
Syntaxes with Binding,
Their Programs, and Proofs

� (V σ ⇒ C τ)

C (σ → τ)

Allais Guillaume

Syntaxes with Binding,
Their Programs, and Proofs

Guillaume ALLAIS

January 17, 2019

iii

Contents

1 Introduction 5
1.1 Our Contributions . 6
1.2 Source Material . 6

2 Introduction to Agda 7
2.1 Data and (co)pattern matching . 7
2.2 Sized Types and Termination Checking 9
2.3 Working with Indexed Families . 11

I Type and Scope Preserving Programs, and Their Proofs 13

3 Intrinsically Scoped and Typed Syntax 15
3.1 A Primer on Scope And Type Safe Terms 15
3.2 The Calculus and Its Embedding . 16

4 Refactoring Common Traversals 19
4.1 McBride’s Kit . 19
4.2 Opportunities for Further Generalizations 21
4.3 A Generic Notion of Environment 22
4.4 Semantics and Their Generic Evaluators 25
4.5 Syntax Is the Identity Semantics . 27
4.6 Printing with Names . 29

5 Variations on Normalisation by Evaluation 33
5.1 Normalisation by Evaluation for βιξη 34
5.2 Normalisation by Evaluation for βιξ 37
5.3 Normalisation by Evaluation for βι 40

6 CPS Transformations 43
6.1 Translation into Moggi’s Meta-Language 44
6.2 Translation Back from Moggi’s Meta-Language 46

7 Conclusion 49
7.1 Summary . 49

1

Contents

7.2 Related Work . 49
7.3 Further Work . 51

8 The Simulation Relation 53
8.1 Relations Between Scoped Families 53
8.2 Simulation Constraints . 54
8.3 Fundamental Lemma of Simulations 56
8.4 Syntactic Traversals are Extensional 56
8.5 Renaming is a Substitution . 57
8.6 The PER for βιξη-Values is Closed under Evaluation 58

9 The Fusion Relation 63
9.1 Fusion Constraints . 63
9.2 Fundamental Lemma of Fusions . 65
9.3 The Special Case of Syntactic Semantics 65
9.4 Interactions of Renaming and Substitution 66
9.5 Other Examples of Fusions . 69

10 Conclusion 73
10.1 Summary . 73
10.2 Related Work . 73
10.3 Further work . 74

II A Universe of Well Kinded-and-Scoped Syntaxes with Binding,
their Programs and Proofs 77

11 Plea For a Universe of Syntaxes with Binding 79

12 A Primer on the Universe of Data Types 83
12.1 Descriptions and Their Meaning as Functors 83
12.2 Datatypes as Least Fixpoints . 85

13 A Universe of Scope Safe and Well Kinded Syntaxes 87
13.1 Descriptions and Their Meaning as Functors 87
13.2 Terms as Free Relative Monads . 88
13.3 Common Combinators and Their Properties 91

14 Generic Scope Safe and Well Kinded Programs for Syntaxes 93
14.1 Our First Generic Programs: Renaming and Substitution 95
14.2 Sugar and Desugaring as a Semantics 97
14.3 (Unsafe) Normalisation by Evaluation 99
14.4 Printing with Names, Generically . 101

15 Typechecking as a Semantics 105
15.1 An Algebraic Approach to Typechecking 105
15.2 An Algebraic Approach to Elaboration 108

2

Contents

16 Building Generic Proofs about Generic Programs 113
16.1 Simulation Lemma . 113
16.2 Fusion Lemma . 116

17 Conclusion 121
17.1 Summary . 121
17.2 Further Work . 122

List of Figures 125

Bibliography 129

3

Chapter 1

Introduction

In modern typed programming languages, programmers writing embedded Domain
Specific Languages (DSLs) (Hudak [1996]) and researchers formalising them can now
use the host language’s type system to help them. Using Generalised Algebraic Data
Types (GADTs) or the more general indexed families of type theory (Dybjer [1994])
for representing their syntax, programmers can statically enforce some of the invariants
in their languages. Managing variable scope is a popular use case (Altenkirch and Reus
[1999]) as directly manipulating raw de Bruijn indices is error-prone. Solutions range
from enforcing well scopedness to ensuring full type and scope correctness. In short,
we use types to ensure that “illegal states are unrepresentable”, where illegal states are
ill scoped or ill typed terms.

The definition of scope-and-type safe representations is naturally only a start: once
the programmer has access to a good representation of the language they are interested
in, they will then want to (re)implement standard traversals manipulating terms. Re-
naming and substitution are the two most typical examples of such traversals. Other
common examples include an evaluator, a printer for debugging purposes and even-
tually various compilation passes such as a continuation passing style transformation
or some form of inlining. Now that well-typedness and well-scopedness are enforced
statically, all of these traversals have to be implemented in a type and scope safe
manner.

The third hurdle is only faced by those that want really high assurance or whose
work is to study a language’s meta-theory: they need to prove theorems about these
traversals. The most common statements are simulation lemmas stating that two
semantics transport related inputs to related outputs, or fusion lemmas demonstrating
that the sequential execution of two semantics is equivalent to a single traversal by a
third one. These proofs often involve a wealth of auxiliary lemmas which are known to
be true for all syntaxes but have to be re-proven for every new language e.g. identity
and extensionality lemmas for renaming and substitution.

Despite the large body of knowledge in how to use types to define well formed
syntax (see the Related Work in chapter 7), it is still necessary for the working DSL
designer or formaliser to redefine essential functions like renaming and substitution for
each new syntax, and then to reprove essential lemmas about those functions.

5

1. Introduction

1.1 Our Contributions

In this thesis we address all three challenges by applying the methodology of datatype-
genericity to programming and proving with syntaxes with binding. We ultimately
give a binding-aware syntax for well typed and scoped DSLs; we spell out a set of
sufficient constraints entailing the existence of a fold-like type-and-scope preserving
traversal; and we provide proof frameworks to either demonstrate that two traversals
are in simulation or that they can be fused together into a third one.

The first part of this work focuses on the simply-typed lambda calculus. We identify
a large catalogue of traversals which can be refactored into a common scope aware
fold-like function. Once this shared structure has been made visible, we can design
proof frameworks allowing us to show that some traversals are related.

The second part builds on the observation that the shape of the constraints we
see both in the definition of the generic traversal and the proof frameworks are in
direct correspondence with the language’s constructors. This pushes us to define a
description language for syntaxes with binding and to compute the constraints from
such a description. We can then write generic programs for all syntaxes with binding
and state and prove generic theorems characterising these programs.

1.2 Source Material

This thesis is based on the content of two fully-formalised published papers which
correspond roughly to part one and two: “Type-and-scope Safe Programs and Their
Proofs” (Allais et al. [2017a,b]) and “A Type and Scope Safe Universe of Syntaxes
with Binding: Their Semantics and Proofs” (Allais et al. [2018a,b]).

The study of variations on normalisation by evaluation in chapter 5 originated from
the work on a third paper “New equations for neutral terms” (Allais et al. [2013])
which, combined with McBride’s Kit for renaming and substitution (2005), led to
the identification of a shared structure between renaming, substitution and the model
construction in normalisation by evaluation.

The first consequent application of this work is our solution to the POPLMark
Reloaded challenge currently under review for publication (Abel et al. [2017, 2018])
for which we formalised a proof of strong normalisation for the simply-typed lambda-
calculus (and its extension with sum types).

6

Chapter 2

Introduction to Agda

The techniques and abstractions defined in this thesis are language-independent: all
the results can be replicated in any Martin Löf Type Theory (1982) equipped with
inductive families (Dybjer [1994]). In practice, all of the content of this thesis has been
formalised in Agda (Norell [2009]) so we provide a (brutal) introduction to dependently-
typed programming in Agda. It is a dependently-typed programming language based
on Martin-Löf Type Theory with inductive families, induction-recursion (Dybjer and
Setzer [1999]), copattern-matching (Abel et al. [2013b]) and sized types (Abel [2010]).

Mixfix Identifiers We use Agda’s mixfix operator notation (Danielsson and Norell
[2011]) where underscores denote argument positions. See e.g. the notation _×_ for
the type of pairs defined in section 2.1.

