾𝗆

All of these examples are already desribed at length by Allais, Chapman, McBride and McK-
inna [2] so we will not spend any more time on them. They have also obtained the simulation and
fusion theorems demonstrating that these traversals are well-behaved as corollaries of more general
results expressed in terms of that generic traversal. We will come back to this in Section 8.

One important observation to make is the tight connection between the constraint described by
𝖲𝖾𝗆 and the definition of 𝖫𝖺𝗆: the semantical combinators are related to the corresponding con-
structors where the recursive occurences of the inductive family have been replaced with either a
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23:6 A Scope Safe Universe of Syntaxes with Binding

computation or a Kripke function space whenever an extra variable was bound. This suggest that it
ought to be possible to compute the definition of 𝖲𝖾𝗆 from the one of the datatype.

4 A Primer on the Universe of Data Types

Chapman, Dagand, McBride and Morris [11] defined a universe of data types inspired by Dybjer
and Setzer’s finite axiomatisation of Inductive-Recursive definitions [16]. This explicit definition of
codes for data types empowers the user to write generic programs tackling all of the data types one
can obtain this way. In this section we recall the main aspects of this construction we are interested
in to build up our generic representation of syntaxes with binding.

The first component of this universe’s definition is an inductive type of 𝖣𝖾𝗌𝖼riptions of strictly
positive functors on 𝐒𝐞𝐭. It has three constructors: one to store data (the rest of the description can
depend upon this stored value), one to attach a recursive substructure and one to stop.

These constructors give the programmer the ability to build up the data types she is used to. For
instance, the functor corresponding to lists of elements in𝐴 stores one bit of data: whether the current
node is the empty list or not. Depending on that bit, the rest of the description is either the “stop”
token or a pair of an element in 𝐴 and a recursive substructure (i.e. the tail of the list).

𝖽𝖺𝗍𝖺 𝖣𝖾𝗌𝖼 ∶ 𝖲𝖾𝗍𝟣 𝗐𝗁𝖾𝗋𝖾
‵𝜎 ∶ (𝐴 ∶ 𝖲𝖾𝗍) (𝑑 ∶ 𝐴 → 𝖣𝖾𝗌𝖼) → 𝖣𝖾𝗌𝖼
‵𝖷 ∶ 𝖣𝖾𝗌𝖼 → 𝖣𝖾𝗌𝖼
‵∎ ∶ 𝖣𝖾𝗌𝖼

𝗅𝗂𝗌𝗍𝖣 ∶ 𝖲𝖾𝗍 → 𝖣𝖾𝗌𝖼
𝗅𝗂𝗌𝗍𝖣 𝐴 = ‵𝜎 𝖡𝗈𝗈𝗅 $ 𝜆 𝑖𝑠𝑁𝑖𝑙 →

𝗂𝖿 𝑖𝑠𝑁𝑖𝑙 𝗍𝗁𝖾𝗇 ‵∎ 𝖾𝗅𝗌𝖾 ‵𝜎 𝐴 (𝜆 _ → ‵𝖷 ‵∎)

Figure 8 Data Descriptions and List Description

The recursive function ⟦_⟧ makes the interpretation of the Descriptions formal by associating a
value in 𝐒𝐞𝐭𝐒𝐞𝐭 to each one of them. They essentially give rise to unit terminated right nested tuples.
Together with ⟦_⟧, we can define the 𝖿𝗆𝖺𝗉 recursive function witnessing the fact that the meaning
of a description is indeed functorial. This is the first example of generic programming over all the
functors one can obtain as the meaning of a description.

⟦_⟧ ∶ 𝖣𝖾𝗌𝖼 → (𝖲𝖾𝗍 → 𝖲𝖾𝗍)
⟦ ‵𝜎 𝐴 𝑑 ⟧ 𝑋 = Σ[ 𝑎 ∈ 𝐴 ] (⟦ 𝑑 𝑎 ⟧ 𝑋)
⟦ ‵𝖷 𝑑 ⟧ 𝑋 = 𝑋 × ⟦ 𝑑 ⟧ 𝑋
⟦ ‵∎ ⟧ 𝑋 = ⊤

𝖿𝗆𝖺𝗉 ∶ (𝑑 ∶ 𝖣𝖾𝗌𝖼) → (𝑋 → 𝑌 ) → (⟦ 𝑑 ⟧ 𝑋 → ⟦ 𝑑 ⟧ 𝑌 )
𝖿𝗆𝖺𝗉 (‵𝜎 𝐴 𝑑) 𝑓 (𝑎 , 𝑣) = (𝑎 , 𝖿𝗆𝖺𝗉 (𝑑 𝑎) 𝑓 𝑣)
𝖿𝗆𝖺𝗉 (‵𝖷 𝑑) 𝑓 (𝑟 , 𝑣) = (𝑓 𝑟 , 𝖿𝗆𝖺𝗉 𝑑 𝑓 𝑣)
𝖿𝗆𝖺𝗉 ‵∎ 𝑓 𝑡 = 𝑡

Figure 9 Meaning of Descriptions and Proof of Functoriality

All the functors obtained as meanings of 𝖣𝖾𝗌𝖼riptions are strictly positive so we can build their
least fixpoint 𝜇 which is the initial algebra corresponding to 𝑑’s meaning as proven by 𝖿𝗈𝗅𝖽 𝑑.

𝖽𝖺𝗍𝖺 𝜇 (𝑑 ∶ 𝖣𝖾𝗌𝖼) ∶ 𝖲𝗂𝗓𝖾 → 𝖲𝖾𝗍 𝗐𝗁𝖾𝗋𝖾
‵𝖼𝗈𝗇 ∶ ⟦ 𝑑 ⟧ (𝜇 𝑑 𝑖) → 𝜇 𝑑 (↑ 𝑖)

𝖿𝗈𝗅𝖽 ∶ (𝑑 ∶ 𝖣𝖾𝗌𝖼) → (⟦ 𝑑 ⟧ 𝑋 → 𝑋) → 𝜇 𝑑 𝑖 → 𝑋
𝖿𝗈𝗅𝖽 𝑑 𝑎𝑙𝑔 (‵𝖼𝗈𝗇 𝑡) = 𝑎𝑙𝑔 (𝖿𝗆𝖺𝗉 𝑑 (𝖿𝗈𝗅𝖽 𝑑 𝑎𝑙𝑔) 𝑡)

