
Deciding Presburger arithmetic using reflection
Master’s internship under T. Altenkirch supervision

University of Nottingham

G. Allais

May 12, 2011

Abstract

The need to prove or disprove a formula of Presburger arithmetic is
quite frequent in certified software development (constraints generated
automatically) or when working on higher arithmetic (number theory).
The fact that this theory is decidable and that Agda is now mature enough
to be able to implement such a solver pushed us to try to tackle this
problem.

The numerous steps of Cooper’s decision procedure makes it easy to
introduce bugs in an unverified implementation. We will show how the
use of reflection together with dependent types can allow us to develop a
bug-free solver that is proved to be complete.

In the following developments, k, m, n will refer to integers, x, y, z to
variables ranging over the integers, P , Q, R to quantifier free propositions and
Φ, Ψ to any formula of Presburger arithmetic.

Part I

Deciding Presburger arithmetic

1 Preliminaries

1.1 Definitions

The main concern of this paper is to be able to deal automatically with formulas
of an extension of Presburger arithmetic without free variable. The first-order
theory on natural numbers with addition but without multiplication (Presburger
arithmetic) is extended with the use of the canonical order on the integers and
a couple notions that are only syntactic sugar on top of it:

• We allow the use of multiplication when the multiplicand is an integer:
k ∗ e is only a shortcut for sign(k).e+ · · ·+ sign(k).e︸ ︷︷ ︸

|k| times

;

• We also allow the use of k div e which is just a shortcut for ∃x, e = k ∗ x.

1

The formulas Φ of Presburger arithmetic can be generated by the following
grammar:

e ::= k | x | k ∗ e | e+ e

Φ ::= > | ⊥ | Φ ∧ Φ | Φ ∨ Φ | ∀.Φ | ∃.Φ | ¬Φ | Φ→ Φ |
e = e | e < e | e ≤ e | e > e | e ≥ e | k div e

Elements of e will be called expressions while elements of Φ will be referred
to as formulas.

1.2 What has already been done.

• 1929: Presburger introduces his arithmetic without multiplication

It is proved to be coherent and decidable (unlike Peano arithmetic that
does use multiplication and that is not decidable).

• 1972: Cooper’s “theorem proving in arithmetic without multiplication”

In this paper Cooper fully describes a decision procedure that is based
on quantifier elimination. The results are refined a couple of years later,
limiting the formula’s size’s blow-up.

• 1974: Fischer & Rabin’s super-exponential complexity of PA [5]

Even if Presburger arithmetic is known to be really hard to decide (super-
exponential complexity), studies have shown that quite a lot of instances
are solvable in a reasonable amount of time which is a good claim in favor
of a solver that the user could invoke.

• 2001: CALIFE: ROmega (Universally quantified PA formulas)

(Re-)implementation of the Omega tactic in Coq using reflection. It deals
only with universally quantified formulas.

• 2005–08: Nipkow’s quantifier elimination for PA (HOL)

The second paper corrects a couple of crucial mistakes of the first one
especially about the definition of the equivalent proposition when x tends
to be very small.

1.3 Principle

This paper is mainly based on Tobias Nipkow’s work [1, 2]. It uses Cooper’s
decision procedure which is based on a quantifier elimination mechanism [3].
The quantifier elimination is performed using an elimination set: a finite set
from which one can generate a finite disjunction of quantifier free formulas that
is equivalent to the original statement.

As the equality, the divisibility and the canonical order on the integers are
obviously decidable, if we are able to perform quantifier elimination we can
decide Presburger arithmetic. We, therefore, need to implement a procedure
elim that, given a quantifier free proposition P , outputs a proposition elim(P)
such that:

∃.P ⇔ elim(P)

2

From this simple function and the fact that formulas without quantifier
and without free variables are decidable, we can produce a fully constructive
function elimΦ that, given any formula of Presburger arithmetic, will output a
quantifier free equivalent. We proceed by eliminating the innermost quantifier
and assimilating ∀.P to ¬(∃.¬P) (which is true because P is quantifier free thus
decidable).

