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Abstract
We start from an untyped, well-scoped λ-calculus and introduce a bidirectional typing relation correspond-
ing to an Intuitionistic Linear Logic. We depart from typical presentations to adopt one that is well-suited
to the intensional setting of Martin-Löf Type Theory. This relation is based on the idea that a linear term
consumes some of the resources available in its context whilst leaving behind leftovers which can then be
fed to another program.

Concretely, this means that typing derivations have both an input and an output context. This leads to
a notion of weakening (the extra resources added to the input context come out unchanged in the output
one), a rather direct proof of stability under substitution, an analogue of the frame rule of separation
logic showing that the state of unused resources can be safely ignored, and a proof that typechecking is
decidable. Finally, we demonstrate that this alternative presentation is sound and complete with respect to
Intuitionistic Linear Logic.

The work has been fully formalised in Agda, commented source files are provided as additional mate-
rial available at https://github.com/gallais/typing-with-leftovers.
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1 Introduction

The strongly-typed functional programming community has benefited from a wealth of optimisations
made possible precisely because the library author as well as the compiler are aware of the type of the
program they are working on. These optimisations have ranged from Danvy’s type-directed partial
evaluation [18] residualising specialised programs to erasure mechanisms –be they user-guided like
Coq’s extraction [27] which systematically removes all the purely logical proofs put in Prop by the
developer or automated like Brady and Tejišcák’s erased values [12, 13]– and including the library
defining the State-Thread [25] monad which relies on higher-rank polymorphism and parametricity
to ensure the safety of using an actual mutable object in a lazy, purely functional setting.

However, in the context of the rising development of dependently-typed programming languages [11,
31] which, unlike ghc’s Haskell [36], incorporate a hierarchy of universes in order to ensure that the
underlying logic is consistent, some of these techniques are not applicable anymore. Indeed, the use
of large quantification in the definition of the ST-monad crucially relies on impredicativity. As a con-
sequence, the specification of programs allowed to update amutable object in a safe way has to change.
Idris has been extended with experimental support for uniqueness types inspired by Clean’s [1] and
Rust’s ownership types [20], all of which stem from linear logic [22].
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23:2 Typing with Leftovers

In order to be able to use type theory to formally study the meta-theory of the programming
languages whose type system includes notions of linearity, we need to have a good representation of
such constraints.

Section 2 introduces the well-scoped untyped λ-calculus we are going to use as our language of
raw terms. Section 3 defines the linear typing rules for this language as relations which record the
resources consumed by a program. The next Sections are dedicated to proving properties of this type
system: Section 4 proves that the status of unused variables rightfully does not matter, Section 5
(and respectively Section 6) demonstrates that these typing relations are stable under weakening
(respectively substitution), Section 7 demonstrates that these relations are functional, and Section 8
that they are decidable i.e. provides us with a typechecking algorithm. Finally Section 9 goes back
to a more traditional presentation of Intuitionistic Linear Logic and demonstrates it is equivalent.

Notations

This whole development has been fully formalised in Agda. Rather than using Agda’s syntax, the
results are reformulated in terms of definitions, lemmas, theorems, and examples. However it is
important to keep in mind the distinction between various kinds of objects. Teletype is used to
denote data constructors, SMALL CAPITALS are characteristic of defined types. A type families’ index
is written as a subscript e.g. VAR𝑛.

We use two kinds of inference rules to describe inductive families: double rules are used to
define types whilst simple ones correspond to constructors. In each case the premises correspond
to arguments (usually called parameters and indices for types) and the conclusion shows the name
of the constructor. A typical example is the inductively defined set of unary natural numbers. The
inductive type is called NAT and it has two constructors: 0 takes no argument whilst 1+ ⋅ takes a NAT
𝑛 and represents its successor.

NAT ∶ Set
==========

0 ∶ NAT
−−−−−−−−

𝑛 ∶ NAT

1+𝑛 ∶ NAT
−−−−−−−−−−−

2 The Calculus of Raw Terms

The calculus we study in this paper is meant to be a core language, even though it will be rather easy
to write programs in it. As a consequence all the design choices have been guided by the goal of
facilitating its mechanical treatment in a dependently-typed language. That is why we use de Bruijn
indices to represent variable bindings. We demonstrate in the code accompanying the paper how to
combine a parser and a scope checker to turn a surface level version of the language using strings as
variable names into this representation.

Following Bird and Patterson [9] and Altenkirch and Reus [5], we define the raw terms of our
language not as an inductive type but rather as an inductive family [21]. This technique, sometimes
dubbed “type-level de Bruijn indices”, makes it possible to keep track, in the index of the family,
of the free variables currently in scope. As is nowadays folklore, instead of using a set-indexed
presentation where a closed terms is indexed by the empty set ⊥ and fresh variables are introduced
by wrapping the index in a Maybe type constructor1, we index our terms by a natural number instead.
The VAR type family2 defined below represents the de Bruijn indices [19] corresponding to the 𝑛 free
variables present in a scope 𝑛.

1 The value nothing represents the fresh variable whilst the constructor just lifts the other ones in the new scope.
2 It is also known as Fin (for “finite set”) in the dependently typed programming community.
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𝑛 ∶ NAT

VAR𝑛 ∶ Set
============

z ∶ VAR1+𝑛
−−−−−−−−−−−−

𝑘 ∶ VAR𝑛

s 𝑘 ∶ VAR1+𝑛
−−−−−−−−−−−−−−

We present the calculus in a bidirectional fashion [32]. This definition style scales well to more
complex type theories where full type-inference is not tractable anymore whilst keeping the type
annotations the programmer needs to add to a minimum. The term constructors of the calculus are
split in two different syntactic categories corresponding to constructors of canonical values on one
hand and eliminators on the other. These categories characterise the flow of information during
typechecking: given a context assigning a type to each free variable, canonical values (which we call
CHECK) can be checked against a type whilst we may infer the type of computations (which we call
INFER). Each type is indexed by a scope:

𝑛 ∶ NAT

INFER𝑛 ∶ Set
==============

𝑛 ∶ NAT

CHECK𝑛 ∶ Set
===============

On top of the constructors one would expect for a usual definition of the untyped λ-calculus
(var ⋅, app ⋅ ⋅, and lam ⋅) we have constructors and eliminators for sums (inl ⋅, inr ⋅, case ⋅ re-
turn ⋅ of ⋅ %% ⋅), products (prd ⋅ , let ⋅ := ⋅ in ⋅, prj1 ⋅, prj2 ⋅), unit (unit, let ⋅ := ⋅ in ⋅)
and void (exfalso ⋅ ⋅). Two additional rules (neu ⋅ and cut ⋅ ⋅ respectively) allow the embedding
of INFER into CHECK and vice-versa. They make it possible to form redexes by embedding canoni-
cal values into computations and then applying eliminators to them. In terms of typechecking, they
correspond to a change of direction between inferring and checking.

⟨INFER𝑛⟩ ::= var ⟨VAR𝑛⟩
| app ⟨INFER𝑛⟩ ⟨CHECK𝑛⟩
| case ⟨INFER𝑛⟩ return ⟨TYPE⟩ of ⟨CHECK1+𝑛⟩ %% ⟨CHECK1+𝑛⟩
| prj1 ⟨INFER𝑛⟩ | prj2 ⟨INFER𝑛⟩
| exfalso ⟨TYPE⟩ ⟨INFER𝑛⟩
| cut ⟨CHECK𝑛⟩ ⟨TYPE⟩

⟨CHECK𝑛⟩ ::= lam ⟨CHECK1+𝑛⟩
| let ⟨PATTERN𝑚⟩ := ⟨INFER𝑛⟩ in ⟨CHECK𝑚+𝑛⟩
| unit

| inl ⟨CHECK𝑛⟩ | inr ⟨CHECK𝑛⟩
| prd ⟨CHECK𝑛⟩ ⟨CHECK𝑛⟩
| neu ⟨INFER𝑛⟩

Figure 1 Grammar of the Language of Raw Terms

The constructors cut, case, and exfalso take an extra TYPE argument in order to guarantee
the success and uniqueness of type-inference for INFER terms.