Figure 10 Fixpoint and Generic Fold
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Here the 𝖲𝗂𝗓𝖾 [1] index added to the inductive definition of 𝜇 plays a crucial role in getting the
termination checker to see that 𝖿𝗈𝗅𝖽 is a total function. Indeed the recursive calls to 𝖿𝗈𝗅𝖽 are performed
indirectly via 𝖿𝗆𝖺𝗉 and it’s only because the compiler knows that 𝑖, the index at which the recursive
calls are performed, is strictly smaller than ↑ 𝑖 that it accepts the definition as total. Without this
type based approach to termination checking the definition of 𝖿𝗈𝗅𝖽 would be rejected and our only
recourse would be to manually inline 𝖿𝗆𝖺𝗉. However, in most definitions the 𝖲𝗂𝗓𝖾 does not matter in
which case we will simply use the primitive limit 𝖲𝗂𝗓𝖾 ∞ which is characterised by ∞ = ↑ ∞.

This demonstrates that this approach allows us to define generically the iteration principle associ-
ated to all the datatypes which arise as the fixpoint of a description’s meaning. It seems appropriate
to base our universe of scope safe syntaxes on a similar construction so that we may be able to define
generically a notion of semantics for all the syntaxes with binding one may come up with. Chapman,
Dagand, McBride and Morris also give a more general universe which supports higher order branch-
ing (but still does not have a notion of variable). We decidedly stick to finitary constructors, thus
sticking to the common understanding of ‘syntax’.

5 A Universe of Scope Safe Syntaxes

Our universe of scope safe syntaxes follows the same principle as McBride’s universe of datatypes
except that we are not building endofunctors on 𝐒𝐞𝐭 but rather 𝐒𝐞𝐭ℕ. Descriptions can be built using
three constructors: the first one makes it possible to store data (and, as usual, the rest of the descrip-
tion may depend upon the value stored), the second takes a natural number 𝑚 and corresponds to a
substructure with exactly 𝑚 additional variable in scope and the last one ends the definition.

The meaning function ⟦_⟧ we associate to a description is not quite an endofunctor on 𝐒𝐞𝐭ℕ; it
is more general than that. Given an 𝑋 that interprets substructures with an extra 𝑚 bound variables
in a scope that has 𝑛 bound variables already as 𝑋 𝑚 𝑛, we give a description a meaning as an 𝐒𝐞𝐭ℕ.
The astute reader may have noticed that ⟦_⟧ is uniform in 𝑋 and 𝑛; however refactoring ⟦_⟧ to use
the partially applied 𝑋_𝑛 following this observation would lead to a definition harder to use with the
combinators for indexed sets described in Figure 1 which make our types much more readable.

𝖽𝖺𝗍𝖺 𝖣𝖾𝗌𝖼 ∶ 𝖲𝖾𝗍𝟣 𝗐𝗁𝖾𝗋𝖾
‵𝜎 ∶ (𝐴 ∶ 𝖲𝖾𝗍) (𝑑 ∶ 𝐴 → 𝖣𝖾𝗌𝖼) → 𝖣𝖾𝗌𝖼
‵𝖷 ∶ ℕ → 𝖣𝖾𝗌𝖼 → 𝖣𝖾𝗌𝖼
‵∎ ∶ 𝖣𝖾𝗌𝖼

⟦_⟧ ∶ 𝖣𝖾𝗌𝖼 → (ℕ → ℕ → 𝖲𝖾𝗍) → (ℕ → 𝖲𝖾𝗍)
⟦ ‵𝜎 𝐴 𝑑 ⟧ 𝑋 𝑛 = Σ[ 𝑎 ∈ 𝐴 ] (⟦ 𝑑 𝑎 ⟧ 𝑋 𝑛)
⟦ ‵𝖷 𝑚 𝑑 ⟧ 𝑋 𝑛 = 𝑋 𝑚 𝑛 × ⟦ 𝑑 ⟧ 𝑋 𝑛
⟦ ‵∎ ⟧ 𝑋 𝑛 = ⊤

Figure 11 Syntax Descriptions and their Meaning as Functor

If we pre-compose the meaning function ⟦_⟧ with a notion of ‘scope’ (denoted 𝖲𝖼𝗈𝗉𝖾 here) which
turns any ℕ-indexed family into a function of type ℕ → ℕ → 𝐒𝐞𝐭 by simply summing the two indices,
we recover an endofunctor on 𝐒𝐞𝐭ℕ and we can take its fixpoint. This time, instead of considering
the initial algebra, we opt for the free relative monad [4]: the ‵𝗏𝖺𝗋 constructor corresponds to return
and we will define bind (also known as 𝗌𝗎𝖻) in the next section. We have once more a 𝖲𝗂𝗓𝖾 index to
get all the benefits of type based termination checking.

Coming back to the well-scoped untyped 𝜆-calculus, we now have the ability to give its code. The
variable constructor will be introduced by the freemonad construction sowe only have to describe two
cases: the application case where we have two substructures which do not bind any extra argument
and the 𝜆-abstraction case which has exactly one substructure with precisely one extra bound variable.

We can then define constructors corresponding to the original ones in Figure 2: ‵𝖵 for 𝖵 the
variable constructor, ‵𝖠 for 𝖠 the application one and ‵𝖫 for 𝖫 the 𝜆-abstraction. In Agda, we can
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23:8 A Scope Safe Universe of Syntaxes with Binding

𝖽𝖺𝗍𝖺 𝖳𝗆 (𝑑 ∶ 𝖣𝖾𝗌𝖼) ∶ 𝖲𝗂𝗓𝖾 → ℕ → 𝖲𝖾𝗍 𝗐𝗁𝖾𝗋𝖾
‵𝗏𝖺𝗋 ∶ [ 𝖵𝖺𝗋 →̇ 𝖳𝗆 𝑑 (↑ 𝑖) ]
‵𝖼𝗈𝗇 ∶ [ ⟦ 𝑑 ⟧ (𝖲𝖼𝗈𝗉𝖾 (𝖳𝗆 𝑑 𝑖)) →̇ 𝖳𝗆 𝑑 (↑ 𝑖) ]

𝖲𝖼𝗈𝗉𝖾 ∶ (ℕ → 𝖲𝖾𝗍) → (ℕ → ℕ → 𝖲𝖾𝗍)
𝖲𝖼𝗈𝗉𝖾 𝑇 𝑚 = (𝑚 +_) ⊢ 𝑇

Figure 12 Term Trees: The Free Relative Monads on Descriptions

actually almost define these as pattern synonyms (the language currently does not allow the user to
specify type annotations for her pattern synonyms), meaning that the end user can seemlessly write
pattern-matching programs on encoded terms without dealing with the gnarly details of the encoding.