This elimination process has two main parts: the first part is the normal-
isation of the input formulas (and the proof that this normalisation preserves
provability) ; the second part is the proof of cooper’s theorem which is roughly
saying that we can perform quantifier elimination on the normalised formulas.

2 Normalisation

The purpose of the normalisation step is to output a simpler formula which is
equivalent to the given one. The manipulation of the formulas during the proof
of Cooper’s theorem will be easier because we will have fewer cases to look at.
This representation will be reached through various steps, each one of them
preserving provability.

2.1 Negation normal form

Our first concern will be to push the negations inward so that we end up with
negations only in front of equalities or divisibility statements. This is also the
occasion to get rid off implication and the variety of statements involving <, ≥
and > by using only ≤.

Definition The set of formulas under negation normal form is generated by
the following grammar:

P ::= > | ⊥ | P ∧ P | P ∨ P |
e = e | e 6= e | e ≤ e | k div e | ¬(k div e)

We can note that these formulas are obviously quantifier-free.

2.2 Linearisation

The second step is (now that the formulas’ shape is standardized) to find a
normal form for the expressions. As variables are referred to with de Bruijn
indices and as there is no multiplication of variables, we can transform the
given expression into a linear one where the variables are sorted by their index.

Definition A linear expression is an expression such that:

• each variable name is used at most once

• each coefficient is nonzero

• variables are sorted by their de Bruijn index

3

Definition The set of linear formulas is defined by the following grammar:

P ::= > | ⊥ | P ∧ P | P ∨ P |
e = 0 | e 6= 0 | e ≤ 0 | k div e | ¬(k div e)

where the expressions e are linear and the ks are nonzero.

Lemma 2.1. For every formula P in negative normal form, there exists a linear
formula P ′ such that P is equivalent to P ′.

Proof. The definition of the formulas’ linearity has two main parts: the first
one is dealing with the formulas shape while the second one is focusing on the
expressions’ one. Proving that we can modify a formula’s shape in order to fit
the constraints is not really hard whereas the work on the construction of linear
expressions is a bit more tedious.

• Expressions only on the left hand side

Let C be an element of the set {=, 6=,≤}. It is obvious that e1 C e2 is
equivalent to e1 − e2 C 0. Once e1 − e2 is linearised, so is the formula.

• Nonzero divisors

For all expressions of the shape k div e, if k is zero, then it is equivalent
to e = 0. The linearisation of e ends the process.

• Linearisation of expressions

The proof is done by structural induction on the expression e. We will
focus only on the case where e = e1 + e2 as the other ones (e = k ∗ e1,
e = −e1) are pretty similar. We know by induction that there exists two
linear expressions el1 and el2 such that e1 = el1 and e2 = el2. The only
thing left to prove is that there exists a procedure that, given two linear
expressions, outputs a linear expression that is the sum of the two inputs.
Lets proceed by structural induction on (el1, e

l
2).

Here is a quick overview of the proof:

(
el1
el2

)
i0

?
≤ j0 const. +ind. hyp.(

n1

n2

)
n1 + n2 +(

c1,i0 ∗ xi0 + r
n2

)
c1,i0 ∗ xi0 + r + n2(

n1

c2,j0 ∗ xj0 + r

)
c2,j0 ∗ xj0 + r + n1

i0 < j0 c1,i0 ∗ xi0 + r1 + el2(
c1,i0 ∗ xi0 + r1

c2,j0 ∗ xj0 + r2

)
i0 = j0 (c1,i0 + c2,j0) ∗ xi0+ r1 + r2

i0 > j0 c2,j0 ∗ xj0 + el1 + r2

– If both el1 and el2 are values, el1 + el2 is the linear expression we are
looking for.

4

– If el1 = c1,i0 ∗xi0 + r1 and el2 is a value, let rl be the linear expression
obtained by induction hypothesis on r1 and el2. The linear expression:
c1,i0 ∗ xi0 + rl = c1,i0 ∗ xi0 + (r1 + el2) = el1 + el2 will do the job.

– If el1 is a value and el2 = c1,j0 ∗ xj0 + r2, it is a similar problem (e1

and e2 have symmetric roles).