Syntax Highlighting We rely on Agda’s LATEX backend to produce syntax highlight-
ing for all the code fragments in this thesis. The convention is as follows: keywords
are highlighted in orange, data constructors in green, record fields in pink, types and
functions in blue while bound variables are black.

Implicit Generalisation The latest version of Agda supports ML-style implicit
prenex polymorphism and we make heavy use of it: every unbound variable should be
considered implicitly bound at the beginning of the telescope.

2.1 Data and (co)pattern matching

As is customary, we start our introduction to dependently-typed programming with the
natural numbers. They are defined as an inductive type with two conctructors: zero
and successor.

data N : Set where
zero : N
suc : N→ N

7

2. Introduction to Agda

Record Types Agda also supports record types; they are defined by their list of fields.
Unlike inductive types they enjoy η-rules. That is to say that any two values of the
same record type are judgmentally equal whenever all of their fields’ values are.

We define the unit type (>) which has one constructor (tt) but no field together with
the pair type _×_ which has an infix constructor _,_ and two fields: its first (fst) and
second (snd) projections.

record > : Set where
constructor tt

record _×_ (A B : Set) : Set where
constructor _,_
field fst : A; snd : B

Defining a record type R also results in the definition of a module R parameterised
by a value of type R and containing a projection function for each field. We can open
it to make these projections available to the outside world, or use R-qualified names.

Recursive Functions Definitions taking values of an inductive type as argument
are defined by pattern matching in a style familiar to Haskell programmers: one lists
clauses assuming a first-match semantics. If the patterns on the left hand side are
covering all possible cases and the recursive calls are structurally smaller, the function
is total. All definitions have to be total in Agda.

The main difference with Haskell is that in Agda, we can perform so-called “large
elimination”: we can define a Set by pattern-matching on a piece of data. Here we use
our unit and pair records to define a tuple of size n by recursion over n: a (zero -Tuple)
is empty whilst a (suc n -Tuple) is a value paired with an (n -Tuple).

-Tuple : N→ Set→ Set
zero -Tuple A = >
suc n -Tuple A = A × (n -Tuple A)

Because types can now depend on the shape of values, in a definition by pattern
matching each clause has a type refined based on the patterns which appear on the
left hand side. This will be familiar to Haskell programmers used to manipulating
Generalized Algebraic Data Types (GADTs). Let us see two examples of a type being
refined based on the pattern appearing in a clause.

First, we introduce replicate which takes a natural number n and a value a of type
A and returns an (n -Tuple) by duplicating a. The return type of replicate reduces to >
when the natural number is zero and (A × (n -Tuple A)) when it is (suc n).

replicate : ∀ n→ A→ n -Tuple A
replicate zero a = tt
replicate (suc n) a = a , replicate n a

Second, we define map^-Tuple which takes a function and applies it to each one of
the elements in a -Tuple. Both the type of the -Tuple argument and the -Tuple return
type are refined based on the pattern the natural number matches. In the second clause,
this tells us the -Tuple argument is a pair, allowing us to match on it with the pair
constructor _,_.

8

2.2. Sized Types and Termination Checking

map^-Tuple : ∀ n→ (A→ B)→ n -Tuple A→ n -Tuple B
map^-Tuple zero f tt = tt
map^-Tuple (suc n) f (a , as) = f a , map^-Tuple n f as

Dependent Record Types Record types can be dependent, i.e. the type of later fields
can depend on that of former ones. We define a Tuple as a natural number (its length)
together with a (length -Tuple) of values (its content).

record Tuple (A : Set) : Set where
constructor mkTuple
field length : N

content : length -Tuple A

In Agda, as in all functional programming languages, we can define anonymous
functions by using a λ-abstraction. Additionally, we can define anonymous (co)pattern-
matching functions by using (λ where) followed by an indented block of clauses.
We use here copattern-matching, that is to say that we define a Tuple in terms of the
observations that one can make about it: we specify its length first, and then its content.
We use postfix projections (hence the dot preceding the field’s name).

map^Tuple : (A→ B)→ Tuple A→ Tuple B
map^Tuple f as = λ where

.length → as .length

.content→ map^-Tuple (as .length) f (as .content)

When record values are going to appear in types, it is often a good idea to define
them by copattern-matching: this prevents the definition from being unfolded eagerly
thus making the goal more readable during interactive development.

Strict Positivity In order to rule out definitions leading to inconsistencies, all datatype
definitions need to be strictly positive. Although a syntactic criterion originally (its
precise definition is beyond the scope of this discussion), Agda goes beyond by record-
ing internally whether functions use their arguments in a strictly positive manner. This
allows us to define types like rose trees where the subtrees of a node are stored in a
Tuple, a function using its Set argument in a strictly positive manner.

data Rose (A : Set) : Set where
leaf : A→ Rose A
node : Tuple (Rose A)→ Rose A

2.2 Sized Types and Termination Checking

If we naïvely define rose trees like above then we quickly realise that we cannot re-use
higher order functions on Tuple to define recursive functions on Rose. As an example,
let us consider map^Rose. In the node case, the termination checker does not realise

9

2. Introduction to Agda

that the partially applied recursive call (map^Rose f) passed to map^Tuple will only
ever be used on subterms. We need to use an unsafe TERMINATING pragma to force
Agda to accept the definition.

{-# TERMINATING #-}
map^Rose : (A→ B)→ Rose A→ Rose B
map^Rose f (leaf a) = leaf (f a)
map^Rose f (node rs) = node (map^Tuple (map^Rose f) rs)

This is not at all satisfactory: we do not want to give up safety to write such a
simple traversal. The usual solution to this issue is to remove the level of indirection
introduced by the calll to map^Tuple by mutually defining with map^Rose an inlined
version of (map^Tuple (map^Rose f)).

mutual

map^Rose : (A→ B)→ Rose A→ Rose B
map^Rose f (leaf a) = leaf (f a)
map^Rose f (node (mkTuple n rs)) = node (mkTuple n (map^Roses n f rs))

map^Roses : ∀ n→ (A→ B)→ n -Tuple (Rose A)→ n -Tuple (Rose B)
map^Roses zero f rs = tt
map^Roses (suc n) f (r , rs) = map^Rose f r , map^Roses n f rs

This is, of course, still unsatisfactory: we need to duplicate code every time we
want to write a traversal! By using sized types, we can have a more compositional
notion of termination checking: the size of a term is reflected in its type. No matter
how many levels of indirection there are between the location where we are peeling off

a constructor and the place where the function is actually called recursively, as long as
the intermediate operations are size-preserving we know that the recursive call will be
legitimate.

Writing down the sizes explicitly, we get the following implementation. Note that
in (map^Tuple (map^Rose j f)), j (bound in node) is smaller than i and therefore the
recursive call is justified.

data Rose (A : Set) (i : Size) : Set where
leaf : A→ Rose A i
node : (j : Size< i)→ Tuple (Rose A j)→ Rose A i

map^Rose : ∀ i→ (A→ B)→ Rose A i→ Rose B i
map^Rose i f (leaf a) = leaf (f a)
map^Rose i f (node j rs) = node j (map^Tuple (map^Rose j f) rs)

In practice we make the size arguments explicit in the types but implicit in the
terms. This leads to programs that look just like our ideal implementation, with the
added bonus that we have now proven the function to be total.

10

2.3. Working with Indexed Families

data Rose (A : Set) (i : Size) : Set where
leaf : A→ Rose A i
node : {j : Size< i}→ Tuple (Rose A j)→ Rose A i

map^Rose : ∀ {i}→ (A→ B)→ Rose A i→ Rose B i
map^Rose f (leaf a) = leaf (f a)
map^Rose f (node rs) = node (map^Tuple (map^Rose f) rs)

2.3 Working with Indexed Families

On top of the constructs provided by the language itself, we can define various domain
specific languages (DSL) which give us the means to express ourselves concisely. We
are going to manipulate a lot of indexed families representing scoped languages so we
give ourselves a few combinators corresponding to the typical operations we want to
perform on them.

First, noticing that most of the time we silently thread the current scope, we lift the
function space pointwise with _⇒_.