𝖫𝖢𝖣 ∶ 𝖣𝖾𝗌𝖼
𝖫𝖢𝖣 = ‵𝜎 𝖡𝗈𝗈𝗅 $ 𝜆 𝑖𝑠𝐴𝑝𝑝 →

𝗂𝖿 𝑖𝑠𝐴𝑝𝑝 𝗍𝗁𝖾𝗇 ‵𝖷 𝟢 (‵𝖷 𝟢 ‵∎) 𝖾𝗅𝗌𝖾 ‵𝖷 𝟣 ‵∎

𝖫𝖢 ∶ ℕ → 𝖲𝖾𝗍
𝖫𝖢 = 𝖳𝗆 𝖫𝖢𝖣 ∞

‵𝖵 ∶ [ 𝖵𝖺𝗋 →̇ 𝖫𝖢 ]
‵𝖵 = ‵𝗏𝖺𝗋

‵𝖠 ∶ [ 𝖫𝖢 →̇ 𝖫𝖢 →̇ 𝖫𝖢 ]
‵𝖠 𝑓 𝑡 = ‵𝖼𝗈𝗇 (𝗍𝗋𝗎𝖾 , 𝑓 , 𝑡 , 𝗍𝗍)

‵𝖫 ∶ [ 𝗌𝗎𝖼 ⊢ 𝖫𝖢 →̇ 𝖫𝖢 ]
‵𝖫 𝑏 = ‵𝖼𝗈𝗇 (𝖿𝖺𝗅𝗌𝖾 , 𝑏 , 𝗍𝗍)

Figure 13 Example: The Untyped Lambda Calculus

It is the second time (the first time being the definition of 𝗅𝗂𝗌𝗍𝖣 in Figure 8) that we use a 𝖡𝗈𝗈𝗅 to
distinguish between two constructors. In order to avoid re-encoding the same logic, the next section
introduces combinators demonstrating that descriptions are closed under sums and products.

5.1 Common Combinators and Their Properties

As we have seen previously, we can take the coproduct of two descriptions by using a dependent pair
whose first component stores a 𝖡𝗈𝗈𝗅ean tagging which branch was taken whilst the second one uses
that information to return the description corresponding to that branch. We can define an appropriate
eliminator 𝖼𝖺𝗌𝖾 which given two continuations picks the one corresponding to the chosen branch.

_‵+_ ∶ 𝖣𝖾𝗌𝖼 → 𝖣𝖾𝗌𝖼 → 𝖣𝖾𝗌𝖼
𝑑 ‵+ 𝑒 = ‵𝜎 𝖡𝗈𝗈𝗅 $ 𝜆 𝑖𝑠𝐿𝑒𝑓𝑡 →

𝗂𝖿 𝑖𝑠𝐿𝑒𝑓𝑡 𝗍𝗁𝖾𝗇 𝑑 𝖾𝗅𝗌𝖾 𝑒

𝖼𝖺𝗌𝖾 ∶ (⟦ 𝑑 ⟧ 𝜌 𝑛 → 𝐴) →
(⟦ 𝑒 ⟧ 𝜌 𝑛 → 𝐴) →
(⟦ 𝑑 ‵+ 𝑒 ⟧ 𝜌 𝑛 → 𝐴)

Figure 14 Descriptions are closed under Sums

Closure under product is however a bit more technical: it is defined by induction on the first
description of the product. The definition is purely structural except for the “stop” constructor which
gets replaced by the second description. Because of the indirect nature of the definition of closure
under products, it is convenient to have functions going back and forth between the interpretation of
a product of descriptions and the product of their respective interpretations.
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_‵×_ ∶ 𝖣𝖾𝗌𝖼 → 𝖣𝖾𝗌𝖼 → 𝖣𝖾𝗌𝖼
‵𝜎 𝐴 𝑑 ‵× 𝑒 = ‵𝜎 𝐴 (𝜆 𝑎 → 𝑑 𝑎 ‵× 𝑒)
‵𝖷 𝑘 𝑑 ‵× 𝑒 = ‵𝖷 𝑘 (𝑑 ‵× 𝑒)
‵∎ ‵× 𝑒 = 𝑒

𝗉𝖺𝗂𝗋 ∶ [ ⟦ 𝑑 ⟧ 𝜌 →̇ ⟦ 𝑒 ⟧ 𝜌 →̇ ⟦ 𝑑 ‵× 𝑒 ⟧ 𝜌 ]
𝗎𝗇𝗉𝖺𝗂𝗋 ∶ [ ⟦ 𝑑 ‵× 𝑒 ⟧ 𝜌 →̇ ⟦ 𝑑 ⟧ 𝜌 ×̇ ⟦ 𝑒 ⟧ 𝜌 ]

Figure 15 Descriptions are closed under Products

6 Generic Scope Safe Programs for Syntaxes

Based on the structure made explicit in the example worked out in Section 3, we can define a generic
notion of semantics for all syntax descriptions. It is once more parametrised by two ℕ-indexed fam-
ilies 𝒱 and 𝒞 corresponding respectively to values associated to bound variables and computations
delivered by evaluating terms. These two families have to abide by three constraints

Values should be thinnable for us to be able to push the evaluation environment under binders;
Values should embed into computations for us to be able to the return the value associated to a
variable as the result of its evaluation;
Last but not least, we should have an algebra turning a term where substructures have been re-
placed with either computations or kripke functional spaces (depending on whether extra bound
variables have been introduced) into computations

Here we crucially use the fact that the meaning of a description is defined in terms of a function
interpreting substructures which has the type ℕ → ℕ → 𝐒𝐞𝐭, i.e. that gets access to the current
scope but also the exact number of newly-bound variables. We define such a function, 𝖪𝗋𝗂𝗉𝗄𝖾, by
case analysis on the number of newly-bound variables: if it’s 0 then we expect the substructure to
simply be a computation (the result of the evaluation function’s recursive call) but if there are newly
bound variables then we expect a function which takes one value for each one of them and delivers a
computation corresponding to the evaluation of the body of the binder in the extended environment.