– If el1 = c1,i0 ∗xi0 + r1 and el2 = c2,j0 ∗xj0 + r2, we compare i0 and j0.
There are three cases:

1. If i0 is smaller than j0 then c1,i0 ∗ xi0 + rl (where rl is obtained
by induction hypothesis on r1 and c2,j0 ∗ xj0 + r2) is the linear
expression we are looking for.
The linearity comes from the fact that, given that i0 is smaller
than j0, it is at the same time smaller than all the is in r1 and
all the js in c2,j0 ∗ xj0 + r2 and therefore smaller than all the
indices used in the linearised equivalent of r1 + c2,j0 ∗ xj0 + r2.

2. If i0 equals j0 then we compute rl = r1 + r2 by induction hy-
pothesis and we have to distinguish two cases:

Either c1,i0 + c2,j0 = 0: we now have rl which is obviously
linear and equal to el1 + el2.

Or c1,i0 + c2,j0 6= 0: the expression (c1,i0 + c2,j0) ∗ xi0 + rl

is linear (rl uses only indices that are greater than i0 = j0) and
is equal to c1,i0 ∗ xi0 + c2,j0 ∗ xj0 + r1 + r2 = el1 + el2.

3. If i0 is greater than j0 then c2,j0 ∗xj0 +rl (where rl is obtained by
induction hypothesis on c1,i0 ∗xi0 +r1 and r2) is linear and equal
to el1 + el2. This case is similar to the one where i0 is smaller
than j0 because el1 and el2 have symmetric roles.

This representation allows us to see very easily if the current expression
mentions the variable bounded by the innermost quantifier (which is the one we
want to eliminate):

e = ci0 ∗ vi0 + ci1 ∗ vi1 + · · ·+ cik ∗ vik + n

where 0 ≤ i0 < i1 < · · · < ik. We can note that a linear formula is obviously
in negation normal form.

2.3 Unitarization

Definition We call “unitarized” an expression e such that:

• e is linear

• if x0 appears in e, then its coefficient is either 1 or −1

Definition A unitarized formula is a linear formula such that every expres-
sion is a unitarized expression.

Definition The lcmP of a linear formula P is the least common multiple of all
the x0’s coefficients appearing in P . It is defined by structural induction on P :

5

P lcmP

k ∗ x0 + r = 0 |k|
k ∗ x0 + r 6= 0 |k|
k ∗ x0 + r ≤ 0 |k|

k div (k′ ∗ x0 + r) |k′|
¬(k div (k′ ∗ x0 + r)) |k′|

P1 ∧ P2 lcm(lcmP1
)(lcmP2

)
P1 ∨ P2 lcm(lcmP1

)(lcmP2
)

1

Definition The unitarization of a formula is the process that, given a linear
formula P , outputs a unitarized formula Pu that is in some way equivalent (see
following lemma).

Unitarization with respect to m: Let m be an integer such that all the
x0’s coefficients appearing in P divides m (which obviously implies that if k is
such a coefficient, then m

|k| is an integer). The unitarization of P with respect

to m is defined by structural induction on P :

• k ∗ x0 + r = 0 becomes (sign k) • x0 + m
|k| ∗ r = 0

• k ∗ x0 + r 6= 0 becomes (sign k) • x0 + m
|k| ∗ r 6= 0

• k ∗ x0 + r ≤ 0 becomes (sign k) • x0 + m
|k| ∗ r ≤ 0

• k div (k′ ∗ x0 + r) becomes (m
|k′| ∗ k) div ((sign k′) • x0 + m

|k′| ∗ r)

• ¬(k div (k′ ∗ x0 + r)) becomes ¬((m
|k′| ∗ k) div ((sign k′) • x0 + m

|k′| ∗ r))

• P1∧P2 becomes P ′1∧P ′2 where P ′1 and P ′2 are the unitarized (with respect
to m) versions of P1 and P2.

• P1∨P2 becomes P ′1∨P ′2 where P ′1 and P ′2 are the unitarized (with respect
to m) versions of P1 and P2.

Unitarization The unitarization we are talking about is the unitarization of
P with respect to lcmP . The unitarized version of P is named Pu.