A notable specificity of this language is the ability to use nested patterns in a let binder rather than
having to resort to cascading lets. This is achieved thanks to a rather simple piece of kit: the PATTERN
type family. A value of type PATTERN𝑛 represents an irrefutable pattern binding 𝑛 variables. Because
variables are represented as de Bruijn indices, the base pattern does not need to be associated with
a name, it simply is a constructor v binding exactly one variable. The brackets pattern ⟨⟩ matches
unit values and binds nothing. The comma pattern constructor takes two nested patterns respectively
binding 𝑚 and 𝑛 variables and uses them to deeply match a pair thus binding (𝑚 + 𝑛) variables.

CVIT 2016
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𝑛 ∶ NAT

PATTERN𝑛 ∶ Set
==================

v ∶ PATTERN1
−−−−−−−−−−−−−−−−

⟨⟩ ∶ PATTERN0
−−−−−−−−−−−−−−−−−

𝑝 ∶ PATTERN𝑚 𝑞 ∶ PATTERN𝑛

𝑝,𝑞 ∶ PATTERN𝑚+𝑛
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

The grammar of raw terms only guarantees that all expressions are well-scoped by construction.
It does not impose any other constraint, which means that a user may write valid programs but also
invalid ones as the following examples demonstrate:

▶ Example 1. swap is a closed, well-typed linear term taking a pair as an input and swapping its
components. It corresponds to the mathematical function (𝑥, 𝑦) ↦ (𝑦, 𝑥).

swap = lam (let (v , v) := var z

in prd (neu (var (s z))) (neu (var z)))

▶ Example 2. illTyped is a closed linear term. However it is manifestly ill-typed: the let-
binding it uses tries to break down a function as if it were a pair.

illTyped = let (v , v) := cut (lam (neu (var z))) (a ⊸ a)

in prd (neu (var z)) (neu (var (s z)))

▶ Example 3. Finally, diagonal is a term typable in the simply-typed lambda calculus but it is
not linear: it duplicates its input just like 𝑥 ↦ (𝑥, 𝑥) does.

diagonal = lam (prd (neu (var z)) (neu (var z)))

3 Linear Typing Rules

These observations demonstrate that we need to define a typing relation describing the rules terms
need to abide by in order to qualify as well-typed linear programs. We start by defining the types
our programs may have using the grammar in Figure 2. Apart from the usual linear type formers, we
have a constructor κ which makes it possible to have countably many different base types.

⟨TYPE⟩ ::= κ ⟨ℕ⟩ | 𝟘 | 𝟙
| ⟨TYPE⟩ ⊸ ⟨TYPE⟩ | ⟨TYPE⟩ ⊗ ⟨TYPE⟩
| ⟨TYPE⟩ ⊕ ⟨TYPE⟩ | ⟨TYPE⟩ & ⟨TYPE⟩

Figure 2 Grammar of TYPE

A linear type system is characterised by the fact that all the resources available in a context have
to be used exactly once by the term being checked. In traditional presentations of linear logic this is
achieved by representing the context as a multiset and, in each rule, cutting it up and distributing its
parts among the premises. This is epitomised by the introduction rule for tensor (cf. Figure 3).

However, multisets are an intrinsically extensional notion and therefore quite arduous to work
with in an intensional type theory. Various strategies can be applied to tackle this issue; most of them
rely on using linked lists to represent contexts together with either extra inference rules to reorganise
the context or a side condition to rules splitting the context so that it may be re-arranged on the fly.
In the following example _ ≈ _ stands for “bag-equivalence” of lists.

Although one can find coping mechanisms to handle such clunky systems (for instance using a
solver for bag-equivalence [17] based on the proof-by-reflection [10] approach to automation), we
would rather not. All of these strategies are artefacts of the unfortunate mismatch between the ideal
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Γ ⊢ 𝜎 Δ ⊢ 𝜏
Γ, Δ ⊢ 𝜎 ⊗ 𝜏

⊗𝑖
Γ ⊢ 𝜎 Δ ⊢ 𝜏 Γ, Δ ≈ Θ

Θ ⊢ 𝜎 ⊗ 𝜏
⊗𝑖

Figure 3 Introduction rules for tensor (left: usual presentation, right: with reordering on the fly)

mathematical objects one wishes to model and their internal representation in the proof assistant.
Short of having proper quotient types, this will continue to be an issue when dealing with multisets.
The solution described in the rest of this paper is syntax-directed; it does not try to replicate a set-
theoretic approach in intuitionistic type theory but rather strives to find the type theoretical structures
which can make the problemmore tractable. Indeed, given the right abstractions most proofs become
direct structural inductions.

3.1 Usage Annotations
McBride’s recent work [29] on combining linear and dependent types highlights the distinction one
canmake between referring to a resource and actually consuming it. In the same spirit, rather than dis-
patching the available resources in the appropriate subderivations, we consider that a term is checked
in a given context on top of which usage annotations are super-imposed. These usage annotations
indicate whether resources have been consumed already or are still available. Type-inference (resp.
Type-checking) is then inferring (resp. checking) a term’s type but also annotating the resources
consumed by the term in question and returning the leftovers which gave their name to this paper.

▶ Definition 4. A CONTEXT is a list of TYPEs indexed by its length. It can be formally described
by the following inference rules:

𝑛 ∶ NAT

CONTEXT𝑛 ∶ Set
==================

[] ∶ CONTEXT0
−−−−−−−−−−−−−−−−−

𝛾 ∶ CONTEXT𝑛 𝜎 ∶ TYPE

𝛾 ∙ 𝜎 ∶ CONTEXT1+𝑛
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

▶ Definition 5. A USAGE is a predicate on a type 𝜎 describing whether the resource associated
to it is available or not. We name the constructors describing these two states f (for fresh) and s
(for stale) respectively. These are naturally lifted to contexts in a pointwise manner and we reuse the
USAGE name and the f and s names for the functions taking a context and returning either a fully
fresh or fully stale USAGE for it.

𝜎 ∶ TYPE

USAGE𝜎 ∶ Set
===============

f𝜎 ∶ USAGE𝜎
−−−−−−−−−−−−−−−

s𝜎 ∶ USAGE𝜎
−−−−−−−−−−−−−−−

𝛾 ∶ CONTEXT𝑛

USAGE𝛾 ∶ Set
================

[] ∶ USAGE[]
−−−−−−−−−−−−−−

Γ ∶ USAGE𝛾∙𝜎 𝑆 ∶ USAGE𝜎

Γ ∙ 𝑆 ∶ USAGE𝛾∙𝜎
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3.2 Typing as Consumption Annotation
A Typing relation seen as a consumption annotation process describes what it means, given a context
an its usage annotation, to ascribe a type to a termwhilst crafting another usage annotation containing
all the leftover resources. Formally:

CVIT 2016



23:6 Typing with Leftovers

▶ Definition 6. A Typing Relation for 𝑇 a NAT-indexed inductive family is an indexed relation
𝒯𝑛 such that:

𝑛 ∶ NAT 𝛾 ∶ CONTEXT𝑛 Γ, Δ ∶ USAGE𝛾 𝑡 ∶ 𝑇𝑛 𝜎 ∶ TYPE

𝒯𝑛(Γ, 𝑡, 𝜎, Δ) ∶ Set
===================================================================================

This definition clarifies the notion but also leads to more generic statements later on: weakening,
substitution, framing can all be expressed as properties a Typing Relation might have. We can already
list the typing relations introduced later on in this article which fit this pattern. We have split their
arguments into three columns depending on whether they should be understood as either inputs (the
known things), scrutinees (the things being validated), or outputs (the things that we learn) and hint
at what the flow of information in the typechecker will be.