𝖪𝗋𝗂𝗉𝗄𝖾 ∶ (𝒱 𝒞 ∶ ℕ → 𝖲𝖾𝗍) → (ℕ → ℕ → 𝖲𝖾𝗍)
𝖪𝗋𝗂𝗉𝗄𝖾 𝒱 𝒞 𝟢 = 𝒞
𝖪𝗋𝗂𝗉𝗄𝖾 𝒱 𝒞 𝑚 = □ ((𝑚 ─𝖤𝗇𝗏) 𝒱 →̇ 𝒞)

𝗋𝖾𝖼𝗈𝗋𝖽 𝖲𝖾𝗆 (𝑑 ∶ 𝖣𝖾𝗌𝖼) (𝒱 𝒞 ∶ ℕ → 𝖲𝖾𝗍) ∶ 𝖲𝖾𝗍 𝗐𝗁𝖾𝗋𝖾
𝖿 𝗂𝖾𝗅𝖽 𝗍𝗁𝒱 ∶ 𝖳𝗁𝗂𝗇𝗇𝖺𝖻𝗅𝖾 𝒱

𝗏𝖺𝗋 ∶ [ 𝒱 →̇ 𝒞 ]
𝖺𝗅𝗀 ∶ [ ⟦ 𝑑 ⟧ (𝖪𝗋𝗂𝗉𝗄𝖾 𝒱 𝒞) →̇ 𝒞 ]

Figure 16 A Generic Notion of Semantics

It is once more the case that the abstract notion of Semantics comes with a fundamental lemma:
all ℕ-indexed families 𝒱 and 𝒞 satisfying the three criteria we have put forward give rise to an evalu-
ation function. Here the fundamental lemma is called 𝗌𝖾𝗆 and it is defined mutually with a function
𝖻𝗈𝖽𝗒 turning a 𝖲𝖼𝗈𝗉𝖾 (i.e. a substructure in a potentially extended context) into a 𝖪𝗋𝗂𝗉𝗄𝖾 (i.e. a
subcomputation expecting a value for each newly bound variable).

Renaming can be defined generically for all syntax descriptions as a semantics with 𝖵𝖺𝗋 as values
and 𝖳𝗆 as computations. The two first constraints on 𝖵𝖺𝗋 described earlier are trivially satisfied. Be-
cause renaming strictly respects the structure of the term it goes through, the algebra is implemented
using 𝖿𝗆𝖺𝗉. When dealing with the body a binder, we simply ‘reify’ the 𝖪𝗋𝗂𝗉𝗄𝖾 function by eval-
uating it in an extended context and feeding it dummy values corresponding to the extra variables
introduced by that context. This is reminiscent both of what we did in Section 3 and the definition
of reification in the setting of normalisation by evaluation (see e.g. Coquand’s work [13]).
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𝗌𝖾𝗆 ∶ (𝑚 ─𝖤𝗇𝗏) 𝒱 𝑛 → 𝖳𝗆 𝑑 𝑖 𝑚 → 𝒞 𝑛
𝖻𝗈𝖽𝗒 ∶ (𝑚 ─𝖤𝗇𝗏) 𝒱 𝑛 → ∀ 𝑘 → 𝖲𝖼𝗈𝗉𝖾 (𝖳𝗆 𝑑 𝑖) 𝑘 𝑚 → 𝖪𝗋𝗂𝗉𝗄𝖾 𝒱 𝒞 𝑘 𝑛

𝗌𝖾𝗆 𝜌 (‵𝗏𝖺𝗋 𝑘) = 𝗏𝖺𝗋 (𝗅𝗈𝗈𝗄𝗎𝗉 𝜌 𝑘)
𝗌𝖾𝗆 𝜌 (‵𝖼𝗈𝗇 𝑡) = 𝖺𝗅𝗀 (𝖿𝗆𝖺𝗉 𝑑 (𝖻𝗈𝖽𝗒 𝜌) 𝑡)

𝖻𝗈𝖽𝗒 𝜌 𝟢 𝑡 = 𝗌𝖾𝗆 𝜌 𝑡
𝖻𝗈𝖽𝗒 𝜌 (𝗌𝗎𝖼 𝑘) 𝑡 = 𝜆 𝑟𝑒𝑛 𝑣𝑠 → 𝗌𝖾𝗆 (𝑣𝑠 >> 𝗍𝗁𝖤𝗇𝗏 𝗍𝗁𝒱 𝜌 𝑟𝑒𝑛) 𝑡

Figure 17 Fundamental Lemma of 𝖲𝖾𝗆antics

Substitution can be defined in a similar manner. Of the two constraints applying to terms as
values, the first one corresponds precisely to renaming and the second one is trivial. The algebra can
once more be defined by using 𝖿𝗆𝖺𝗉 and reifying the bodies of binders. This reification process can
be implemented generically for semantics which have “VarLike” values i.e. values that are thinnable
and such that we can craft dummy ones in non-empty contexts.

𝗋𝖾𝖼𝗈𝗋𝖽 𝖵𝖺𝗋𝖫𝗂𝗄𝖾 (𝒱 ∶ ℕ → 𝖲𝖾𝗍) ∶ 𝖲𝖾𝗍 𝗐𝗁𝖾𝗋𝖾
𝖿 𝗂𝖾𝗅𝖽 𝗇𝖾𝗐 ∶ [ 𝗌𝗎𝖼 ⊢ 𝒱 ]

𝗍𝗁𝒱 ∶ 𝖳𝗁𝗂𝗇𝗇𝖺𝖻𝗅𝖾 𝒱

𝗋𝖾𝗂𝖿𝗒 ∶ 𝖵𝖺𝗋𝖫𝗂𝗄𝖾 𝒱 → ∀ 𝑚 → 𝖪𝗋𝗂𝗉𝗄𝖾 𝒱 𝒞 𝑚 𝑛 → 𝖲𝖼𝗈𝗉𝖾 𝒞 𝑚 𝑛
𝗋𝖾𝗂𝖿𝗒 𝑣𝑙𝒱 𝗓𝖾𝗋𝗈 𝑏 = 𝑏
𝗋𝖾𝗂𝖿𝗒 𝑣𝑙𝒱 𝑚@(𝗌𝗎𝖼 _) 𝑏 = 𝑏 (𝖿𝗋𝖾𝗌𝗁 𝗏𝗅𝖵𝖺𝗋 𝑚) (𝖿𝗋𝖾𝗌𝗁 𝑣𝑙𝒱 𝑚)