⇒ : (A→ Set)→ (A→ Set)→ (A→ Set)
(P⇒ Q) x = P x→ Q x

Second, the _`_ combinator makes explicit the adjustment made to the index by
a function, conforming to the convention (see e.g. Martin-Löf [1982]) of mentioning
only context extensions when presenting judgements and write (f ` P) where f is the
modification and P the indexed Set it operates on.

` : (A→ B)→ (B→ Set)→ (A→ Set)
(f ` P) x = P (f x)

Although it may seem surprising at first to define binary infix operators as having
arity three, they are meant to be used partially applied, surrounded by ∀[_] which turns
an indexed Set into a Set by implicitly quantifying over the index.

∀[_] : (A→ Set)→ Set
∀[_] P = ∀ {x}→ P x

We make _⇒_ associate to the right as one would expect and give it the highest
precedence level as it is the most used combinator. These combinators lead to more
readable type declarations. For instance, the compact expression ∀[suc ` (P⇒ Q)⇒
R] desugars to the more verbose type ∀ {i}→ (P (suc i)→ Q (suc i))→ R i.

As the combinators act on the last argument of any indexed family, this inform our
design: our notions of variables, languages, etc. will be indexed by their kind first and
scope second. This will be made explicit in the definition of −Scoped in fig. 3.4.

11

Part I

Type and Scope Preserving Programs,
and Their Proofs

13

Chapter 3

Intrinsically Scoped and Typed Syntax

A programmer implementing an embedded language with bindings has a wealth of
possibilities. However, should they want to be able to inspect the terms produced by
their users in order to optimise or even compile them, they will have to work with a
deep embedding.

3.1 A Primer on Scope And Type Safe Terms

Scope safe terms follow the discipline that every variable is either bound by some
binder or is explicitly accounted for in a context. Bellegarde and Hook (1994), Bird and
Patterson (1999), and Altenkirch and Reus (1999) introduced the classic presentation
of scope safety using inductive families (Dybjer [1994]) instead of inductive types
to represent abstract syntax. Indeed, using a family indexed by a Set, we can track
scoping information at the type level. The empty Set represents the empty scope. The
functor 1 + (_) extends the running scope with an extra variable.

An inductive type is the fixpoint of an endofunctor on Set. Similarly, an inductive
family is the fixpoint of an endofunctor on (Set → Set). Using inductive families
to enforce scope safety, we get the following definition of the untyped λ-calculus:
T (F) = λX ∈Set. X + (F(X) × F(X)) + F(1 + X). This endofunctor offers a choice
of three constructors. The first one corresponds to the variable case; it packages an
inhabitant of X, the index Set. The second corresponds to an application node; both the
function and its argument live in the same scope as the overall expression. The third
corresponds to a λ-abstraction; it extends the current scope with a fresh variable. The
language is obtained as the fixpoint of T :

UTLC = µF ∈ SetSet.λX∈Set. X + (F(X) × F(X)) + F(1 + X)

Figure 3.1: Well-Scoped Untyped Lambda Calculus as the Fixpoint of a Functor

Since ‘UTLC’ is an endofunction on Set, it makes sense to ask whether it is
also a functor and a monad. Indeed it is, as Altenkirch and Reus have shown. The

15

3. Intrinsically Scoped and Typed Syntax

functorial action corresponds to renaming, the monadic ‘return’ corresponds to the use
of variables, and the monadic ‘join’ corresponds to substitution. The functor and monad
laws correspond to well known properties from the equational theories of renaming
and substitution. We will revisit these properties below in chapter 9.

There is no reason to restrict this technique to fixpoints of endofunctors on SetSet.
The more general case of fixpoints of (strictly positive) endofunctors on SetJ can be
endowed with similar operations by using Altenkirch, Chapman and Uustalu’s relative
monads (2010, 2014).

We pick as our J the category whose objects are inhabitants of (List I) (I is a
parameter of the construction) and whose morphisms are thinnings (see section 4.3).
This (List I) is intended to represent the list of the sort (/ kind / types depending on the
application) of the de Bruijn variables in scope. We can recover an untyped approach
by picking I to be the unit type. Given this typed setting, our functors take an extra I
argument corresponding to the type of the expression being built. This is summed up
by the large type (I −Scoped) defined in fig. 3.4.

3.2 The Calculus and Its Embedding

We work with a deeply embedded simply typed λ-calculus (STλC). It has ‘Unit and
‘Bool as base types and serves as a minimal example of a system with a record type
equipped with an η-rule and a sum type. We describe the types both as a grammar and
the corresponding inductive type in Agda in fig. 3.2.

〈Type〉 ::= ‘Unit | ‘Bool
| 〈Type〉 ‘→ 〈Type〉

data Type : Set where
‘Unit ‘Bool : Type
‘→ : (σ τ : Type)→ Type

Figure 3.2: Types used in our Running Example

The language’s constructs are those one expects from a λ-calculus: variables,
application and λ-abstraction. We then have a constructor for values of the unit type
but no eliminator (a term of unit type carries no information). Finally, we have two
constructors for boolean values and the expected if-then-else eliminator.

〈Term〉 ::= x | 〈Term〉 〈Term〉 | λx. 〈Term〉
| ()
| ‘true | ‘false | ‘if 〈Term〉 then 〈Term〉 else 〈Term〉

Figure 3.3: Grammar of our Language

16

3.2. The Calculus and Its Embedding

Well Scoped and Typed by Construction

To talk about the variables in scope and their type, we need contexts. We choose to
represent them as lists of types; [] denotes the empty list and (σ :: Γ) the list Γ extended
with a fresh variable of type σ. Because we are going to work with a lot of well typed
and well scoped families, we defined (I −Scoped) as the set of type and scope indexed
families.

_−Scoped : Set→ Set1
I −Scoped = I→ List I→ Set

Figure 3.4: Typed and Scoped Definitions

Our first example of a type and scope indexed family is Var, the type of Variables.
A variable is a position in a typing context, represented as a typed de Bruijn (1972)
index. This amounts to an inductive definition of context membership. We use the
combinators defined in section 2.3 to show only local changes to the context.

data Var : I −Scoped where
z : ∀[(σ ::_) ` Var σ]
s : ∀[Var σ⇒ (τ ::_) ` Var σ]

Figure 3.5: Well Scoped and Typed de Bruijn indices

The z (for zero) constructor refers to the nearest binder in a non-empty scope. The
s (for successor) constructor lifts an existing variable in a given scope to the extended
scope where an extra variable has been bound. The constructors’ types respectively
normalise to:

z : ∀ {σ Γ} → Var σ (σ :: Γ) s : ∀ {σ τ Γ} → Var σ Γ→ Var σ (τ :: Γ)

The syntax for this calculus guarantees that terms are well scoped-and-typed by
construction. This presentation due to Altenkirch and Reus (1999) relies heavily on
Dybjer’s (1991) inductive families. Rather than having untyped pre-terms and a typing
relation assigning a type to them, the typing rules are here enforced in the syntax.
Notice that the only use of _`_ to extend the context is for the body of a ‘lam.

17

3. Intrinsically Scoped and Typed Syntax

data Term : Type −Scoped where
‘var : ∀[Var σ⇒ Term σ]
‘app : ∀[Term (σ ‘→ τ)⇒ Term σ⇒ Term τ]
‘lam : ∀[(σ ::_) ` Term τ⇒ Term (σ ‘→ τ)]
‘one : ∀[Term ‘Unit]
‘tt ‘ff : ∀[Term ‘Bool]
‘ifte : ∀[Term ‘Bool⇒ Term σ⇒ Term σ⇒ Term σ]

Figure 3.6: Well Scoped and Typed Calculus

18

Chapter 4

Refactoring Common Traversals

Once they have a good representation for their language, they will have to (re)implement
a great number of traversals doing such mundane things as renaming, substitution,
or partial evaluation. Should they want to get help from the typechecker in order to
fend off common bugs, they will have opted for inductive families (Dybjer [1991]) to
enforce precise invariants. But the traversals now have to be invariant preserving too!