𝛾 ∶ CONTEXT𝑛
Γ ∶ USAGE𝛾 𝑘 ∶ VAR𝑛

𝜎 ∶ TYPE
Δ ∶ USAGE𝛾

Γ ⊢𝑣 𝑘 ∈ 𝜎 ⊠ Δ ∶ Set
==========================================================

𝛾 ∶ CONTEXT𝑛
Γ ∶ USAGE𝛾 𝑡 ∶ INFER𝑛

𝜎 ∶ TYPE
Δ ∶ USAGE𝛾

Γ ⊢ 𝑡 ∈ 𝜎 ⊠ Δ ∶ Set
============================================================

𝛾 ∶ CONTEXT𝑛
Γ ∶ USAGE𝛾
𝜎 ∶ TYPE

𝑡 ∶ CHECK𝑛 Δ ∶ USAGE𝛾

Γ ⊢ 𝜎 ∋ 𝑡 ⊠ Δ ∶ Set

==========================================================

𝜎 ∶ TYPE 𝑝 ∶ PATTERN𝑛 𝛾 ∶ CONTEXT𝑛

𝜎 ∋ 𝑝⇝ 𝛾 ∶ Set
=======================================================

Figure 4 Typing relations for VAR, INFER, CHECK and PATTERN

▶ Remark. The use of ⊠ is meant to suggest that the input Γ get distributed between the type σ
of the term and the leftovers Δ obtained as an output. Informally Γ ≃ 𝜎 ⊗ Δ, hence the use of a
tensor-like symbol.

3.2.1 Typing de Bruijn indices
The simplest instance of a Typing Relation is the one for de Bruijn indices: given an index 𝑘 and a
usage annotation, it successfully associates a type 𝜎 to that index if and only if the 𝑘th resource in
context is of type 𝜎 and fresh (i.e. its USAGE𝜎 is f𝜎). In the resulting leftovers, this resource will
have turned stale (s𝜎) because it has now been used:

▶ Definition 7. The typing relation for VAR is presented in a sequent-style: Γ ⊢𝑣 𝑘 ∈ σ⊠Δmeans
that starting from the usage annotation Γ, the de Bruijn index 𝑘 is ascribed type σ with leftovers Δ.
It is defined inductively by two constructors (cf. Figure 5).
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Γ ∙ f𝜎 ⊢𝑣 z ∈ 𝜎 ⊠ Γ ∙ s𝜎

Γ ⊢𝑣 𝑘 ∈ 𝜎 ⊠ Δ
Γ ∙ 𝐴 ⊢𝑣 s 𝑘 ∈ 𝜎 ⊠ Δ ∙ 𝐴

Figure 5 Typing rules for VAR

▶ Remark. The careful reader will have noticed that there is precisely one typing rule for each VAR
constructor. It is not a coincidence. And if these typing rules are not named it’s because in Agda, they
can be given the same name as their VAR counterpart and the typechecker will perform type-directed
disambiguation. The same will be true for INFER, CHECK and PATTERN which means that writing
down a typable program could be seen as either writing a raw term or the typing derivation associated
to it depending on the author’s intent.

▶ Example 8. The de Bruijn index 1 has type τ in the context (γ ∙ τ ∙ σ) with usage annotation (Γ
∙ f𝜏 ∙ f𝜎), no matter what Γ actually is:

Γ ∙ f𝜏 ⊢ z ∈ 𝜏 ⊠ Γ ∙ s𝜏

Γ ∙ f𝜏 ∙ f𝜎 ⊢ sz ∈ 𝜏 ⊠ Γ ∙ s𝜏 ∙ f𝜎

Or, as it would be written in Agda, taking advantage of the fact that the language constructs and the
typing rules about them have been given the same names:

one : Γ ∙ f τ ∙ f σ ⊢ s z ∈ τ ⊠ Γ ∙ s τ ∙ f σ

one = s z

3.2.2 Typing Terms

The key idea appearing in all the typing rules for compound expressions is to use the input USAGE
to type one of the sub-expressions, collect the leftovers from that typing derivation and use them as
the new input USAGE when typing the next sub-expression.

Another common pattern can be seen across all the rules involving binders, be they λ-abstractions,
let-bindings or branches of a case. Typechecking the body of a binder involves extending the input
USAGE with fresh variables and observing that they have become stale in the output one. This guar-
antees that these bound variables cannot escape their scope as well as that they have indeed been
used. Although not the focus of this paper, it is worth noting that relaxing the staleness restriction
would lead to an affine type system which would be interesting in its own right.

▶ Definition 9. The Typing Relation for INFER is typeset in a fashion similar to the one for VAR:
in both cases the type is inferred. Γ ⊢ 𝑡 ∈ 𝜎 ⊠ Δ means that given Γ a USAGE𝛾 , and 𝑡 an INFER, the
type σ is inferred together with leftovers Δ, another USAGE𝛾 . The rules are listed in Figure 6.
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Γ ⊢𝑣 𝑘 ∈ 𝜎 ⊠ Δ
Γ ⊢ var 𝑘 ∈ 𝜎 ⊠ Δ

Γ ⊢ 𝑡 ∈ 𝜎 ⊸ 𝜏 ⊠ Δ Δ ⊢ 𝜎 ∋ 𝑢 ⊠ Θ
Γ ⊢ app 𝑡 𝑢 ∈ 𝜏 ⊠ Θ

Γ ⊢ 𝑡 ∈ 𝜎 ⊕ 𝜏 ⊠ Δ Δ ∙ f𝜎 ⊢ 𝜈 ∋ 𝑙 ⊠ Θ ∙ s𝜎
Δ ∙ f𝜏 ⊢ 𝜈 ∋ 𝑟 ⊠ Θ ∙ s𝜏

Γ ⊢ case 𝑡 return 𝜈 of 𝑙 %% 𝑟 ∈ 𝜈 ⊠ Θ
Γ ⊢ 𝑡 ∈ 𝜎&𝜏 ⊠ Δ

Γ ⊢ prj1 𝑡 ∈ 𝜎 ⊠ Δ

Γ ⊢ 𝑡 ∈ 𝜎&𝜏 ⊠ Δ
Γ ⊢ prj2 𝑡 ∈ 𝜏 ⊠ Δ

Γ ⊢ 𝑡 ∈ 𝟘 ⊠ Δ
Γ ⊢ exfalso 𝜎 𝑡 ∈ 𝜎 ⊠ Δ

Γ ⊢ 𝜎 ∋ 𝑡 ⊠ Δ
Γ ⊢ cut 𝑡 𝜎 ∈ 𝜎 ⊠ Δ

Figure 6 Typing rules for INFER

▶ Definition 10. For CHECK, the type σ comes first: Γ ⊢ σ ∋ t ⊠ Δ means that given Γ a USAGE𝛾 ,
a type σ, the CHECK 𝑡 can be checked to have type σ with leftovers Δ. The rules can be found in
Figure 7.

Γ ∙ f𝜎 ⊢ 𝜏 ∋ 𝑏 ⊠ Δ ∙ s𝜎

Γ ⊢ 𝜎 ⊸ 𝜏 ∋ lam 𝑏 ⊠ Δ
Γ ⊢ 𝜎 ∋ 𝑎 ⊠ Δ Δ ⊢ 𝜏 ∋ 𝑏 ⊠ Θ

Γ ⊢ 𝜎 ⊗ 𝜏 ∋ prd 𝑎 𝑏 ⊠ Θ

Γ ⊢ 𝜎 ∋ 𝑡 ⊠ Δ
Γ ⊢ 𝜎 ⊕ 𝜏 ∋ inl 𝑡 ⊠ Δ

Γ ⊢ 𝜏 ∋ 𝑡 ⊠ Δ
Γ ⊢ 𝜎 ⊕ 𝜏 ∋ inr 𝑡 ⊠ Δ

Γ ⊢ 𝜎 ∋ 𝑎 ⊠ Δ Γ ⊢ 𝜏 ∋ 𝑏 ⊠ Δ
Γ ⊢ 𝜎&𝜏 ∋ prd 𝑎 𝑏 ⊠ Δ

Γ ⊢ 𝟙 ∋ unit ⊠ Γ

Γ ⊢ 𝑡 ∈ 𝜎 ⊠ Δ 𝜎 ∋ 𝑝⇝ 𝛿
Δ ++f𝛿 ⊢ 𝜏 ∋ 𝑢 ⊠ Θ ++s𝛿

Γ ⊢ 𝜏 ∋ let 𝑝:= 𝑡in 𝑢 ⊠ Θ
Γ ⊢ 𝑡 ∈ 𝜎 ⊠ Δ

Γ ⊢ 𝜎 ∋ neu 𝑡 ⊠ Δ

Figure 7 Typing rules for CHECK

We can see that both variants of a product type –tensor (⊗) and with (&)– use the same surface
language constructor but are disambiguated in a type-directed manner in the checking relation. The
premises are naturally widely different: With lets its user pick which of the two available types they
want and as a consequence both components have to be proven using the same resources. Tensor on
the other hand forces the user to use both so the leftovers are threaded from one premise to the other.