𝖱𝖾𝗇𝖺𝗆𝗂𝗇𝗀 ∶ ∀ 𝑑 → 𝖲𝖾𝗆 𝑑 𝖵𝖺𝗋 (𝖳𝗆 𝑑 ∞)
𝖱𝖾𝗇𝖺𝗆𝗂𝗇𝗀 𝑑 = 𝗋𝖾𝖼𝗈𝗋𝖽

{ 𝗍𝗁𝒱 = 𝜆 𝑘 𝜌 → 𝗅𝗈𝗈𝗄𝗎𝗉 𝜌 𝑘
; 𝗏𝖺𝗋 = ‵𝗏𝖺𝗋
; 𝖺𝗅𝗀 = ‵𝖼𝗈𝗇 ∘ 𝖿𝗆𝖺𝗉 𝑑 (𝗋𝖾𝗂𝖿𝗒 𝗏𝗅𝖵𝖺𝗋) }

𝗋𝖾𝗇 ∶ ∀ 𝑑 → (𝑚 ─𝖤𝗇𝗏) 𝖵𝖺𝗋 𝑛 →
𝖳𝗆 𝑑 ∞ 𝑚 → 𝖳𝗆 𝑑 ∞ 𝑛

𝗋𝖾𝗇 𝑑 = 𝖲𝖾𝗆.𝗌𝖾𝗆 (𝖱𝖾𝗇𝖺𝗆𝗂𝗇𝗀 𝑑)

𝖲𝗎𝖻𝗌𝗍𝗂𝗍𝗎𝗍𝗂𝗈𝗇 ∶ ∀ 𝑑 → 𝖲𝖾𝗆 𝑑 (𝖳𝗆 𝑑 ∞) (𝖳𝗆 𝑑 ∞)
𝖲𝗎𝖻𝗌𝗍𝗂𝗍𝗎𝗍𝗂𝗈𝗇 𝑑 = 𝗋𝖾𝖼𝗈𝗋𝖽

{ 𝗍𝗁𝒱 = 𝜆 𝑡 𝜌 → 𝖲𝖾𝗆.𝗌𝖾𝗆 (𝖱𝖾𝗇𝖺𝗆𝗂𝗇𝗀 𝑑) 𝜌 𝑡
; 𝗏𝖺𝗋 = 𝗂𝖽
; 𝖺𝗅𝗀 = ‵𝖼𝗈𝗇 ∘ 𝖿𝗆𝖺𝗉 𝑑 (𝗋𝖾𝗂𝖿𝗒 𝗏𝗅𝖳𝗆) }

𝗌𝗎𝖻 ∶ ∀ 𝑑 → (𝑚 ─𝖤𝗇𝗏) (𝖳𝗆 𝑑 ∞) 𝑛 →
𝖳𝗆 𝑑 ∞ 𝑚 → 𝖳𝗆 𝑑 ∞ 𝑛

𝗌𝗎𝖻 𝑑 = 𝖲𝖾𝗆.𝗌𝖾𝗆 (𝖲𝗎𝖻𝗌𝗍𝗂𝗍𝗎𝗍𝗂𝗈𝗇 𝑑)

Figure 18 Generic Renaming and Substitution for All Scope Safe Syntaxes with Binding

7 Other Generic Programs

7.1 Sugar and Desugaring as a Semantics
One of the advantages of having a universe of programming languages descriptions is the ability
to concisely define an extension of an existing language by using 𝖣𝖾𝗌𝖼ription transformers grafting
extra constructors à la Swiestra [23]. This is made extremely simple by the disjoint sum combinator
_‵+_ which we have already seen in Section 5.1. An example of such an extension is the addition of
let-bindings to an existing language. Let bindings allow the user to avoid repeating herself by naming
sub-expressions and then using these names to refer to the associated terms.

In a dependently typed language a type may depend on a value which in the presence of let
bindings may be a variable standing for an expression. The user naturally does not want it to make
any difference whether she used a variable referring to a let-bound expression or the expression
itself. Various typechecking strategies can accomodate this expectation: in Coq [20] let bindings
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_𝗍𝗂𝗆𝖾𝗌_ ∶ ℕ → (𝐴 → 𝐴) → (𝐴 → 𝐴)
(𝗓𝖾𝗋𝗈 𝗍𝗂𝗆𝖾𝗌 𝑓) 𝑑 = 𝑑
(𝗌𝗎𝖼 𝑛 𝗍𝗂𝗆𝖾𝗌 𝑓) 𝑑 = 𝑓 ((𝑛 𝗍𝗂𝗆𝖾𝗌 𝑓) 𝑑)

𝖫𝖾𝗍 ∶ 𝖣𝖾𝗌𝖼
𝖫𝖾𝗍 = ‵𝜎 ℕ (𝜆 𝑛 → (𝑛 𝗍𝗂𝗆𝖾𝗌 ‵𝖷 𝟢) ‵∎ ‵× ‵𝖷 𝑛 ‵∎)

Figure 19 Parallel Let Binding

are primitive constructs of the language and have their own typing and reduction rules whereas in
Agda they are elaborated away to the core language by inlining.

This latter approach to extending a language 𝑑 with let bindings by inlining them before type-
checking can be implemented generically as a Semantics over (𝖫𝖾𝗍 ‵+ 𝑑) where values in the environ-
ment and computations both are let-free terms. The algebra of that semantics can be defined by parts:
the old constructors are simply interpreted using the algebra defined generically for the 𝖲𝗎𝖻𝗌𝗍𝗂𝗍𝗎𝗍𝗂𝗈𝗇
semantics whilst the newer one precisely provides the extra values to be added to the environment
(we leave the definition of 𝖺𝗅𝗀′ out because of a lack of space). The process of removing let binders
is kickstarted with a dummy environment associating each variable to itself.