Lemma 2.2. Unitarization preserves provability

∀P,∀x, P (x)⇔ Pu(lcmP ∗ x)

Proof. Knowing that lcmP is strictly positive, and that Z’s integrity implies that
∀e1, e2, k ∈ Z, k 6= 0 ⇒ (e1 = e2 ⇔ k ∗ e1 = k ∗ e2), it is pretty straightforward
to prove by structural induction on P that ∀x, P (x)⇔ Pu(lcmP ∗ x).

It is even possible to get rid of the lcmP factor thanks to the following
lemma:

Lemma 2.3.

∀k, ∀P, (∃x, P (k ∗ x))⇔ (∃x, P (x) ∧ k div x)

6

and its corollary:

Corollary 2.4. Compatibility of unitarization and existential quantifiers

∀P,∃x, P (x)⇔ ∃x, Pu(x) ∧ lcmP div x

2.4 Conclusions

The normalisation of the inputs reduces drastically the amount of formulas that
we have to look at while preserving provability.

3 Elimination procedure

In the following section, we will only deal with unitarized formulas.

3.1 A few remarks

The idea of the elimination procedure is to note a couple of basic things:

1. there exists a subset of formulas that are periodic (almost x0-free formulas)

2. when x0 tends to be very small, P is equivalent to an almost x0-free
formula P−∞

3. there exists a set B of x0-free expressions such that: if there is no element
b ∈ B such that P (b) then there exists a k > 0 such that for all x, P (x)
implies P (x− k)

3.2 Almost x0-free formulas

Definition A formula P is said to be almost x0-free when it is a unitarized
formula in which the k div e statements are the only statements where x0 may
appear.

Definition lcmdiv(P) is the least common multiple of all the ks such that
k div e appears in P (where e contains x0).

Lemma 3.1. Almost x0-free formulas’ periodicity
For all almost x0-free formula P , P is lcmdiv(P)-periodic:

∀x, P (x)⇔ P (x± lcmdiv(P))

Proof. The proof is done by structural induction on P and is straightforward.
As P is an almost x0 free formula, the only interesting base case that we have
to look at is the case where we have k div (±x0 +r). As we know (by definition)
that k div lcmdiv(P), we can conclude that k div (±(x0 ± lcmdiv(P)) + r).

7

3.3 When x0 → −∞...

Lemma 3.2. For all unitary formula P , there exists an integer z and an almost
x0-free proposition P−∞ such that:

∀x, x ≤ z ⇒ (P (x)⇔ P−∞(x))

Proof.
x0+r ≤ 0 ⇔ > when x0 ≤ −r
−x0+r ≤ 0 ⇔ ⊥ when x0 ≤ r − 1

k ∗ x0+r = 0 ⇔ ⊥ when x0 ≤ −k ∗ r − 1
k ∗ x0+r 6= 0 ⇔ > when x0 ≤ −k ∗ r − 1

The formula that we obtain only mentions x0 in k div e statements and is
unitarized; it is therefore and almost x0-free formula that is equivalent to P for
a certain z small enough.

This leads us to the first theorem about the existence of an elimination set
for P (it deals with the case where x is very small):

Lemma 3.3. Elimination of small xs
For all unitary formula P , there exists an integer z and an almost x0-free

formula P−∞ such that:

(∃x, x ≤ z ∧ P (x))⇔ (∃d ∈ [|0; lcmdiv(P−∞)− 1|], P−∞(d))

Proof. The proof is the combination of the previous lemma which gives us the
integer z and the proposition P−∞ and the other one saying that almost x0-free
formulas are periodic.

∀x, x ≤ z ⇒ P (x) ⇐⇒
Lem. 3.2

P−∞(x)

⇐⇒
Lem. 3.1

P−∞(x (mod lcmdiv(P−∞)))

Corollary 3.4. The existence of a very small x such that P (x) is equivalent to
a finite disjunction that is totally x0-free:

(∃x, x ≤ z ∧ P (x))⇔
∨

d∈[|0;lcmdiv(P−∞)−1|]

P−∞(d)

3.4 The B-set

The B set of a formula is (roughly) a set of values such that if P (x) is provable
P (x− lcmdiv(P)) might not be. The definition might appear a bit magical but
the constraints fall from the needs in the proof of the following lemma.