▶ Definition 11. Finally, PATTERNs are checked against a type and a context of newly bound
variables is generated. If the variable pattern always succeeds, the pair constructor pattern on the
other hand obviously only succeeds if the type it attempts to split is a tensor type. The context of
newly-bound variables is then the collection of the contexts associated to the nested patterns. The
rules are given in Figure 8.
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𝜎 ∋ v⇝ [] ∙ 𝜎 𝟙 ∋ ⟨⟩⇝ []
𝜎 ∋ 𝑝⇝ 𝛾 𝜏 ∋ 𝑞 ⇝ 𝛿
𝜎 ⊗ 𝜏 ∋ (𝑝,𝑞)⇝ 𝛿 ++𝛾

Figure 8 Typing rules for PATTERN

▶ Example 12. Given these rules, we see that the identity function can be checked at type (σ ⊸ σ)
in an empty context:

[] ∙ f𝜎 ⊢𝑣 z ∈ 𝜎 ⊠ [] ∙ s𝜎

[] ∙ f𝜎 ⊢ var z ∈ 𝜎 ⊠ [] ∙ s𝜎

[] ∙ f𝜎 ⊢ 𝜎 ∋ neu (var z) ⊠ [] ∙ s𝜎

[] ⊢ 𝜎 ⊸ 𝜎 ∋ lam (neu (var z)) ⊠ []

Or, as it would be written in Agda where the typing rules were given the same name as their term
constructor counterparts:

identity : [] ⊢ σ ⊸ σ ∋ lam (neu (var z)) ⊠ []

identity = lam (neu (var z))

▶ Example 13. It is also possible to revisit Example 1 to prove that swap can be checked against
type (σ ⊗ τ) ⊸ (τ ⊗ σ) in an empty context. This gives the lengthy derivation included in the
appendix or the following one in Agda which is quite a lot more readable:

swapTyped : [] ⊢ (σ ⊗ τ) ⊸ (τ ⊗ σ) ∋ swap ⊠ []

swapTyped = lam (let (v , v) := var z

in prd (neu (var (s z))) (neu (var z))

4 Framing

The most basic property one can prove about this typing system is the fact that the state of the re-
sources which are not used by a lambda term is irrelevant. We call this property the Framing Property
because of the obvious analogy with the frame rule in separation logic. This can be reformulated as
the fact that as long as two pairs of an input and an output USAGE exhibit the same consumption
pattern then if a derivation uses one of these, it can use the other one instead. Formally (postponing
the definition of Γ − Δ ≡ Θ − 𝜉):

▶ Definition 14. A Typing Relation 𝒯⋅ for a NAT-indexed family 𝑇 has the Framing Property
if for all 𝑘 a NAT, γ a CONTEXT𝑘, Γ, Δ, Θ, ξ four USAGE𝛾 , 𝑡 an element of 𝑇𝑘 and σ a Type, if
Γ ─ Δ ≡ Θ ─ ξ and 𝒯𝑘(Γ, t, σ, Δ) then 𝒯𝑘(Θ, t, σ, ξ) also holds.

▶ Remark. This is purely a property of the type system as witnessed by the fact that the term 𝑡 is
left unchanged wich won’t be the case when defining stability under Weakening or Substitution for
instance.

▶ Definition 15. Consumption Equivalence characterises the pairs of an input and an output
USAGE which have the same consumption pattern. The usages annotations for the empty context are
trivially related. If the context is not empty, then there are two cases: if the resource is left untouched
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on one side, then so should it on the other side but the two annotations may be different (here denoted
𝐴 and 𝐵 respectively). On the other hand, if the resource has been consumed on one side then it has
to be on the other side too.

Γ, Δ, Θ, 𝜉 ∶ USAGE𝛾

Γ─Δ ≡ Θ─𝜉 ∶ Set
======================

[]─[] ≡ []─[]
−−−−−−−−−−−−−−

Γ─Δ ≡ Θ─𝜉
(Γ ∙ 𝐴)─(Δ ∙ 𝐴) ≡ (Θ ∙ 𝐵)─(𝜉 ∙ 𝐵)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ─Δ ≡ Θ─𝜉
(Γ ∙ f𝜎)─(Δ ∙ s𝜎) ≡ (Θ ∙ f𝜎)─(𝜉 ∙ s𝜎)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

▶ Definition 16. The Consumption Partial Order Γ ⊆ Δ is defined as Γ ─ Δ ≡ Γ ─ Δ. It orders
USAGE from least consumed to maximally consumed.

▶ Lemma 17. The following properties on the Consumption relations hold:
1. The consumption equivalence is a partial equivalence [30]
2. The consumption partial order is a partial order
3. If there is a USAGE χ “in between” two others Γ and Δ according to the consumption partial

order (i.e. Γ ⊆ 𝜒 and 𝜒 ⊆ Δ), then any pair of USAGE Θ, ξ consumption equal to Γ and Δ (i.e.
Γ─Δ ≡ Θ─𝜉) can be split in a manner compatible with χ. In other words: one can find ζ such
that Γ─𝜒 ≡ Θ─𝜁 and 𝜒─Δ ≡ 𝜁─𝜉.

▶ Lemma 18 (Consumption). The Typing Relations for VAR, INFER and CHECK all imply that if a
typing derivation exists with input USAGE annotation Γ and output USAGE annotation Δ then Γ ⊆ Δ.

▶ Theorem 19. The Typing Relation for VAR has the Framing Property. So do the ones for INFER
and CHECK.

Proof. The proofs are by structural induction on the typing derivations. They rely on the previ-
ous lemmas to, when faced with a rule with multiple premisses and leftover threading, generate the
inclusion evidence and use it to split up the witness of consumption equivalence and distribute it
appropriately in the induction hypotheses. ◀

5 Weakening

It is perhaps surprising to find a notion of weakening for a linear calculus: the whole point of linearity
is precisely to ensure that all the resources are used. However when opting for a system based on
consumption annotations it becomes necessary, in order to define substitution for instance, to be able
to extend the underlying context a term is defined with respect to. Linearity is guaranteed by ensuring
that the inserted variables are left untouched by the term.

Weakening arises from a notion of inclusion. The appropriate type theoretical structure to de-
scribe these inclusions is well-known and called an Order Preserving Embeddding [15, 4]. Unlike a
simple function witnessing the inclusion of its domain into its codomain, the restriction brought by
order preserving embeddings guarantees that contraction is simply not possible which is crucial in a
linear setting.

▶ Definition 20. AnOrder Preserving Embedding (OPE) is an inductive family. Its constructors
(dubbed “moves” in this paper) describe a strategy to realise the promise of an injective embedding
which respects the order induced by the de Bruijn indices. We start with an example in Figure 9
before giving, in Figure 10, the formal definition of OPEs for NAT, CONTEXT and USAGE.
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In the following example, we prove that the source context 𝛾 ∙ 𝜏 can be safely embedded into the
target one 𝛾 ∙𝜎 ∙𝜏 ∙𝜈, written 𝛾 ∙𝜏 ≤ 𝛾 ∙𝜎 ∙𝜏 ∙𝜈. Because we read strategies left-to-right and it is easier
to see how they act if contexts are also presented left-to-right, we temporarily switch to cons-style
(i.e. 𝜎, 𝛾) instead of the snoc-style (i.e. 𝛾 ∙ 𝜎) used in the rest of this paper.