𝖴𝗇𝖫𝖾𝗍 ∶ ∀ 𝑑 → 𝖲𝖾𝗆 (𝖫𝖾𝗍 ‵+ 𝑑) (𝖳𝗆 𝑑 ∞) (𝖳𝗆 𝑑 ∞)
𝖴𝗇𝖫𝖾𝗍 𝑑 = 𝗋𝖾𝖼𝗈𝗋𝖽

{ 𝗍𝗁𝒱 = 𝗍𝗁𝖳𝗆

; 𝗏𝖺𝗋 = 𝗂𝖽
; 𝖺𝗅𝗀 = 𝖼𝖺𝗌𝖾 𝖺𝗅𝗀′ (𝖲𝖾𝗆.𝖺𝗅𝗀 (𝖲𝗎𝖻𝗌𝗍𝗂𝗍𝗎𝗍𝗂𝗈𝗇 𝑑)) }

𝗎𝗇𝗅𝖾𝗍 ∶ [ 𝖳𝗆 (𝖫𝖾𝗍 ‵+ 𝑑) ∞ →̇ 𝖳𝗆 𝑑 ∞ ]
𝗎𝗇𝗅𝖾𝗍 = 𝖲𝖾𝗆.𝗌𝖾𝗆 (𝖴𝗇𝖫𝖾𝗍 _) (𝗉𝖺𝖼𝗄 ‵𝗏𝖺𝗋)

Figure 20 Inlining Let Binding

In about 20 lines of code we have defined a generic extension of syntaxes with binding together
with a semantics which corresponds to an elaborator translating away this new constructor. In their
own setting working on a given language, Allais, Chapman, McBride and McKinna [2] have shown
that it is similarly possible to implement a Continuation Passing Style transformation as a semantics.

The ease with which one can define such generic transformations suggests that this setup could
be a good candidate to implement generic compilation passes.

7.2 (Unsafe) Normalisation by Evaluation
A key type of traversal we have not studied yet is a language’s evaluator. Our universe of syntaxes
with binding does not impose any typing discipline on the user defined languages and as such cannot
guarantee their totality. This is embodied by our running example: the untyped 𝜆-calculus. As a
consequence there is no hope for a safe generic framework to define normalisation functions.

The clear connection between the 𝖪𝗋𝗂𝗉𝗄𝖾 functional space characteristic of our semantics and
the one that shows up in normalisation by evaluation suggests we ought to manage to give a generic
framework for normalisation by evaluation. By temporarily disabling Agda’s positivity checker, we
can define a generic reflexive domain 𝖣𝗆 in which to interpret our syntaxes. It has three constructors
corresponding respectively to a free variable, a constructor’s counterpart where scopes have become
𝖪𝗋𝗂𝗉𝗄𝖾 functional spaces on 𝖣𝗆 and an error token because the evaluation of untyped programs may
(and usually does!) go wrong.

This datatype definition is utterly unsafe. The more conservative user will happily restrict herself
to typed settings where the domain can be defined as a logical predicate or opt instead for a step-
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{−# 𝖭𝖮_𝖯𝖮𝖲𝖨𝖳𝖨𝖵𝖨𝖳𝖸_𝖢𝖧𝖤𝖢𝖪 #−}
𝖽𝖺𝗍𝖺 𝖣𝗆 (𝑑 ∶ 𝖣𝖾𝗌𝖼) ∶ 𝖲𝗂𝗓𝖾 → ℕ → 𝖲𝖾𝗍 𝗐𝗁𝖾𝗋𝖾

𝖵 ∶ [ 𝖵𝖺𝗋 →̇ 𝖣𝗆 𝑑 𝑖 ]
𝖢 ∶ [ ⟦ 𝑑 ⟧ (𝖪𝗋𝗂𝗉𝗄𝖾 (𝖣𝗆 𝑑 𝑖) (𝖣𝗆 𝑑 𝑖)) →̇ 𝖣𝗆 𝑑 (↑ 𝑖) ]
⊥ ∶ [ 𝖣𝗆 𝑑 (↑ 𝑖) ]

Figure 21 Generic Reflexive Domain

indexed approach. But this domain does make it possible to define a generic 𝗇𝖻𝖾 semantics as well as
a reification function turning elements of the reflexive domain into terms. By composing them, we
obtain the normalisation function which gives its name to normalisation by evaluation.

The user still has to explicitly pass an interpretation of the various constructors because there is
no way for us to know what the binders are supposed to represent: they may stand 𝜆-abstractions,
Σ-types, fixpoints, or anything else she may want to define.

𝗋𝖾𝗂𝖿𝗒𝖣𝗆 ∶ [ 𝖣𝗆 𝑑 𝑖 →̇ 𝖬𝖺𝗒𝖻𝖾 ∘ 𝖳𝗆 𝑑 ∞ ]
𝗇𝖻𝖾 ∶ [ ⟦ 𝑑 ⟧ (𝖪𝗋𝗂𝗉𝗄𝖾 (𝖣𝗆 𝑑 ∞) (𝖣𝗆 𝑑 ∞)) →̇ 𝖣𝗆 𝑑 ∞ ] → 𝖲𝖾𝗆 𝑑 (𝖣𝗆 𝑑 ∞) (𝖣𝗆 𝑑 ∞)

𝗇𝗈𝗋𝗆 ∶ [ ⟦ 𝑑 ⟧ (𝖪𝗋𝗂𝗉𝗄𝖾 (𝖣𝗆 𝑑 ∞) (𝖣𝗆 𝑑 ∞)) →̇ 𝖣𝗆 𝑑 ∞ ] → [ 𝖳𝗆 𝑑 ∞ →̇ 𝖬𝖺𝗒𝖻𝖾 ∘ 𝖳𝗆 𝑑 ∞ ]
𝗇𝗈𝗋𝗆 𝑎𝑙𝑔 = 𝗋𝖾𝗂𝖿𝗒𝖣𝗆 ∘ 𝖲𝖾𝗆.𝗌𝖾𝗆 (𝗇𝖻𝖾 𝑎𝑙𝑔) (𝗋𝖾𝖿 𝗅 𝗏𝗅𝖣𝗆)

Figure 22 Generic Normalisation by Evaluation Framework

Using this setup, we can write a normaliser for the untyped 𝜆-calculus: we use 𝖼𝖺𝗌𝖾 to distinguish
between the semantical counterpart of the application constructor on one hand and the 𝜆-abstraction
one on the other. The latter is trivial: functions are already values! The semantical counterpart of
application proceeds by case analysis on the function: if it corresponds to a 𝜆-abstraction, we can fire
the redex by using the kripke functional space; otherwise we grow the spine of stuck applications.