8

P B(P)
−x0 + r ≤ 0 {r − 1}
x0 + r = 0 {−r − 1}
−x0 + r = 0 {r − 1}
k ∗ x0 + r 6= 0 {−k ∗ r}

P1 ∧ P2 B(P1) ∪B(P2)
P1 ∨ P2 B(P1) ∪B(P2)

{}

Remark When there is no ambiguity, we talk about the B set instead of the
B(P) set.

Lemma 3.5. For all unitarized formula P ,

∀x,¬ (∃b ∈ B, ∃j ∈ [|0; lcmdiv(P)|], x = b+ j)⇒ P (x)⇒ P (x− lcmdiv(P))

Proof. The proof is done by structural induction on P . If x0 does not appear
in P , it’s trivial. Let’s consider the formulas where x0 appears.

• if P (x) is −x+ r ≤ 0 then P (x− lcmdiv(P)) is (−x+ r) + lcmdiv(P) ≤ 0
and

Either (−x+ r) + lcmdiv(P) ≤ 0 which is what we want to prove

Or (−x + r) + lcmdiv(P) > 0 which means that there exists j ∈
[|0; lcmdiv(P)|] and a b ∈ {r − 1} such that x = r − 1 + lcmdiv(P) which
contradicts one of the hypothesis.

• if P (x) is x+r = 0, −x+r = 0 or k∗x0+r 6= 0 then, by a similar reasoning,
it is either trivial or a contradiction to the hypothesis that there are no j
and b such that b ∈ B, j ∈ [|0; lcmdiv(P)|] and x = b+ j.

• if P (x) is P1(x)∧P2(x) or P1(x)∨P2(x), as ¬ (∃b ∈ B(P),∃j ∈ [|0; lcmdiv(P)|], x = b+ j)
implies both ¬ (∃b ∈ B(P1),∃j ∈ [|0; lcmdiv(P)|], P (b+ j)), a simple use of
the hypothesis induction will do the job.

Corollary 3.6. Pseudo-periodicity of PA formulas

∀P,¬ (∃b ∈ B, ∃j ∈ [|0; lcmdiv(P)|], P (b+ j))⇒ ∀x, P (x)⇒ P (x− lcmdiv(P))

Proof. (∃b ∈ B, ∃j ∈ [|0; lcmdiv(P)|], x = b+ j) is decidable.

3.5 Cooper’s theorem

By combining these two principles, we can prove the elimination principle known
as Cooper’s theorem.

Theorem 3.7. Cooper’s theorem
For all unitarized formula P of Presburger arithmetic that is quantifier free,

∃x, P (x)⇔
 ∃b ∈ B, ∃j ∈ [|0; lcmdiv(P)|], P (b+ j)
∨∃j ∈ [|0; lcmdiv(P−∞)− 1|], P−∞(j)

9

Proof. Let’s prove the reciprocal implication first.

∃x, P (x)⇐
 ∃b ∈ B, ∃j ∈ [|0; lcmdiv(P)|], P (b+ j)
∨∃j ∈ [|0; lcmdiv(P−∞)− 1|], P−∞(j)

If ∃b ∈ B, ∃j ∈ [|0; lcmdiv(P)|], P (b+ j) then it is obvious that ∃x, P (x).

If ∃j ∈ [|0; lcmdiv(P−∞) − 1|], P−∞(j) then, as lcmdiv(P−∞) > 0, there
exists a k such that j − k ∗ lcmdiv(P−∞) is small enough to have P (j − k ∗
lcmdiv(P−∞))⇔ P−∞(j−k∗lcmdiv(P−∞)). From P−∞(j−k∗lcmdiv(P−∞))⇔
P−∞(j) we deduce that P (j−k∗lcmdiv(P−∞))⇔ P−∞(j) which ends the proof.