This example proof uses all three of the moves the inductive definition of OPEs offers: insert𝛼
which introduces a new variable of type 𝛼, copy which embeds the source context’s top variable,
and done which simply copies the source context. To clarify the effect of each move on the source
context, we write it in cons-style rather than the snoc-style used in the rest of the paper and insert
extra space to align the source elements and their respective embeddings in the target.

OPE insert𝜈 copy insert𝜎 done

source 𝜏 , 𝛾
target 𝜈 , 𝜏 , 𝜎 , 𝛾

Figure 9 Example of an Order Preserving Embedding proving: 𝛾 ∙ 𝜏 ≤ 𝛾 ∙ 𝜎 ∙ 𝜏 ∙ 𝜈

Now that we have seen an example, we can focus on the formal definition. We give the definition
of OPE for NAT, CONTEXT and USAGE all side by side in one table: the first column lists the names of
the constructors associated to each move whilst the other ones give their corresponding types for each
category. It is worth noting that OPEs for CONTEXT are indexed over the ones for NAT and the OPEs
for USAGE are indexed by both. The latter definitions are effectively algebraic ornaments [16, 28]
over the previous ones, that is to say they have the same structure only storing additional information.

NAT CONTEXT USAGE
done

𝑘 ≤ 𝑘
−−−−−−

𝛾 ≤ 𝛾
−−−−−−

Γ ≤ Γ
−−−−−−

copy
𝑘 ≤ 𝑙

1+𝑘 ≤ 1+𝑙
−−−−−−−−−−−

𝛾 ≤ 𝛿
𝛾 ∙ 𝜎 ≤ 𝛿 ∙ 𝜎
−−−−−−−−−−−−−−

Γ ≤ Δ 𝑆 ∶ USAGE𝜎

Γ ∙ 𝑆 ≤ Δ ∙ 𝑆
−−−−−−−−−−−−−−−−−−−−−−−−−−−

insert
𝑘 ≤ 𝑙

𝑘 ≤ 1+𝑙
−−−−−−−−

𝛾 ≤ 𝛿
𝛾 ≤ 𝛿 ∙ 𝜎
−−−−−−−−−−

Γ ≤ Δ 𝑆 ∶ USAGE𝜎

Γ ≤ Δ ∙ 𝑆
−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 10 Order Preserving Embeddings for NAT, CONTEXT and USAGE

The first row defines the move done. It is the strategy corresponding to the trivial embedding of
a set into itself by the identity function and serves as a base case.
The second row corresponds to the copymove which extends an existing embedding by copying
the current 0th variable from source to target. The corresponding cases for CONTEXTs and USAGE
are purely structural: no additional content is required to be able to perform a copy move.
Last but not least, the third row describes the move insert which introduces an extra variable
in the target set. This is the move used to extend an existing context, i.e. to weaken it. In this
case, it is paramount that the OPE for CONTEXTs should take a type σ as an extra argument (it
will be the type of the newly introduced variable) whilst the OPE for USAGE takes a USAGE𝜎 (it
will be the usage associated to that newly introduced variable of type σ).
Now that the structure of these OPEs is clear, we have to introduce a caveat regarding this descrip-

tion: the CONTEXT andUSAGE case are a bit special. They do not in fact mention the source and target
sets in their indices. This is a feature: when weakening a typing relation, the OPE for USAGE will
be applied simultaneously to the input and the output USAGE which, although of a similar structure
because of their shared CONTEXT index, will be different.
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▶ Definition 21. The semantics of an OPE is defined by induction over the proof object. We use
the overloaded function name ope(⋅) for it. They behave as the simplified view given in Figure 10
where 𝛾 / Γ is seen as the input, 𝜎 / 𝑆 the additional information stored into the proof object and 𝛿 /
Δ the output.

We leave out the definition of weakening for raw terms which is the standard definition for the
untyped λ-calculus. It proves that given 𝑘 ≤ 𝑙 we can turn an INFER𝑘 (respectively CHECK𝑘) into an
INFER𝑙 (respectively CHECK𝑙). It is given by a simple structural induction on the terms themselves,
using copy to go under binders.

▶ Definition 22. A Typing Relation 𝒯⋅ for a NAT-indexed family 𝑇 such that we have a function
weak𝑇 transporting proofs that 𝑘 ≤ 𝑙 to functions 𝑇𝑘 → 𝑇𝑙 is said to have theWeakening Property
if for all 𝑘, 𝑙 in NAT, 𝑜 a proof that 𝑘 ≤ 𝑙, 𝑂 a proof that OPE(𝑜) and 𝓞 a proof that OPE(𝑂) then for
all γ a CONTEXT𝑘, Γ and Δ two USAGE𝛾 , 𝑡 an element of 𝑇𝑘 and σ a TYPE, if 𝒯𝑘(Γ, 𝑡, 𝜎, Δ) holds true
then we also have 𝒯𝑙(ope(𝓞, Γ),weak𝑇 (𝑜, 𝑡), 𝜎, ope(𝓞, Δ)).

▶ Theorem 23. The Typing Relation for VAR has the Weakening Property. So do the Typing
Relations for INFER and CHECK.

Proof. The proof for VAR is by induction on the typing derivation. The statements for INFER and
CHECK are proved by mutual structural inductions on the respective typing derivations. Using the
copy constructor of OPEs is crucial to be able to go under binders. ◀

Unlike the framing property, this theorem is not purely about the type system: the term is indeed
modified between the premisse and the conclusion. Now that we know that weakening is compatible
with the typing relations, let us study substitution.

6 Substituting

Stability of the typing relations under substitution guarantees that the evaluation of programs will
yield results which have the same type as well as preserve the linearity constraints. The notion of
leftovers naturally extends to substitutions: the terms meant to be substituted for the variables in
context which are not used by a term will not be used when pushing the substitution onto this term.
They will therefore have to be returned as leftovers.

Because of this rather unusual behaviour for substitution, picking the right type-theoretical repre-
sentation for the environment carrying the values to be substituted in is a bit subtle. Indeed, relying
on the usual combination of weakening and crafting a fresh variable when going under a binder be-
comes problematic. The leftovers returned by the induction hypothesis would then live in an extended
context and quite a lot of effort would be needed to downcast them back to the smaller context they
started in. The solution is to have an explicit constructor for “going under a binder” which can be
simply peeled off on the way out of a binder. The values are still weakened to fit in the extended
context they end up in but that happens at the point of use (i.e. when they are being looked up to
replace a variable) instead of when pushing the substitution under a binder.

▶ Definition 24. The environment ENV used to define substitution for raw terms is indexed by two
NATs 𝑘 and 𝑙 where 𝑘 is the source’s scope and 𝑙 is the target’s scope. There are three constructors: one
for the empty environment ([]), one for going under a binder (∙v) and one to extend an environment
with an INFER𝑙.

𝑘, 𝑙 ∶ NAT

ENV(𝑘, 𝑙) ∶ Set
================

[] ∶ ENV(0, 𝑙)
−−−−−−−−−−−−−−−

𝜌 ∶ ENV(𝑘, 𝑙)
𝜌∙v ∶ ENV(1+𝑘, 1+𝑙)
−−−−−−−−−−−−−−−−−−−−−−−

𝜌 ∶ ENV(𝑘, 𝑙) 𝑡 ∶ INFER𝑙

𝜌 ∙ 𝑡 ∶ ENV(1+𝑘, 𝑙)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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Environment are carrying INFER elements because, being in the same syntactical class as VARs,
they can be substituted for them without any issue. We now state the substitution lemma on untyped
terms because it is, unlike the one for weakening, non-standard by way of our definition of environ-
ments.

▶ Lemma 25. Raw terms are stable under substitutions: for all 𝑘 and 𝑙, given 𝑡 a term INFER𝑘
(resp. CHECK𝑘) and 𝜌 an environment ENV(𝑘, 𝑙), we can apply the substitution 𝜌 to 𝑡 and obtain an
INFER𝑙 (resp. CHECK𝑙).