4.1 McBride’s Kit

In an unpublished manuscript, McBride (2005) observes the similarity between the
types and implementations of renaming and substitution for the simply typed λ-calculus
(STλC) in a dependently typed language as shown in fig. 4.1 (we focus only on ‘var,
‘app, and ‘lam for the moment). There are three differences between the implemenations
of renaming and substitution:

1. in the variable case, after renaming a variable we must wrap it in a ‘var constructor
whereas a substitution directly produces a term;

2. when weakening a renaming to push it under a λ we need only post-compose the
remaning with the De Bruijn variable successor constructor s (which is essen-
tially weakening for variables) whereas for a substitution we need a weakening
operation for terms. It can be given by renaming via the successor constructor
(ren (pack s));

3. also in the λ case, when pushing a renaming or a substitution under a binder
we must extend it to ensure that the variable bound by the λ is mapped to itself.
For renaming this involves its extension by the zeroth variable z whereas for
subsitutions we must extend by the zeroth variable seen as a term (‘var z).

McBride then defines a notion of “Kit” abstracting these differences. Rather than
considering Var and Tm in isolation as different types of environment values, he
considers �, an arbitrary (Type −Scoped) and designs three constraints:

19

4. Refactoring Common Traversals

ren : (Γ −Env) Var ∆→ Tm σ Γ→ Tm σ ∆

ren ρ (‘var v) = ‘var (lookup ρ v)
ren ρ (‘app f t) = ‘app (ren ρ f) (ren ρ t)
ren ρ (‘lam b) = ‘lam (ren ρ′ b)

where ρ′ = (s <$> ρ) • z

sub : (Γ −Env) Tm ∆→ Tm σ Γ→ Tm σ ∆

sub ρ (‘var v) = lookup ρ v
sub ρ (‘app f t) = ‘app (sub ρ f) (sub ρ t)
sub ρ (‘lam b) = ‘lam (sub ρ′ b)

where ρ′ = (ren (pack s) <$> ρ) • ‘var z

Figure 4.1: Renaming and Substitution for the STλC

1. One should be able to turn any environment value into a term of the same type
and defined in the same scope (var);

2. One should be able to craft a fresh environment value associated to the zeroth
variable of a scope (zro);

3. One should be able to embed environment values defined in a given scope into
ones in a scope extended with a fresh variable (wkn).

record Kit (� : Type −Scoped) : Set where
field var : ∀[� σ⇒ Tm σ]

zro : ∀[(σ ::_) ` � σ]
wkn : ∀[� τ⇒ (σ ::_) ` � τ]

Figure 4.2: Kit as a set of constraints on �

Whenever these constraints are met we can define a type and scope preserving
traversal which is based on an environment of �-values. This is the fundamental lemma
of Kits stated and proved in fig. 4.3.

Thankfully, we can indeed recover renaming and substitution as two instances of
the fundamental lemma of Kits. We start with the Kit for renaming and ren defined this
time as a corrolary of kit

Just like we needed ren to define sub, once we have recovered ren we can define
the Kit for substitution.

20

4.2. Opportunities for Further Generalizations

kit : Kit �→ (Γ −Env) � ∆→ Tm σ Γ→ Tm σ ∆

kit K ρ (‘var v) = K .var (lookup ρ v)
kit K ρ (‘app f t) = ‘app (kit K ρ f) (kit K ρ t)
kit K ρ (‘lam b) = ‘lam (kit K ρ′ b)

where ρ′ = (K .wkn <$> ρ) • K .zro

Figure 4.3: Fundamental lemma of Kit

ren^Kit : Kit Var
ren^Kit .var = ‘var
ren^Kit .zro = z
ren^Kit .wkn = s

ren : Thinning Γ ∆→ Tm σ Γ→ Tm σ ∆

ren = kit ren^Kit

Figure 4.4: Kit for Renaming, Renaming as a Corrolary of kit

sub^Kit : Kit Tm
sub^Kit .var = id
sub^Kit .zro = ‘var z
sub^Kit .wkn = ren (pack s)

sub : (Γ −Env) Tm ∆→ Tm σ Γ→ Tm σ ∆

sub = kit sub^Kit

Figure 4.5: Kit for Substitution, Substitution as a Corrolary of kit

4.2 Opportunities for Further Generalizations

After noticing that renaming and substitution fit the pattern, it is natural to wonder
about other traversals.

The evaluation function used in normalization by evaluation, although not fitting
exactly in the Kit-based approach, relies on the same general structure. The variable
case is nothing more than a lookup in the environment; the application case is defined
by combining the results of two structural calls; and the lambda case corresponds to
the evaluation of the lambda’s body in an extended context provided that we can get a
value for the newly-bound variable. Ignoring for now the definitions of APP and LAM,
we can see the similarities in fig. 4.6.

Outline

Building on this observation, our contributions here are twofold:

• We generalise the “Kit” approach from syntax to semantics bringing operations
like normalisation by evaluation (cf. fig. 4.6) but also printing with a name
supply, or continutation passing style translation into our framework.

21

4. Refactoring Common Traversals

nbe : (Γ −Env) Val ∆→ Tm σ Γ→ Val σ ∆

nbe ρ (‘var v) = lookup ρ v
nbe ρ (‘app f t) = APP (nbe ρ f) (nbe ρ t)
nbe ρ (‘lam t) = LAM (λ re v→ nbe ((th^Val re <$> ρ) • v) t)

Figure 4.6: Normalisation by Evaluation for the STλC

• We prove generic results about simulations between and fusions of semantics
given by, and enabled by, Kit.

We start by introducing a notion of environments and one well known instance: the
category of renamings. This leads us to defining a generic notion of type and scope-
preserving Semantics together with a generic evaluation function. We then showcase the
ground covered by these Semantics: from the syntactic ones corresponding to renaming
and substitution to printing with names, variations of Normalisation by Evaluation or
CPS transformations. Finally, given the generic definition of Semantics, we can prove
fundamental lemmas about these evaluation functions: we characterise the semantics
which can simulate one another and give an abstract treatment of composition yielding
compaction and reuse of proofs compared to Benton et al. (2012).

4.3 A Generic Notion of Environment

All the semantics we are interested in defining associate to a term t of type Term σ Γ, a
value of type C σ ∆ given an interpretationV ∆ τ for each one of its free variables τ in
Γ. We call the collection of these interpretations anV-(evaluation) environment. We
leave outV when it can easily be inferred from the context.

The content of environments may vary wildly between different semantics: when
defining renaming, the environments will carry variables whilst the ones used for
normalisation by evaluation contain elements of the model. But their structure stays
the same which prompts us to define the notion of evaluation environment generically
for any (I −Scoped) family of values.

Formally, this translates to V-environments being the pointwise lifting of the
relationV between contexts and types to a relation between two contexts. Rather than
using a datatype to represent such a lifting, we choose to use a function space. This
decision is based on Jeffrey’s observation (2011) that one can obtain associativity of
append for free by using difference lists. In our case the interplay between various
combinators (e.g. identity and select) defined later on is vastly simplified by this rather
simple decision.

These environments naturally behave like the contexts they are indexed by: there
is a trivial environment for the empty context and one can easily extend an existing
one by providing an appropriate value. The packaging of the function representing to
the environment in a record allows for two things: it helps the typechecker by stating
explicitly which type family the values correspond to and it empowers us to define

22

4.3. A Generic Notion of Environment

record _−Env (Γ : List I) (V : I −Scoped) (∆ : List I) : Set where
constructor pack
field lookup : Var i Γ→V i ∆

Figure 4.7: Generic Notion of Environment

environments by copattern-matching (Abel et al. [2013a]) thus defining environments
by their use cases.

The definition of the empty environment uses an absurd match (()): given the
definition of Var in fig. 3.5, it should be pretty clear that there can never be a value of
type (Var σ []).

ε : ([] −Env)V ∆

lookup ε ()

Figure 4.8: Empty Environment

The environment extension definition proceeds by pattern-matching on the variable:
if it z then we return the newly-added value, otherwise we are referring to a value in
the original environment and can simply look it up.