∃x, P (x)⇒
 ∃b ∈ B, ∃j ∈ [|0; lcmdiv(P)|], P (b+ j)
∨∃j ∈ [|0; lcmdiv(P−∞)− 1|], P−∞(j)

As ∃b ∈ B, ∃j ∈ [|0; lcmdiv(P)|], P (b+ j) is decidable, we have two options:

1. if ∃b ∈ B, ∃j ∈ [|0; lcmdiv(P)|], P (b+ j) then we can obviously conclude.

2. if ¬(∃b ∈ B, ∃j ∈ [|0; lcmdiv(P−∞)|], P (b+ j)) then, as there exists x such
that P (x), we can use the pseudo-periodicity of PA formulas to find an x′

that is small enough in order to have P (x′)⇔ P−∞(x′). From the period-
icity of P−∞ we can conclude that there exists a d in [|0; lcmdiv(P−∞)−1|]
such that P−∞(j) which ends the proof of Cooper’s theorem.

Part II

Implementation using reflection
All the source files are available on my darcs repository: https://patch-tag.
com/r/gallais/agda/ (directory src/presburger).

4 The major role of reflection

We decided to use reflection in order to develop a certified solver. The power of
dependent types allowed us to manipulate expressions and formulas with great
precision and to be able to guarantee that our decision procedure is totally bug-
free. Unlike what one could think, the use of dependent types did not force
us to mix too much the computational content of the procedure with the proof
that it does what it is supposed to do: most of the time we have on the one
hand an algorithm that is working on the datatypes representing a subset of
the formulas or expressions and on the other hand an inductive prove of the
correctness of this algorithm.

The way our implementation is organised is completely reflecting this aspect
of the solver: almost every XXXX module comes together with an XXXX-prop

module. The first one contains the algorithms and all the computational content
while the other one is just proving that everything is working great.

10

5 Data structures

The data structures are quite similar to the mathematical definitions: the for-
mulas of Presburger arithmetic are defined using a datatype for the expressions
and another one for the formulas. The semantics attached to these datatypes
is straightforward: the variables are given integer values, the equality is the
propositional equality, a conjunction is a sigma type, a disjunction is a sum
type, etc.

5.1 Multiple datatypes versus Properties

The normalisation procedure is transforming formulas in their very own struc-
ture. There are two ways to deal with these modifications: one can either create
a specific datatype matching the definition for each step or one can define prop-
erties on the formulas that will restrict the use of certain constructors.

5.2 Advantages & drawbacks of specialized datatypes

Advantages The use of different data-structures to represent the formulas in
different forms is really close to the mathematical definitions that were given
earlier. The main advantage is that you do not have to carry proofs along
with the datatypes: the correction of your algorithm is guaranteed by the type
checker.

Drawbacks The use of specialized datatypes to represent formulas forces to
define as many semantics as there are datatypes which is quite tedious and un-
satisfactory. Expressing and proving lemmas about the same formula (e.g. a
unitarized formula is also linear) is too complicated: in our example, we have to
use a unitarized formula, a function from unitarized formulas to linear ones, the
semantics of unitarized formulas and the one of linear ones and prove that the in-
terpretations of the two formulas (the unitarized one and its version lifted in the
world of linear formulas) are equivalent (∀ρ, [|P |]unitρ⇔ [|unit to lin(P)|]linρ).

5.3 Advantages & drawbacks of properties

Advantages The use of properties on the formulas allows to have only one
datatype for the formulas and to have to define only one semantic. It is really
easy to express and prove lemmas about a formula (e.g. a unitarized formula is
also linear : ∀P, unit(P)⇒ lin(P)).

Drawbacks All the lemmas contains preconditions (properties of the formulas
involved in the theorem) that would be expressed by the formulas’ type itself
if we had multiple datatypes. All the functions have to deal with proofs about
the output they are creating (for example a function from linear formulas to
unitarized ones will construct a proof that the output formula is unitarized).

11

5.4 Choice

The implementation we are presenting uses the second approach: we have only
two main datatypes1 – one for the expressions and one for the formulas – and
lots of properties on them2.