Proof. By mutual induction on the raw terms, using the ∙v ENV constructor when going under a
binder. The need for weakening or crafting fresh variables has not disappeared, it has been transferred
to the auxiliary function looking up a value in 𝜌 given a VAR𝑘. ◀

▶ Definition 26. The environments used when proving that Typing Relations are stable under
substitution follow closely the ones for raw terms. Θ1 ⊢𝑒 Γ ∋ 𝜌 ⊠ Θ2 is a typing relation with input
usages Θ1 and output Θ2 for the raw substitution 𝜌 targeting the fresh variables in Γ. Unsurprisingly,
the typing for the empty environment has the same input and output usages annotation. Formally:

𝜃 ∶ CONTEXT𝑙
Θ1 ∶ USAGE𝜃
𝛾 ∶ CONTEXT𝑘
Γ ∶ USAGE𝛾

𝜌 ∶ ENV(𝑘, 𝑙) Θ2 ∶ USAGE𝜃

Θ1 ⊢𝑒 Γ ∋ 𝜌 ⊠ Θ2 ∶ Set

=============================================================
Θ1 ⊢𝑒 [] ∋ [] ⊠ Θ1
−−−−−−−−−−−−−−−−−−−−−−

For fresh variables in Γ, there are two cases depending whether they have been introduced by going
under a binder or not. If it is not the case then the typing environment carries around a typing
derivation for the term 𝑡meant to be substituted for this variable. Otherwise, it does not carry anything
extra but tracks in its input / output usages annotation the fact the variable has been consumed.

Θ1 ⊢ 𝑡 ∈ 𝜎 ⊠ Θ2 Θ2 ⊢𝑒 Γ ∋ 𝜌 ⊠ Θ3

Θ1 ⊢𝑒 Γ ∙ f𝜎 ∋ 𝜌 ∙ 𝑡 ⊠ Θ3
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Θ1 ⊢𝑒 Γ ∋ 𝜌 ⊠ Θ2

Θ1 ∙ f𝜎 ⊢𝑒 Γ ∙ f𝜎 ∋ 𝜌∙v ⊠ Θ2 ∙ s𝜎
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

For stale variables, there are two cases too. They are however a bit more similar: none of them carry
around an extra typing derivation. The main difference is in the shape of the input and output context:
in the case for the “going under a binder” constructor, they are clearly enriched with an extra (now
consumed) variable whereas it is not the case for the normal environment extension.

Θ1 ⊢𝑒 Γ ∋ 𝜌 ⊠ Θ2

Θ1 ⊢𝑒 Γ ∙ s𝜎 ∋ 𝜌 ∙ 𝑡 ⊠ Θ2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Θ1 ⊢𝑒 Γ ∋ 𝜌 ⊠ Θ2

Θ1 ∙ s𝜎 ⊢𝑒 Γ ∙ s𝜎 ∋ 𝜌∙v ⊠ Θ2 ∙ s𝜎
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

▶ Definition 27. A Typing Relation 𝒯⋅ for a NAT-indexed family 𝑇 equipped with a function
subst𝑇 which for all NATs 𝑘, 𝑙, given an element 𝑇𝑘 and an ENV(𝑘, 𝑙) returns an element 𝑇𝑙 is said to
be stable under substitution if for allNATs 𝑘 and 𝑙, γ a CONTEXT𝑘, Γ andΔ twoUSAGE𝛾 , 𝑡 an element
of 𝑇𝑘, σ a Type, ρ an ENV(𝑘, 𝑙), 𝜃 a CONTEXT𝑙 and Θ1 and Θ3 two USAGE𝜃 such that 𝒯𝑘(Γ, 𝑡, 𝜎, Δ) and
Θ1 ⊢𝑒 Γ ∋ 𝜌⊠ Θ3 holds then there exists a Θ2 of type USAGE𝜃 such that 𝒯𝑙(Θ1,subst𝑇 (𝑡, 𝜌), 𝜎, Θ2)
and Θ2 ⊢𝑒 Δ ∋ 𝜌 ⊠ Θ3.

▶ Theorem 28. The Typing Relations for INFER and CHECK are stable under substitution.

Proof. The proof by mutual structural induction on the typing derivations relies heavily on the fact
that these Typing Relations enjoy the framing property in order to adjust the USAGE annotations. ◀
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7 Functionality

Although we did highlight that some of our relations’ indices are meant to be seen as inputs whilst
others are supposed to be outputs, we have not yet made this relationship formal. This fact was
seldom used in the proofs so far but all of these typing relations are indeed functional when seen as
various (binary or ternary) relations. Which means that if two typing derivations exist for some fixed
arguments (seen as inputs) then the other arguments (seen as outputs) are equal to each other.

▶ Definition 29. We say that a relation 𝑅 of type Π(ri ∶ RI ).II → 𝑂(𝑟𝑖) → Set is functional if
for all relevant inputs ri , all pairs of irrelevant inputs ii1 and ii2 and for all pairs of outputs 𝑜1 and
𝑜2, if both 𝑅(ri , ii1 , 𝑜1) and 𝑅(ri , ii2 , 𝑜2) hold then 𝑜1 ≡ 𝑜2.

▶ Lemma 30. The Typing Relations for VAR and INFER are functional when seen as relations with
relevant inputs the context and the scrutinee (either a VAR or an INFER), irrelevant inputs their USAGE
annotation and outputs the inferred TYPEs.

▶ Lemma 31. The Typing Relations for VAR, INFER, CHECK and ENV are functional when seen as
relations with relevant inputs all of their arguments except for one of the USAGE annotation or the
other. This means that given a USAGE annotation (whether the input one or the output one) and the
rest of the arguments, the other USAGE annotation is uniquely determined.

8 Typechecking

▶ Theorem 32 (Decidability of Typechecking). Type-inference for INFER and Type-checking for
CHECK are decidable. In other words, given a NAT 𝑘, γ a CONTEXT𝑘 and Γ a USAGE𝛾 ,
1. for all INFER𝑘 𝑡, we can decide if there is a TYPE 𝜎 and Δ a USAGE𝛾 such that Γ ⊢ 𝑡 ∈ 𝜎 ⊠ Δ
2. for all TYPE σ and CHECK𝑘 t, we can decide if there is Δ a USAGE𝛾 such that Γ ⊢ 𝜎 ∋ 𝑡 ⊠ Δ.

Proof. The proof proceeds by mutual induction on the raw terms, using inversion lemmas to dismiss
the impossible cases, using auxiliary lemmas showing that typechecking of VARs and PATTERNs also
is decidable and relies heavily on the functionality of the various relations involved. ◀

One of the benefits of having a formal proof of a theorem in Agda is that the theorem actually
has computational content and may be run: the proof is a decision procedure.

▶ Example 33. We can for instance check that the search procedure succeeds in finding the swap-
Typed derivation we had written down as Example 13. Because σ and τ are abstract in the following
snippet, the equality test checking that σ is equal to itself and so is τ does not reduce and we need to
rewrite by the proof eq-diag that the equality test always succeeds in this kind of situation:

swapChecked : ∀ σ τ → check [] ((σ ⊗ τ) ⊸ (τ ⊗ σ)) swap

≡ yes ([] , swapTyped)

swapChecked σ τ rewrite eq-diag τ | eq-diag σ = refl

9 Equivalence to ILL

We have now demonstrated that the USAGE-based formulation of linear logic as a type system is
amenable to mechanisation without putting an unreasonable burden on the user. Indeed, the system’s
important properties can all be dealt with by structural induction and the user still retains the ability
to write simple 𝜆-terms which are not cluttered with structural rules.



G. Allais 23:15

However this presentation departs quite a lot from more traditional formulations of intuitionistic
linear logic. This naturally raises the question of its correctness. In this section we recall a typical
presentation of Intuitionistic Linear Logic using a Sequent Calculus, representing the multiset of
assumptions as a list.

9.1 A Sequent Calculus for Intuitionistic Linear Logic
The definition of this calculus is directly taken from the Linear Logic Wiki [26] whose notations we
follow to the letter. The interested reader will findmore details in for instance Troelstra’s lectures [35].
In the following figure, γ, δ, and θ are context variables while σ, τ , and ν range over types. We
overload the comma to mean both consing a single type at the front of a list and appending two lists,
as is customary.