𝗇𝗈𝗋𝗆𝖫𝖢 ∶ [ 𝖫𝖢 →̇ 𝖬𝖺𝗒𝖻𝖾 ∘ 𝖫𝖢 ]
𝗇𝗈𝗋𝗆𝖫𝖢 = 𝗇𝗈𝗋𝗆 $ 𝖼𝖺𝗌𝖾 𝖺𝗉𝗉 (𝖢 ∘ (𝖿𝖺𝗅𝗌𝖾 , _)) 𝗐𝗁𝖾𝗋𝖾

𝖺𝗉𝗉 ∶ [ ⟦ ‵𝖷 𝟢 (‵𝖷 𝟢 ‵∎) ⟧ (𝖪𝗋𝗂𝗉𝗄𝖾 (𝖣𝗆 𝖫𝖢𝖣 ∞) (𝖣𝗆 𝖫𝖢𝖣 ∞)) →̇ 𝖣𝗆 𝖫𝖢𝖣 ∞ ]
𝖺𝗉𝗉 (𝖢 (𝖿𝖺𝗅𝗌𝖾 , 𝑓 , _) , 𝑡 , _) = 𝑓 (𝗋𝖾𝖿 𝗅 𝗏𝗅𝖵𝖺𝗋) (𝜀 ∙ 𝑡) – redex

𝖺𝗉𝗉 (𝑓 , 𝑡 , _) = 𝖢 (𝗍𝗋𝗎𝖾 , 𝑓 , 𝑡 , _) – stuck application

Figure 23 Normalisation by Evaluation for the Untyped 𝜆-Calculus

8 Building Generic Proofs about Generic Programs

Allais, Chapman, McBride, and McKinna [2] have already shown that, for their specific language,
introducing an abstract notion of Semantics not only reveals the shared structure of common traver-
sals, it also allows them to give abstract proof frameworks for simulation or fusion lemmas. Their
idea naturally extends to our generic presentation of semantics for all syntaxes.
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The most important concept in this section is (𝖹𝗂𝗉 𝑑), a relation transformer which characterises
structurally equal layers such that their substructures are themselves related by the relation it is passed
as an argument. It is defined by induction on the description and case analysis on the two layers which
are meant to be equal. It inherits a lot of its relational arguments’ properties: whenever 𝑅 is reflexive
(respectively symmetric or transitive) so is 𝖹𝗂𝗉 𝑑 𝑅.

𝖹𝗂𝗉 ∶ (𝑑 ∶ 𝖣𝖾𝗌𝖼) (𝑅 ∶ (𝑚 ∶ ℕ) → [ 𝑋 𝑚 →̇ 𝑌 𝑚 →̇ 𝜅 𝖲𝖾𝗍 ]) → [ ⟦ 𝑑 ⟧ 𝑋 →̇ ⟦ 𝑑 ⟧ 𝑌 →̇ 𝜅 𝖲𝖾𝗍 ]
𝖹𝗂𝗉 ‵∎ 𝑅 𝑥 𝑦 = ⊤
𝖹𝗂𝗉 (‵𝖷 𝑘 𝑑) 𝑅 (𝑟 , 𝑥) (𝑟′ , 𝑦) = 𝑅 𝑘 𝑟 𝑟′ × 𝖹𝗂𝗉 𝑑 𝑅 𝑥 𝑦
𝖹𝗂𝗉 (‵𝜎 𝐴 𝑑) 𝑅 (𝑎 , 𝑥) (𝑎′ , 𝑦) = Σ[ 𝑒𝑞 ∈ 𝑎′ ≡ 𝑎 ] 𝖹𝗂𝗉 (𝑑 𝑎) 𝑅 𝑥 (𝗋𝖾𝗐 𝑒𝑞 𝑦)

𝗐𝗁𝖾𝗋𝖾 𝗋𝖾𝗐 = 𝗌𝗎𝖻𝗌𝗍 (𝜆 𝑎 → ⟦ 𝑑 𝑎 ⟧ _ _)

Figure 24 Zip: Characterising Structurally Equal Values with Related Substructures

8.1 Simulation Lemma
A 𝖹𝗂𝗉 constraint appears naturally when we want to say that a semantics can simulate another one.
Given a relation connecting values in 𝒱1 and 𝒱2, and a relation connecting computations in 𝒞1 and
𝒞2, we can define 𝖪𝗋𝗂𝗉𝗄𝖾𝖱 relating values 𝖪𝗋𝗂𝗉𝗄𝖾 𝒱1 𝒞1 and 𝖪𝗋𝗂𝗉𝗄𝖾 𝒱2 𝒞2 by stating that they send
related inputs to related outputs. We use the relation transformer ∀[_] which lifts a relation on values
to one on environments.

𝖪𝗋𝗂𝗉𝗄𝖾𝖱 ∶ (𝑚 ∶ ℕ) → [ 𝖪𝗋𝗂𝗉𝗄𝖾 𝒱1 𝒞1 𝑚 →̇ 𝖪𝗋𝗂𝗉𝗄𝖾 𝒱2 𝒞2 𝑚 →̇ 𝜅 𝖲𝖾𝗍 ]
𝖪𝗋𝗂𝗉𝗄𝖾𝖱 𝗓𝖾𝗋𝗈 𝑘1 𝑘2 = ℛ𝒞 𝑘1 𝑘2
𝖪𝗋𝗂𝗉𝗄𝖾𝖱 (𝗌𝗎𝖼 _) 𝑘1 𝑘2 = ∀[ ℛ𝒱 ] 𝜌1 𝜌2 → ℛ𝒞 (𝑘1 𝜎 𝜌1) (𝑘2 𝜎 𝜌2)

Figure 25 Relational Kripke Function Spaces: From Related Inputs to Related Outputs

We can then use 𝖹𝗂𝗉 together with 𝖪𝗋𝗂𝗉𝗄𝖾𝖱 to express the idea that two semantic objects of respec-
tive types ⟦ 𝑑 ⟧ (𝖪𝗋𝗂𝗉𝗄𝖾 𝒱1 𝒞1) and ⟦ 𝑑 ⟧ (𝖪𝗋𝗂𝗉𝗄𝖾 𝒱2 𝒞2) are synchronised. The simulation constraint
on two 𝖲𝖾𝗆antics’ algebras then becomes: given synchronized objects, the algebras should yield re-
lated computations. Together with self-explanatory constraints on 𝗏𝖺𝗋 and 𝗍𝗁𝒱 , this constitutes the
whole 𝖲𝗂𝗆ulation constraint:

𝗋𝖾𝖼𝗈𝗋𝖽 𝖲𝗂𝗆 (𝑑 ∶ 𝖣𝖾𝗌𝖼) (𝒮1 ∶ 𝖲𝖾𝗆 𝑑 𝒱1 𝒞1) (𝒮2 ∶ 𝖲𝖾𝗆 𝑑 𝒱2 𝒞2) ∶ 𝖲𝖾𝗍 𝗐𝗁𝖾𝗋𝖾
𝖿 𝗂𝖾𝗅𝖽 𝗍𝗁𝖱 ∶ (𝜎 ∶ 𝖳𝗁𝗂𝗇𝗇𝗂𝗇𝗀 𝑚 𝑛) → ℛ𝒱 𝑣1 𝑣2 → ℛ𝒱 (𝖲𝖾𝗆.𝗍𝗁𝒱 𝒮1 𝑣1 𝜎) (𝖲𝖾𝗆.𝗍𝗁𝒱 𝒮2 𝑣2 𝜎)

𝗏𝖺𝗋𝖱 ∶ ℛ𝒱 𝑣1 𝑣2 → ℛ𝒞 (𝖲𝖾𝗆.𝗏𝖺𝗋 𝒮1 𝑣1) (𝖲𝖾𝗆.𝗏𝖺𝗋 𝒮2 𝑣2)
𝖺𝗅𝗀𝖱 ∶ 𝖹𝗂𝗉 𝑑 𝖪𝗋𝗂𝗉𝗄𝖾𝖱 𝑏1 𝑏2 → ℛ𝒞 (𝖲𝖾𝗆.𝖺𝗅𝗀 𝒮1 𝑏1) (𝖲𝖾𝗆.𝖺𝗅𝗀 𝒮2 𝑏2)

Figure 26 A Generic Notion of Simulation

We can prove a generic theorem showing that for each pair of 𝖲𝖾𝗆antics respecting the 𝖲𝗂𝗆ulation
constraint, we get related computations given environments of related input values. This theorem is
once more mutually proven with a statement about 𝖲𝖼𝗈𝗉𝖾s, and 𝖲𝗂𝗓𝖾s play a crucial role in ensuring
that the function is indeed total.
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𝗌𝗂𝗆 ∶ (𝑡 ∶ 𝖳𝗆 𝑑 𝑖 𝑚) → ℛ𝒞 (𝖲𝖾𝗆.𝗌𝖾𝗆 𝒮1 𝜌1 𝑡) (𝖲𝖾𝗆.𝗌𝖾𝗆 𝒮2 𝜌2 𝑡)
𝖻𝗈𝖽𝗒 ∶ (𝑚 ∶ ℕ) (𝑡 ∶ 𝖲𝖼𝗈𝗉𝖾 (𝖳𝗆 𝑑 𝑖) 𝑚 𝑛) →

𝖪𝗋𝗂𝗉𝗄𝖾𝖱 𝑚 (𝖲𝖾𝗆.𝖻𝗈𝖽𝗒 𝒮1 𝜌1 𝑚 𝑡) (𝖲𝖾𝗆.𝖻𝗈𝖽𝗒 𝒮2 𝜌2 𝑚 𝑡)

𝗋𝖾𝗇𝗌𝗎𝖻 ∶ (𝑑 ∶ 𝖣𝖾𝗌𝖼) (𝜌 ∶ 𝖳𝗁𝗂𝗇𝗇𝗂𝗇𝗀 𝑚 𝑛) (𝑡 ∶ 𝖳𝗆 𝑑 ∞ 𝑚) →
𝖲𝖾𝗆.𝗌𝖾𝗆 (𝖱𝖾𝗇𝖺𝗆𝗂𝗇𝗀 𝑑) 𝜌 𝑡 ≡ 𝖲𝖾𝗆.𝗌𝖾𝗆 (𝖲𝗎𝖻𝗌𝗍𝗂𝗍𝗎𝗍𝗂𝗈𝗇 𝑑) (‵𝗏𝖺𝗋 <$> 𝜌) 𝑡

𝗋𝖾𝗇𝗌𝗎𝖻 𝑑 𝜌 = 𝖲𝗂𝗆.𝗌𝗂𝗆 (𝖱𝖾𝗇𝖲𝗎𝖻 𝑑) (𝗉𝖺𝖼𝗄𝖱 (𝜆 _ → _≡_.𝗋𝖾𝖿 𝗅))

Figure 27 Fundamental Lemma of 𝖲𝗂𝗆ulations and Renaming as a Substitution as its Corollary

Instantiating this generic simulation lemma, we can for instance get that Renaming is a special
case of Substitution. This example is the simplest of the abstract proof frameworks Allais, Chapman,
McBride and McKinna introduce for their specific language. They also explain how a similar frame-
work can be defined for fusion lemmas and deploy it for the renaming-substitution interactions but
also their respective interactions with normalisation by evaluation.

9 Conclusion

We have started from an example of a scope safe language (the untyped 𝜆-calculus), have studied
various common traversals and noticed their similarity. After introducing a notion of semantics and
refactoring these traversals as various instances of the same fundamental lemma, we have observed
the tight connection between the abstract definition of semantics and the shape of the language. By
extending a universe of datatype descriptions to support a notion of binding, we have managed to give
a generic presentation of syntaxes with binding as well as a large class of scope safe programs acting
on them: from Renaming and Substitution, to Normalisation by Evaluation, and the Desugaring of
new constructors added by a language transformer. Last but not least, we have seen how to construct
generic proofs about these generic programs. The diverse influences leading to this body of work
suggest many opportunities for future research:

The question of a universe of syntaxes with binding which are not only well scoped but also
intrinsicallywell typed by construction is an exciting challenge. The existing variation on the universe
of datatypes giving a universe of inductive families [15] is a natural candidate.

Our example of the elaboration of an enriched language to a core one, and Allais, Chapman,
McBride and McKinna’s implementation of a Continuation Passing Style conversion function begs
the question of how many such common compilation passes can be implemented generically. An
extension ofMcBride’s theory of ornaments [21] could provide an appropriate framework to highlight
the connection between various languages, some being seen as the extension of others.
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