• : (Γ −Env)V ∆→V σ ∆→ ((σ :: Γ) −Env)V ∆

lookup (ρ • v) z = v
lookup (ρ • v) (s k) = lookup ρ k

Figure 4.9: Environment Extension

The Category of Thinnings

A key instance of environments playing a predominant role in this paper is the notion
of thinning. The reader may be accustomed to the more restrictive notion of renamings
as described variously as Order Preserving Embeddings (Chapman [2009]), thinnings
(which we use), context inclusions, or just weakenings (Altenkirch et al. [1995]). A
thinning (Thinning Γ ∆) is an environment pairing each variable of type σ in Γ to one
of the same type in ∆.

Writing non-injective or non-order preserving renamings would take perverse effort
given that we only implement generic interpretations. In practice, although the type of
thinnings is more generous, we only introduce weakenings (skipping variables at the
beginning of the context) that become thinnings (skipping variables at arbitrary points
in the context) when we push them under binders. The extra flexibility will not get in

23

4. Refactoring Common Traversals

Thinning : List I→ List I→ Set
Thinning Γ ∆ = (Γ −Env) Var ∆

Figure 4.10: Thinnings: A Special Case of Environments

our way, and permits a representation as a function space which grants us monoid laws
“for free” as per Jeffrey’s observation (2011).

These simple observations allow us to prove that thinnings form a category which, in
turn, lets us provide the user with the constructors Altenkirch, Hofmann and Streicher’s
“Category of Weakening" (1995) is based on.

identity : Thinning Γ Γ

lookup identity k = k
extend : Thinning Γ (σ :: Γ)
lookup extend v = s v

select : Thinning Γ ∆→ (∆ −Env)V Θ→ (Γ −Env)V Θ

lookup (select ren ρ) k = lookup ρ (lookup ren k)

Figure 4.11: Examples of Thinning Combinators

The � combinator turns any (List I)-indexed Set into one that can absorb thinnings.
This is accomplished by abstracting over all possible thinnings from the current scope,
akin to an S4-style necessity modality. The axioms of S4 modal logic incite us to
observe that the functor � is a comonad: extract applies the identity Thinning to its
argument, and duplicate is obtained by composing the two Thinnings we are given
(select defined in fig. 4.11 corresponds to transitivity in the special case whereV is
Var). The expected laws hold trivially thanks to Jeffrey’s trick mentioned above.

� : (List I→ Set)→ (List I→ Set)
(� T) Γ = ∀[Thinning Γ⇒ T]

extract : ∀[� T⇒ T]
extract t = t identity

duplicate : ∀[� T⇒ � (� T)]
duplicate t ρ σ = t (select ρ σ)

Figure 4.12: The � Functor is a Comonad

The notion of Thinnable is the property of being stable under thinnings; in other
words Thinnables are the coalgebras of �. It is a crucial property for values to have if
one wants to be able to push them under binders. From the comonadic structure we get
that the � combinator freely turns any (List I)-indexed Set into a Thinnable one.

24

4.4. Semantics and Their Generic Evaluators

Thinnable : (List I→ Set)→ Set
Thinnable T = ∀[T⇒ � T]

th^� : Thinnable (� T)
th^� = duplicate

Figure 4.13: Thinning Principle and the Cofree Thinnable �

Constant families are trivially Thinnable. In the case of variables, thinning merely
corresponds to applying the renaming function in order to obtain a new variable. The
environments’ case is also quite simple: being a pointwise lifting of a relation V
between contexts and types, they enjoy thinning ifV does.

th^const : Thinnable (const A)
th^const a _ = a

th^Var : Thinnable (Var i)
th^Var v ρ = lookup ρ v

th^Env : (∀ {i}→ Thinnable (V i))→ Thinnable ((Γ −Env)V)
lookup (th^Env th^V ρ ren) k = th^V (lookup ρ k) ren

Figure 4.14: Thinnable Instances for Variables and Environments

Now that we are equipped with the notion of inclusion, we have all the pieces
necessary to describe the Kripke structure of our models of the simply typed λ-calculus.

4.4 Semantics and Their Generic Evaluators

The upcoming sections demonstrate that renaming, substitution, and printing with
names all share the same structure. We start by abstracting away a notion of Semantics
encompassing all these constructions. This approach will make it possible for us to
implement a generic traversal parametrised by such a Semantics once and for all and
to focus on the interesting model constructions instead of repeating the same pattern
over and over again.

Broadly speaking, a semantics turns our deeply embedded abstract syntax trees
into the shallow embedding of the corresponding parametrised higher order abstract
syntax term (Chlipala [2008]). We get a choice of useful type-and-scope safe traversals
by using different ‘host languages’ for this shallow embedding.

A semantics is parametrised by two (Type −Scoped) type families V and C.
Realisation of a semantics will produce a computation in C for every term whose
variables are assigned values in V. Just as an environment interprets variables in a
model, a computation gives a meaning to terms into a model. We can define −Comp to
make this parallel explicit.

An appropriate notion of semantics for the calculus is one that will map environ-
ments to computations. In other words, a set of constraints onV and C guaranteeing
the existence of a function of type ((Γ −Env)V ∆→ (Γ −Comp) C ∆). In cases such

25

4. Refactoring Common Traversals

_−Comp : List Type→ Type −Scoped→ List Type→ Set
(Γ −Comp) C ∆ = ∀ {σ}→ Term σ Γ→ C σ ∆

Figure 4.15: Generic Notion of Computation

as substitution or normalisation by evaluation, V and C will happen to coincide but
keeping these two relations distinct is precisely what makes it possible to go beyond
these and also model renaming or printing with names.

Concretely, we define Semantics as a record packing the properties these families
need to satisfy for the evaluation function to exist.

record Semantics (V C : Type −Scoped) : Set where

The first method of a Semantics deals with environment values. They need to be
thinnable (th^V) so that the traversal may introduce fresh variables when going under
a binder whilst keeping the environment well-scoped.

th^V : Thinnable (V σ)

The structure of the model is quite constrained: each constructor in the language
needs a semantic counterpart. We start with the two most interesting cases: var and
lam. The variable case bridges the gap between the fact that the environment translates
variables into valuesV but the evaluation function returns computations C.

var : ∀[V σ⇒ C σ]

The semantic λ-abstraction is notable for two reasons: first, following Mitchell
and Moggi (1991), its �-structure is typical of models à la Kripke allowing arbitrary
extensions of the context; and second, instead of being a function in the host language
taking computations to computations, it takes values to computations. This is concisely
expressed by the type (� (V σ⇒ C τ)).

It matches precisely the fact that the body of a λ-abstraction exposes one extra free
variable, prompting us to extend the environment with a value for it. In the special case
whereV = C (normalisation by evaluation for instance), we recover the usual Kripke
structure.

lam : ∀[� (V σ⇒ C τ)⇒ C (σ ‘→ τ)]

The remaining fields’ types are a direct translation of the types of the constructor
they correspond to: substructures have simply been replaced with computations thus
making these operators ideal to combine induction hypotheses. For instance, the
semantical counterpart of application is an operation that takes a representation of
a function and a representation of an argument and produces a representation of the
result.

app : ∀[C (σ ‘→ τ)⇒ C σ⇒ C τ]
one : ∀[C ‘Unit]

26

4.5. Syntax Is the Identity Semantics

tt : ∀[C ‘Bool]
ff : ∀[C ‘Bool]
ifte : ∀[C ‘Bool⇒ C σ⇒ C σ⇒ C σ]

The type we chose for lam makes the Semantics notion powerful enough that
even logical predicates are instances of it. And we indeed exploit this power when
defining normalisation by evaluation as a semantics: the model construction is, after
all, nothing but a logical predicate. As a consequence it seems rather natural to
call semantics “the fundamental lemma of semantics”. We prove it in a module
parameterised by a Semantics, which would correspond to using a Section in Coq.
It is defined by structural recursion on the term. Each constructor is replaced by its
semantic counterpart which combines the induction hypotheses for its subterms.

module Fundamental (S : SemanticsV C) where
open Semantics S

lemma : (Γ −Env)V ∆→ (Γ −Comp) C ∆

lemma ρ (‘var v) = var (lookup ρ v)
lemma ρ (‘app t u) = app (lemma ρ t) (lemma ρ u)
lemma ρ (‘lam t) = lam (λ re u→ lemma (th^Env th^V ρ re • u) t)
lemma ρ ‘one = one
lemma ρ ‘tt = tt
lemma ρ ‘ff = ff
lemma ρ (‘ifte b l r) = ifte (lemma ρ b) (lemma ρ l) (lemma ρ r)

Figure 4.16: Fundamental Lemma of Semantics

4.5 Syntax Is the Identity Semantics

As we have explained earlier, this work has been directly influenced by McBride’s
(2005) manuscript. It seems appropriate to start our exploration of Semantics with the
two operations he implements as a single traversal. We call these operations syntactic
because the computations in the model are actual terms and almost all term constructors
are kept as their own semantic counterpart. As observed by McBride, it is enough to
provide three operations describing the properties of the values in the environment to
get a full-blown Semantics. This fact is witnessed by our simple Syntactic record type
together with the fundamental lemma of Syntactic, a function turning its inhabitants
into associated Semantics.