The use of sigma types to manipulate formulas that have a certain property
lightens a lot the statements: Nnf represents the formulas in negation normal
form, Lin the ones that are linear and Unf the unitarized ones.

6 Difficulties

6.1 Lack of libraries on Z
Unlike N, there are only a few results on Z in Agda’s standard library [4]. I had
to formalise the basic notions (divisibility, GCD, LCM, etc.)3 and prove their
common properties.

I also had to prove that Z is commutative ring and that the order on the
integer is compatible with the common operators.

6.2 Structural recursion

Agda’s termination checker is only verifying that the recursive calls of the de-
fined functions are always structurally smaller. Thanks to AIM XI, it even
became possible to be more efficient in detecting that a recursive call nested in
a mutually recursive function or after a with clause (which is more or less the
same because of the way Agda handles with clauses) was structurally decreasing
which saved us some tedious work4.

6.3 Resource consumption

Agda’s typechecker is currently not using opaque definitions as a basis and is
not capable of reusing everything that remained the same in order to typecheck
a small change. At the end of this internship, typechecking a rather important
theorem (e.g. one of the lemmas that we had to prove in order to prove Cooper’s
theorem) could take half a minute on a quite decent computer.

This was a real brake on the development of the solver even if it could
have been worse: the separation between computational content and proofs
allowed to save some resources and the performances were not as bad as the ones
encountered by some of the team’s PhD students who where trying to formalise
category theory (a file could take up to 15 minutes to be typechecked).

1See Representation.agda
2See Properties.agda
3All these formalisations are based on their N counterpart that are in the standard library.
4The techniques that are used to avoid this problem of termination checking are almost

always the manual expansion of the with clause or the recursive call to explicit the fact that
it is structurally decreasing

12

7 Future work

7.1 Gluing everything together

At this point, Cooper’s theorem is proved and relies only on a couple of assump-
tions on least common multiples on the integers. The elimination procedure for
is almost finished (a few decidability results are lacking).

7.2 Interface improvement

Since AIM XI, it has become possible to access to a representation of the current
goal. The development version of Agda [6] comes now with two constructs
(quoteGoal in and quote) and a datatype (Term) which allow functions to
scrutinize the goal.

It would be nice to have a function that would allow the use of the automatic
goal quoting in order to improve even more the usability of this decision proce-
dure. For a working example of such a function, see the solver for propositional
logic on the darcs repository (directory rls1) .

7.3 Decision procedure optimisations

7.3.1 A smaller elimination set?

In the elimination procedure, the elimination set is defined in order to use the
proposition that is equivalent to P when x tends to be very small. It is also
possible to take advantage of the proposition that is equivalent to P when x
tends to be very big; in this case the elimination set is different and might be
smaller / bigger.

A common optimisation is to compute both sets and to use the smallest
one in order to avoid the formula’s size blow-up (every ∃d ∈ [|m;m + n|], . . .
statement is actually expanded as a disjunction with n + 1 subterms in the
procedure).

7.3.2 More subtle datatypes?

The B sets are handled with lists: in practice they are multisets rather than
sets. Defining a module allowing the user to define proper finite subsets of a
set in which equality is decidable would sometimes limit the blow-up in the
formula’s size (but it would cost much more in term of resources).

References

[1] Amine Chaieb and Tobias Nipkow. “Proof Synthesis and Reflection for
Linear Arithmetic”. In: J. Autom. Reasoning 41.1 (2008), pp. 33–59.

[2] Amine Chaieb and Tobias Nipkow. “Verifying and Reflecting Quantifier
Elimination for Presburger Arithmetic”. In: LPAR. 2005, pp. 367–380.

[3] D. C. Cooper. “Theorem proving in arithmetic without multiplication”. In:
Machine Intelligence 7 (1972), pp. 91–99.

[4] Nils Anders Danielsson. Agda’s standard library. url: http://www.cs.
nott.ac.uk/~nad/repos/lib/.

13

[5] Michael Jo Fischer et al. “Super-Exponential Complexity of Presburger
Arithmetic”. In: 1974, pp. 27–41.

[6] Agda development team. Development version - darcs repository. url:
http://code.haskell.org/Agda.

14