𝜎 ⊢ 𝜎
𝑎𝑥

𝛾 ⊢ 𝜎 𝜎, 𝛿 ⊢ 𝜏
𝛾, 𝛿 ⊢ 𝜏

𝑐𝑢𝑡
𝛾 ⊢ 𝜎 𝛿 ⊢ 𝜏

𝛾, 𝛿 ⊢ 𝜎 ⊗ 𝜏
⊗𝑅 𝜏, 𝜎, 𝛾 ⊢ 𝜈

𝜎 ⊗ 𝜏, 𝛾 ⊢
⊗𝐿

⊢ 𝟙
1𝑅

𝛾 ⊢ 𝜎
𝟙, 𝛾 ⊢ 𝜎

1𝐿
𝟘, 𝛾 ⊢ 𝜎

0𝐿 𝜎, 𝛾 ⊢ 𝜏
𝛾 ⊢ 𝜎 ⊸ 𝜏

⊸𝑅 𝛾 ⊢ 𝜎 𝜏, 𝛿 ⊢ 𝜈
(𝜎 ⊸ 𝜏), 𝛾, 𝛿 ⊢ 𝜈

⊸𝐿

𝛾 ⊢ 𝜎 𝛾 ⊢ 𝜏
𝛾 ⊢ 𝜎&𝜏

&𝑅 𝜎, 𝛾 ⊢ 𝜈
𝜎&𝜏, 𝛾 ⊢ 𝜈

&𝐿
1

𝜏, 𝛾 ⊢ 𝜈
𝜎&𝜏, 𝛾 ⊢ 𝜈

&𝐿
2

𝛾 ⊢ 𝜎
𝛾 ⊢ 𝜎 ⊕ 𝜏

⊕𝑅
1

𝛾 ⊢ 𝜏
𝛾 ⊢ 𝜎 ⊕ 𝜏

⊕𝑅
2

𝜎, 𝛾 ⊢ 𝜈 𝜏, 𝛾 ⊢ 𝜈
𝜎 ⊕ 𝜏, 𝛾 ⊢ 𝜈

⊕𝐿 𝛾, 𝛿 ⊢ 𝜎 𝛾, 𝛿 ≅ 𝜃
𝜃 ⊢ 𝜎

𝑚𝑖𝑥

Figure 11 Sequent Calculus for Intuitionistic Linear Logic

Our only departure from the traditional presentation is the mix rule which is an artefact of our
encoding multisets as lists. It allows the user to pick any interleaving θ of two lists γ and δ. This
notion of interleaving is formalised by the following three place relation.

▶ Definition 34. The interleaving relation is defined by three constructors: [] declares that in-
terleaving two empty lists yields the empty-list whilst ⋅,𝑙 ⋅ (and ⋅,𝑟 ⋅ respectively) picks the head of
the list on the left (the right respectively) as the head of the interleaving and the tail as the result of
interleaving the rest.

𝛾, 𝛿, 𝜃 ∶ LIST 𝑎
𝛾, 𝛿 ≅ 𝜃 ∶ Set

================
[] ∶ [], [] ≅ []
−−−−−−−−−−−−−−−

𝑝 ∶ 𝛾, 𝛿 ≅ 𝜃
𝜎,𝑙 𝑝 ∶ (𝜎, 𝛾), 𝛿 ≅ (𝜎, 𝜃)
−−−−−−−−−−−−−−−−−−−−−−−−−−

𝑝 ∶ 𝛾, 𝛿 ≅ 𝜃
𝜎,𝑟 𝑝 ∶ 𝛾, (𝜎, 𝛿) ≅ (𝜎, 𝜃)
−−−−−−−−−−−−−−−−−−−−−−−−−−

Now that we have our definition of the usual representation of Intuitionistic Linear Logic (ILL),
we are left with proving that the linear typing relation we have defined is both sound and complete
with respect to that logic.

9.2 Soundness
We start with the easiest part of the proof: soundness. This means that from a typing derivation, we
can derive a proof in ILL of what is essentially the same statement. That is to say that if a term is said
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to have type σ in a fully fresh context γ and proceeds to consume all of the resources in that context
during the typing derivation then it corresponds to a proof of γ ⊢ σ in ILL.

This statement needs to be generalised to be proven. Indeed, even if we start with a context full of
available resources, at the first split we encounter (e.g. a tensor introduction or a function application),
it won’t be the case anymore in one of the sub-terms. To formulate this more general formulation,
we need to introduce a new notion: used assumptions.

▶ Definition 35. The list of used assumptions in a proof Γ ⊆ Δ in the consumption partial order
is the list of types which have turned from fresh in Γ to stale in Δ. The used(⋅) function is defined by
recursion over the proof that Γ ⊆ Δ.

▶ Definition 36. A Typing Relation 𝒯 for terms 𝑇 is said to be sound with respect to ILL if, for
𝑘 a NAT, γ a CONTEXT𝑘, Γ and Δ two USAGE𝛾 , t a term 𝑇𝑘 and σ a type, from the typing derivation
𝒯(Γ, t, σ, Δ) and p a proof that Γ ⊆ Δ we can derive used(𝑝) ⊢ 𝜎.

▶ Remark. The consumption lemma 18 guarantees that such a proof Γ ⊆ Δ always exists whenever
the typing relation is either the one for VAR, INFER or CHECK.

Before we can prove the soudness theorem, we need two auxiliary lemmas allowing us to handle
the mismatch we may have between the way the used assumptions of a derivation are computed and
the way the ones for its subderivations are obtained.

▶ Lemma 37. Given k a NAT, γ a CONTEXT𝑘 and Γ, Δ, and θ three USAGE𝛾 , we have:
1. if p and q are proofs that Γ ⊆ Δ then used(p) = used(q)
2. if p is a proof that Γ ⊆ Δ, q that Δ ⊆ 𝜃 and pq that Γ ⊆ 𝜃 then used(pq) is an interleaving of

used(p) and used(q)

The relation validating patterns is not a typing relation and as such it needs to be handled sepa-
rately. This can be done by defining a procedure elaborating patterns away by showing that whenever
𝜎 ∋ 𝑝⇝ 𝛾 , it is morally acceptable to replace σ on the left by γ. Which gives us the following cut-like
admissible rule:

▶ Lemma 38 (Elaboration of Let-bindings). Provided k a NAT, p a PATTERN𝑘, σ a TYPE and γ a
CONTEXT𝑘 such that 𝜎 ∋ 𝑝 ⇝ 𝛾 , we have that for all δ and θ two LIST TYPE and τ a TYPE, if 𝛿 ⊢ 𝜎
and 𝛾, 𝜃 ⊢ 𝜏 then 𝛿, 𝜃 ⊢ 𝜏.

We now have all the pieces to prove the soundness of our typing relations.

▶ Theorem 39 (Soundness). The typing relations for VAR, INFER and CHECK are all sound.

Proof. The proof is by mutual induction on the typing derivations. ILL’s right rules are in direct
correspondence with our introduction rules. The eliminators in our languages are translated by using
ILL’s cut together with left rules. The mix rule is crucial to rewrite the derivations’ contexts on the
fly. ◀

9.3 Completeness
Completeness is a trickier thing to prove: given a derivation in the traditional sequent calculus, we
need to build a corresponding term and its typing derivation. However, unlike the soundness one it
does not give us any insight as to what the meaning of USAGE and typing derivations is. So we only
state the result and give an idea of the proof.

▶ Theorem 40 (Completeness). Given γ a LIST TYPE and σ a type, from a proof 𝛾 ⊢ 𝜎 we can
derive an INFER t and a proof that f𝛾 ⊢ 𝑡 ∈ 𝜎 ⊠ s𝛾 .
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Proof. The proof is by induction over the derivation in ILL. The right rules match our introduction
rules well enough that they do not pose any issue. Weakening lets us extend theUSAGE of the sequents
obtained by induction hypothesis in the case of multi-premisses rules. Left rules are systematically
translated as cut s.