The shape of lam or one should not trick the reader into thinking that this definition
performs some sort of η-expansion: the fundamental lemma indeed only ever uses one
of these when the evaluated term’s head constructor is already respectively a ‘lam or a
‘one. It is therefore absolutely possible to define renaming or substitution using this
approach. We can now port McBride’s definitions to our framework.

27

4. Refactoring Common Traversals

record Syntactic (T : Type −Scoped) : Set where
field zro : ∀[(σ ::_) ` T σ]

th^T : Thinnable (T σ)
var : ∀[T σ⇒ Term σ]

module Fundamental (S : Syntactic T) where

open Syntactic S

lemma : Semantics T Term
Semantics.th^V lemma = th^T
Semantics.var lemma = var
Semantics.lam lemma = λ b→ ‘lam (b extend zro)
Semantics.app lemma = ‘app
Semantics.one lemma = ‘one
Semantics.tt lemma = ‘tt
Semantics.ff lemma = ‘ff
Semantics.ifte lemma = ‘ifte

Figure 4.17: Every Syntactic gives rise to a Semantics

Functoriality, also known as Renaming

Our first example of a Syntactic operation works with variables as environment values.
We have already defined thinning earlier (see section 4.3) and we can turn a variable
into a term by using the ‘var constructor. The type of sem specialised to this semantics
is then precisely the proof that terms are thinnable.

Syn^Ren : Syntactic Var
Syn^Ren .zro = z
Syn^Ren .th^T = th^Var
Syn^Ren .var = ‘var

th^Term : Thinnable (Term σ)
th^Term t ρ = eval Renaming ρ t

Figure 4.18: Thinning as a Syntactic Instance

Simultaneous Substitution

Our second example of a semantics is another spin on the syntactic model: environ-
ment values are now terms. We get thinning for terms from the previous example.
Again, specialising the type of sem reveals that it delivers precisely the simultaneous
substitution.

28

4.6. Printing with Names

Syn^Sub : Syntactic Term
Syn^Sub .zro = ‘var z
Syn^Sub .th^T = th^Term
Syn^Sub .var = id

sub : (Γ −Env) Term ∆→ Term σ Γ→ Term σ ∆

sub ρ t = eval Substitution ρ t

Figure 4.19: Parallel Substitution as a Syntactic Instance

4.6 Printing with Names

Before considering the various model constructions involved in defining normalisation
functions deciding different equational theories, let us make a detour to a perhaps
slightly more surprising example of a Semantics: printing with names. A user-
facing project would naturally avoid directly building a String and rather construct
an inhabitant of a more sophisticated datatype in order to generate a prettier output
(Hughes [1995], Wadler [2003], Bernardy [2017]). But we stick to the simpler setup as
pretty printing is not our focus here.

This example is interesting for two reasons. Firstly, the distinction between values
and computations is once more instrumental: we get to give the procedure a precise
type guiding our implementation. The environment carries names for the variables
currently in scope whilst the computations thread a name-supply (a stream of strings) to
be used to generate fresh names for bound variables (here we use M for the state monad
threading that name supply). If the values in the environment had to be computations
too, we would not root out some faulty implementations e.g a program picking a new
name each time a variable is mentioned.

Name : I −Scoped
Name σ Γ = String

Printer : I −Scoped
Printer σ Γ = M String

Figure 4.20: Names and Printer for the Printing Semantics

Secondly, the fact that the model’s computation type is a monad and that this
poses no problem whatsoever in this framework means it is appropriate for handling
languages with effects (Moggi [1991]), or effectful semantics e.g. logging the various
function calls. Here is the full definition of the printer.

Printing : Semantics Name Printer

Because the output type is not scoped in any way, thinning for Names (th^V) is
trivial: we return the same name. The variable case (var) is a bit more interesting: after
looking up a variable’s Name in the environment, we use return to produce the trivial
Printer constantly returning that name.

Printing .th^V = th^const
Printing .var = return

29

4. Refactoring Common Traversals

As often, the case for λ-abstraction (lam) is the most interesting one. We first
use fresh to generate a Name for the newly-bound variable, then run the printer for
the body in the environment extended with that fresh name and finally build a string
combining the name and the body together.

Printing .lam {σ} mb = do
x← fresh; b← mb (bind σ) x
return $ "λ" ++ x ++ ". " ++ b

We then have a collection of base cases for the data constructors of type ‘Unit and
‘Bool. These give rise to constant printers.

Printing .one = return "<>"
Printing .tt = return "true"
Printing .ff = return "false"

Finally we have purely structural cases: we run the printers for each of the subparts
and put the results together, throwing in some extra parenthesis to guarantee that the
result is unambiguous.

Printing .app mf mt = do
f← mf; t← mt
return $ parens f ++ " " ++ t

Printing .ifte mb ml mr = do
b← mb; l← ml; r← mr
return $ "if " ++ parens b ++

" then " ++ parens l ++ " else " ++ parens r

The fundamental lemma of Semantics will deliver a printer which needs to be
run on a Stream of distinct Strings. Our definition of names (not shown here) simply
cycles through the letters of the alphabet and guarantess uniqueness by appending a
natural number incremented each time we are back at the beginning of the cycle. This
crude name generation strategy would naturally be replaced with a more sophisticated
one in a user-facing language: we could e.g. use naming hints for user-introduced
binders and type-based schemes otherwise (f or g for functions, i or j for integers,
etc.).

In order to kickstart the evaluation, we still need to provide Names for each
one of the free variables in scope. We deliver that environment by a simple stateful
computation init chopping off an initial segment of the name supply of the appropriate
length. We can define it using sequenceA because environments are traversable
(McBride and Paterson [2008]). The definition of print follows.

We can observe print’s behaviour by writing a test; we state it as a propositional
equality and prove it using refl, forcing the typechecker to check that both expressions
indeed compute to the same normal form. Here we display the identity function defined
in a context of size 2. As we can see, the binder receives the name "c" because "a"
and "b" have already been assigned to the free variables in scope.

30

4.6. Printing with Names

init : M ((Γ −Env) Name Γ)
init = sequenceA (pack (const fresh))

printer : Term σ Γ→ M String
printer t = do
ρ← init
Fundamental.lemma Printing ρ t

print : Term σ Γ→ String
print t = proj1 $ printer t names

Figure 4.21: Printer

_ : print (Term (σ ‘→ α) (α :: β :: []) 3 ‘lam (‘var (s z))) ≡ "λc. a"
_ = refl

Figure 4.22: Printing an Open Term

31

Chapter 5

Variations on Normalisation by
Evaluation

Normalisation by Evaluation (NBE) is a technique leveraging the computational power
of a host language in order to normalise expressions of a deeply embedded one (Berger
and Schwichtenberg [1991], Berger [1993], Coquand and Dybjer [1997], Coquand
[2002]). The process is based on a model construction describing a family of types by
induction on its Type index. Two procedures are then defined: the first (eval) constructs
an element of C σ Γ provided a well typed term of the corresponding Term σ Γ type
whilst the second (reify) extracts, in a type-directed manner, normal forms Nf σ Γ from
elements of the model C σ Γ. NBE composes the two procedures. The definition of
this eval function is a natural candidate for our Semantics framework. NBE is always
defined for a given equational theory; we start by recalling the various rules a theory
may satisfy.

Reduction Rules

Thanks to Renaming and Substitution respectively, we can formally define η-expansion
for functions and β-reduction.

eta : ∀[Term (σ ‘→ τ)⇒ Term (σ ‘→ τ)]
eta t = ‘lam (‘app (th^Term t extend) (‘var z))

〈/0〉 : ∀[(σ ::_) ` Term τ⇒ Term σ⇒ Term τ]
t 〈 u /0〉 = sub ((‘var <$> identity) • u) t

Figure 5.1: η-expansion and β-reduction in terms or th^Term and sub

The η-rules say that for some types, terms have a canonical form: functions will all
be λ-headed whilst records will collect their fields – here this makes all elements of
‘Unit equal to ‘one.

33

5. Variations on Normalisation by Evaluation

t : Term (σ ‘→ τ) Γ

t{ eta t
η1

t : Term ‘Unit Γ

t{ ‘one
η2

‘app (‘lam t) u{ t 〈 u /0〉
β

Figure 5.2: βη Rules for our Calculus

The β-rule is the main driver for actual computation, but the presence of an inductive
data type (‘Bool) and its eliminator (‘ifte) means we have further redexes: whenever the
boolean the eliminator branches on is in canonical form, we may apply a ι-rule. Finally,
the ξ-rule lets us reduce under λ-abstractions — the distinction between weak-head
normalisation and strong normalisation.

‘ifte ‘tt l r { l
ι1

‘ifte ‘ff l r { r
ι2

t { u

‘lam t { ‘lam u
ξ

Figure 5.3: ιξ Rules for our Calculus

Now that we have recalled all these rules, we can talk precisely about the sort of
equational theory decided by the model construction we choose to perform. We start
with the usual definition of NBE which goes under λs and produces η-long βι-short
normal forms.

Normal and Neutral Forms

We parametrise the mutually defined inductive families Ne and Nf by a predicate Eta?
constraining the types at which one may embed a neutral as a normal form. This
constraint shows up in the type of ‘neu; it makes it possible to control whether the
NBE should η-expands all terms at certain types by prohibiting the existence of neutral
terms at said type.

Once more, the expected notions of thinning th^Ne and th^Nf are induced as Ne
and Nf are syntaxes. We omit their purely structural implementation here and wish we
could do so in source code, too: our constructions so far have been syntax-directed
and could surely be leveraged by a generic account of syntaxes with binding. We will
tackle this problem in part II.

5.1 Normalisation by Evaluation for βιξη

In the case of NBE, the environment values and the computations in the model will
both use the same type family Model, defined by induction on the Type argument. The
η-rules allow us to represent functions (respetively inhabitants of ‘Unit) in the source
language as function spaces (respectively values of type >). Evaluating a ‘Bool may

34

5.1. Normalisation by Evaluation for βιξη

mutual

data Ne : Type −Scoped where
‘var : ∀[Var σ⇒ Ne σ]
‘app : ∀[Ne (σ ‘→ τ)⇒ Nf σ⇒ Ne τ]
‘ifte : ∀[Ne ‘Bool⇒ Nf σ⇒ Nf σ⇒ Ne σ]

data Nf : Type −Scoped where
‘neu : Eta? σ→ ∀[Ne σ⇒ Nf σ]
‘one : ∀[Nf ‘Unit]
‘tt ‘ff : ∀[Nf ‘Bool]
‘lam : ∀[(σ ::_) ` Nf τ⇒ Nf (σ ‘→ τ)]

Figure 5.4: Neutral and Normal Forms

however yield a stuck term so we can’t expect the model to give us anything more than
an open term in normal form.

The model construction then follows the usual pattern pioneered by Berger (1993)
and formally analysed and thoroughly explained by Catarina Coquand (2002). We work
by induction on the type and describe η-expanded values: all inhabitants of (Model
‘Unit Γ) are equal and all elements of (Model (σ ‘→ τ) Γ) are functions in Agda.

Model : Type −Scoped
Model ‘Unit Γ = >
Model ‘Bool Γ = Nf ‘Bool Γ

Model (σ ‘→ τ) Γ = � (Model σ⇒ Model τ) Γ

Figure 5.5: Model for Normalisation by Evaluation

This model is defined by induction on the type in terms either of syntactic objects
(Nf) or using the �-operator which is a closure operator for Thinnings. As such, it is
trivial to prove that for all type σ, (Model σ) is Thinnable.

th^Model : ∀ σ→ Thinnable (Model σ)
th^Model ‘Unit = th^const
th^Model ‘Bool = th^Nf
th^Model (σ ‘→ τ) = th^�

Figure 5.6: Values in the Model are Thinnable

Application’s semantic counterpart is easy to define: given thatV and C are equal

35

5. Variations on Normalisation by Evaluation

in this instance definition we can feed the argument directly to the function, with the
identity renaming. This corresponds to extract for the comonad �.

APP : ∀[Model (σ ‘→ τ)⇒ Model σ⇒ Model τ]
APP t u = extract t u

Figure 5.7: Semantic Counterpart of ‘app

Conditional branching however is more subtle: the boolean value ‘if branches on
may be a neutral term in which case the whole elimination form is stuck. This forces
us to define reify and reflect first. These functions, also known as quote and unquote
respectively, give the interplay between neutral terms, model values and normal forms.
reflect performs a form of semantic η-expansion: all stuck ‘Unit terms are equated and
all functions are λ-headed. It allows us to define var0, the semantic counterpart of (‘var
z).

mutual

var0 : ∀[(σ ::_) ` Model σ]
var0 = reflect _ (‘var z)

reflect : ∀ σ→ ∀[Ne σ⇒ Model σ]
reflect ‘Unit t = _
reflect ‘Bool t = ‘neu ‘Bool t
reflect (σ ‘→ τ) t = λ ρ u→ reflect τ (‘app (th^Ne t ρ) (reify σ u))

reify : ∀ σ→ ∀[Model σ⇒ Nf σ]
reify ‘Unit T = ‘one
reify ‘Bool T = T
reify (σ ‘→ τ) T = ‘lam (reify τ (T extend var0))

Figure 5.8: Reify and Reflect

We can then give the semantics of ‘ifte: if the boolean is a value, the appropriate
branch is picked; if it is stuck then the whole expression is stuck. It is then turned into
a neutral form by reifying the two branches and then reflected in the model.

We can then combine these components. The semantics of a λ-abstraction is simply
the identity function: the structure of the functional case in the definition of the model
matches precisely the shape expected in a Semantics. Because the environment carries
model values, the variable case is trivial.

We can define a normaliser by kickstarting the evaluation with an environment of
placeholder values obtained by reflecting the term’s free variables and then reifying the
result.

36

5.2. Normalisation by Evaluation for βιξ

IFTE : Model ‘Bool Γ→ Model σ Γ→ Model σ Γ→ Model σ Γ

IFTE ‘tt l r = l
IFTE ‘ff l r = r
IFTE (‘neu _ T) l r = reflect σ (‘ifte T (reify σ l) (reify σ r))

Figure 5.9: Semantic Counterpart of ‘ifte

Eval : Semantics Model Model
Eval .th^V = th^Model _
Eval .var = id
Eval .lam = id
Eval .app = APP
Eval .one = _
Eval .tt = ‘tt
Eval .ff = ‘ff
Eval .ifte = IFTE

Figure 5.10: Evaluation is a Semantics

eval : Term σ Γ→ Model σ Γ

eval = Fundamental.lemma Eval (pack (reflect _ ◦ ‘var))

norm : Term σ Γ→ Nf σ Γ

norm = reify _ ◦ eval

Figure 5.11: Normalisation as Reification of an Evaluated Term

5.2 Normalisation by Evaluation for βιξ

As seen above, the traditional typed model construction leads to an NBE procedure
outputting βι-normal η-long terms. However actual proof systems rely on evaluation
strategies that avoid applying η-rules as much as possible: unsurprisingly, it is a rather
bad idea to η-expand proof terms which are already large when typechecking complex
developments.