Finally, the hardest rule to handle is the mix rule which reorganises the context. It is handled
by a technical lemma which we have left out of this paper. Informally: it states that if the input and
output USAGE of a typing derivation are obtained by the same interleaving of two distinct pairs of
USAGE, then for any other interleaving we can find a term and a typing derivation for that term. ◀

10 Related Work

Benton, Bierman, de Paiva, and Hyland [8] did devise a term assignment system for Intuitionistic
Linear Logic which was stable under substitution. Their system focuses on multiplicative linear
logic only when ours also encompasses additive connectives but it gives a thourough treatment of the
! modality. This is still an open problem for us because we do not want to have the explicit handling
of !’s weakening, contraction, dereliction, and promotion rules pollute the raw terms.

Rand, Paykin and Zdancewic’s work on modelling quantum circuits in Coq [34] necessarily in-
cludes a treatment of linearity as qbits cannot be duplicated. And because it is mechanised, they have
to deal with the representation of contexts. Their focus is mostly on the quantum aspect and they are
happy relying on the Coq’s scripting capabilities to cope with the extensional presentation.

Bob Atkey and JamesWood [6] have been experimenting with using a deep embedding of a linear
lambda calculus in Agda as a way to certify common algorithms. Being able to encode insertion sort
as a term in this deep embedding is indeed sufficient to conclude that the output of the algorithm is
a permutation of its input.

Polakow faced with the task of embedding a linear λ-calculus in Haskell [33] used a typed-tagless
approach [23] and tried to get as much automation from typeclass resolution as possible. Seeing
Haskell’s typeclass resolution mechanism as a Prolog-style proof search engine, he opted for a re-
lational description and thus an input-output presentation. This system can handle multiplicatives,
additives and is even extended to a Dual Intuitionistic Linear Logic [7] to accomodate for values
which can be duplicated. Focusing on the applications, it is not proven to be stable under substitution
or that the typechecking process will always succeed.

The proof search community has been confronted with the inefficiency of randomly splitting up
the multiset of assumption when applying a tensor-introduction rule. In an effort to combat this non-
determinism, they have introduced alternative sequent calculi returning leftovers [14, 37]. However
because they do not have to type a term living in a given context, they do not care about the structure
of the context of assumptions: it is still modelled as a multiset.

We have alreadymentionedMcBride’s work [29] on (as a first approximation: the setup is actually
more general) a type theory with a dependent linear function space as a very important source of
inspiration. In that context it is indeed crucial to retain the ability to talk about a resource even if
it has already been consumed. E.g. a function taking a boolean and deciding whether it is equal
to tt or ff will have a type mentioning the function’s argument twice. But in a lawful manner:
(𝑥 ∶ BOOL) ⊸ (𝑥 ≡ tt) ∨ (𝑥 ≡ ff). This leads to the need for a context shared across all subterms
and consumption annotations ensuring that the linear resources are never used more than once.

Finally, we can find a very concrete motivation for a predicate similar to our USAGE in Rob-
bert Krebbers’ thesis [24]. In section 2.5.9, he describes one source of undefined behaviours in the
C standard: the execution order of expressions is unspecified thus leaving the implementers with
absolute freedom to pick any order they like if that yields better performances. To make their life
simpler, the standard specifies that no object should be modified more than once during the execution
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of an expression. In order to enforce this invariant, Krebbers’ memory model is enriched with extra
information:

[E]ach bit in memory carries a permission that is set to a special locked permission when a
store has been performed. The memory model prohibits any access (read or store) to objects
with locked permissions. At the next sequence point, the permissions of locked objects are
changed back into their original permission, making future accesses possible again.

11 Conclusion

We have shown that taking seriously the view of linear logic as a logic of resource consumption
leads, in type theory, to a well-behaved presentation of the corresponding type system for the lambda-
calculus. The framing property claims that the state of irrelevant resources does not matter, stability
under weakening shows that one may even add extra irrelevant assumptions to the context and they
will be ignored whilst stability under substitution guarantees subject reduction with respect to the
usual small step semantics of the lambda calculus. Finally, the decidability of type checking makes it
possible to envision a user-facing language based on raw terms and top-level type annotations where
the machine does the heavy lifting of checking that all the invariants are met whilst producing a
certified-correct witness of typability.

Avenues for future work include a treatment of an affine logic where the type of substitution will
have to be be different because of the ability to throw away resources without using them. Our long
term goal is to have a formal specification of a calculus for Probabilistic and Bayesian Reasoning
similar to the affine one described by Adams and Jacobs [2]. Another interesting question is whether
these resource annotations can be used to develop a fully formalised proof search procedure for in-
tuitionistic linear logic. The author and McBride have made an effort in such a direction [3] by
designing a sound and complete search procedure for a fragment of intuitionistic linear logic with
type constructors tensor and with. Its extension to lolipop is currently an open question.
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A Fully-expanded Typing Derivation for swap

[] ∙ f𝜎⊗𝜏 ⊢𝑣 0 ∈ 𝜎 ⊗ 𝜏 ⊠ [] ∙ s𝜎⊗𝜏

[] ∙ f𝜎⊗𝜏 ⊢ var(0) ∈ 𝜎 ⊗ 𝜏 ⊠ [] ∙ s𝜎⊗𝜏

𝜎 ∋ v⇝ [] ∙ 𝜎 𝜏 ∋ v⇝ [] ∙ 𝜏
𝜎 ⊗ 𝜏 ∋ (v, v)⇝ [] ∙ 𝜏 ∙ 𝜎

Π

[] ∙ f𝜎⊗𝜏 ⊢ 𝜏 ⊗ 𝜎 ∋ let (v, v) ∷= var 0 in

prd(neu(var(1)), neu(var(0))) ⊠ [] ∙ s𝜎⊗𝜏

[] ⊢ (𝜎 ⊗ 𝜏) ⊸ (𝜏 ⊗ 𝜎) ∋ swap ⊠ []

Π =

[] ∙ s𝜎⊗𝜏 ∙ f𝜏 ⊢𝑣 0 ∈ 𝜏 ⊠ [] ∙ s𝜎⊗𝜏 ∙ s𝜏

[] ∙ s𝜎⊗𝜏 ∙ f𝜏 ∙ f𝜎 ⊢𝑣 1 ∈ 𝜏 ⊠ [] ∙ s𝜎⊗𝜏 ∙ s𝜏 ∙ f𝜎

[] ∙ s𝜎⊗𝜏 ∙ f𝜏 ∙ f𝜎 ⊢ var(1) ∈ 𝜏 ⊠ [] ∙ s𝜎⊗𝜏 ∙ s𝜏 ∙ f𝜎

[] ∙ s𝜎⊗𝜏 ∙ f𝜏 ∙ f𝜎 ⊢ 𝜏 ∋ neu(var(1)) ⊠ [] ∙ s𝜎⊗𝜏 ∙ s𝜏 ∙ f𝜎
Π′

[] ∙ s𝜎⊗𝜏 ∙ f𝜏 ∙ f𝜎 ⊢ 𝜏 ⊗ 𝜎 ∋ prd(neu(var(1)), neu(var(0)) ⊠ [] ∙ s𝜎⊗𝜏 ∙ s𝜏 ∙ s𝜎

Π′ =

[] ∙ s𝜎⊗𝜏 ∙ s𝜏 ∙ f𝜎 ⊢𝑣 0 ∈ 𝜎 ⊠ [] ∙ s𝜎⊗𝜏 ∙ s𝜏 ∙ s𝜎

[] ∙ s𝜎⊗𝜏 ∙ s𝜏 ∙ f𝜎 ⊢ var(0) ∈ 𝜎 ⊠ [] ∙ s𝜎⊗𝜏 ∙ s𝜏 ∙ s𝜎

[] ∙ s𝜎⊗𝜏 ∙ s𝜏 ∙ f𝜎 ⊢ 𝜎 ∋ neu(var(0)) ⊠ [] ∙ s𝜎⊗𝜏 ∙ s𝜏 ∙ s𝜎
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