In these systems, normal forms are neither η-long nor η-short: the η-rule is never
deployed except when comparing a neutral and a constructor-headed term for equality.
Instead of declaring them distinct, the algorithm does one step of η-expansion on the
neutral term and compares their subterms structurally. The conversion test fails only
when confronted with neutral terms with distinct head variables or normal forms with
different head constructors.

To reproduce this behaviour, NBE must be amended. It is possible to alter the

37

5. Variations on Normalisation by Evaluation

model definition described earlier so that it avoids unnecessary η-expansions. We
proceed by enriching the traditional model with extra syntactical artefacts in a manner
reminiscent of Coquand and Dybjer’s (1997) approach to defining an NBE procedure
for the SK combinator calculus. Their resorting to glueing terms to elements of the
model was dictated by the sheer impossibily to write a sensible reification procedure
but, in hindsight, it provides us with a powerful technique to build models internalizing
alternative equational theories.

This leads us to using a predicate Eta? which holds for all types thus allowing us
to embed all neutrals into normal forms, and to mutually defining the model (Model)
together with the acting model (Value).

mutual

Model : Type −Scoped
Model σ Γ = Ne σ Γ] Value σ Γ

Value : Type −Scoped
Value ‘Unit = const >
Value ‘Bool = const Bool
Value (σ ‘→ τ) = � (Model σ⇒ Model τ)

Figure 5.12: Model Definition for βιξ

These mutual definitions allow us to make a careful distinction between values
arising from (non expanded) stuck terms and the ones wich are constructor headed and
have a computational behaviour associated to them. The values in the acting model are
storing these behaviours be it either actual proofs of >, actual ‘Booleans or actual Agda
functions depending on the type of the term. It is important to note that the functions
in the acting model have the model as both domain and codomain: there is no reason
to exclude the fact that either the argument or the body may or may not be stuck.

We have once again only used families constant in their scope index, neutral forms
or �-closed families. All of these are Thinnable hence Value and Model also are.

th^Value : ∀ σ→ Thinnable (Value σ)
th^Value ‘Unit = th^const
th^Value ‘Bool = th^const
th^Value (σ ‘→ τ) = th^�

th^Model : ∀ σ→ Thinnable (Model σ)
th^Model σ (inj1 neu) ρ = inj1 (th^Ne neu ρ)
th^Model σ (inj2 val) ρ = inj2 (th^Value σ val ρ)

Figure 5.13: The Model is Thinnable

38

5.2. Normalisation by Evaluation for βιξ

What used to be called reflection in the previous model is now trivial: stuck terms
are indeed perfectly valid model values. Reification becomes quite straightforward
too because no η-expansion is needed. When facing a stuck term, we simply embed it
in the set of normal forms. Even though reify may look like it is performing some η-
expansions, it is not the case: all the values in the acting model are notionally obtained
from constructor-headed terms.

reflect : ∀[Ne σ⇒ Model σ]
reflect = inj1

var0 : ∀[(σ ::_) ` Model σ]
var0 = reflect (‘var z)

mutual

reify : ∀ σ→ ∀[Model σ⇒ Nf σ]
reify σ (inj1 neu) = ‘neu _ neu
reify σ (inj2 val) = reify^Value σ val

reify^Value : ∀ σ→ ∀[Value σ⇒ Nf σ]
reify^Value ‘Unit _ = ‘one
reify^Value ‘Bool b = if b then ‘tt else ‘ff
reify^Value (σ ‘→ τ) f = ‘lam (reify τ (f extend var0))

Figure 5.14: Reflect, Reify and Interpretation for Fresh Variables

Most combinators acting on this model follow a pattern similar to their counterpart’s
in the previous section. Semantic application is more interesting: in case the function
is a stuck term, we grow its spine by reifying its argument; otherwise we have an Agda
function ready to be applied.

APP : ∀[Model (σ ‘→ τ)⇒ Model σ⇒ Model τ]
APP (inj1 f) t = inj1 (‘app f (reify _ t))
APP (inj2 f) t = extract f t

Figure 5.15: Semantical Counterpart of ‘app

When defining the semantical counterpart of ‘ifte, the value case is similar to that of
the previous section: depending on the boolean value we pick either the left or the right
branch which are precisely of the right type already. If the boolean evaluates to a stuck
term, we once again reify the two branches and assemble a neutral term. However this
time we do not need to η-expand it: it is a perfectly valid inhabitant of the Model as is.

Finally, we have all the necessary components to show that evaluating the term
whilst not η-expanding all stuck terms is a perfectly valid Semantics. As usual, normal-

39

5. Variations on Normalisation by Evaluation

IFTE : ∀[Model ‘Bool⇒ Model σ⇒ Model σ⇒ Model σ]
IFTE (inj1 b) l r = inj1 (‘ifte b (reify _ l) (reify _ r))
IFTE (inj2 b) l r = if b then l else r

Figure 5.16: Semantical Counterpart of ‘ifte

isation is defined by composing reification and evaluation on a diagonal environment
made of placeholders.

eval : Term σ Γ→ Model σ Γ

eval = Fundamental.lemma Eval (pack (reflect ◦ ‘var))

norm : Term σ Γ→ Nf σ Γ

norm = reify _ ◦ eval

5.3 Normalisation by Evaluation for βι

The decision to apply the η-rule lazily can be pushed even further: one may forgo using
the ξ-rule too and simply perform weak-head normalisation. This drives computation
only when absolutely necessary, e.g. when two terms compared for equality have
matching head constructors and one needs to inspect these constructors’ arguments to
conclude.

For that purpose, we introduce an inductive family describing terms in weak-head
normal forms.

Weak-Head Normal Forms

A weak-head normal form (respectively a weak-head neutral form) is a term which has
been evaluated just enough to reveal a head constructor (respectively to reach a stuck
elimination). There are no additional constraints on the subterms: a λ-headed term is
in weak-head normal form no matter the shape of its body. Similarly an application
composed of a variable as the function and a term as the argument is in weak-head
neutral form no matter what the argument looks like. This means in particular that
unlike with Ne and Nf there is no mutual dependency between the definitions of WHNE
(defined first) and WHNF.

Naturally, it is possible to define the thinnings th^WHNE and th^WHNF as well
as erasure functions erase^WHNE and erase^WHNF with codomain Term. We omit
their simple definitions here.

Model Construction

The model construction is much like the previous one except that source terms are
now stored in the model too. This means that from an element of the model, one

40

5.3. Normalisation by Evaluation for βι

data WHNE : Type −Scoped where
‘var : ∀[Var σ⇒WHNE σ]
‘app : ∀[WHNE (σ ‘→ τ)⇒ Term σ⇒WHNE τ]
‘ifte : ∀[WHNE ‘Bool⇒ Term σ⇒ Term σ⇒WHNE σ]

data WHNF : Type −Scoped where
‘lam : ∀[(σ ::_) ` Term τ⇒WHNF (σ ‘→ τ)]
‘one : ∀[WHNF ‘Unit]
‘tt ‘ff : ∀[WHNF ‘Bool]
‘whne : ∀[WHNE σ⇒WHNF σ]

Figure 5.17: Weak-Head Normal and Neutral Forms

can pick either the reduced version of the input term (i.e. a stuck term or the term’s
computational content) or the original. We exploit this ability most notably in reification
where once we have obtained either a head constructor or a head variable, no subterm
needs to be evaluated.

mutual

Model : Type −Scoped
Model σ Γ = Term σ Γ × (WHNE σ Γ] Value σ Γ)

Value : Type −Scoped
Value ‘Unit = const >
Value ‘Bool = const Bool
Value (σ ‘→ τ) = � (Model σ⇒ Model τ)

Figure 5.18: Model Definition for Computing Weak-Head Normal Forms

Thinnable can be defined rather straightforwadly based on the template provided
in the previous section: once more all the notions used in the model definition are
Thinnable themselves. Reflection and reification also follow the same recipe as in the
previous section.

The application and conditional branching rules are more interesting. One important
difference with respect to the previous section is that we do not grow the spine of a
stuck term using reified versions of its arguments but rather the corresponding source
term. Thus staying true to the idea that we only head reduce enough to expose either a
constructor or a variable and let the other subterms untouched.

The semantical counterpart of ‘lam is also slightly trickier than before. Indeed, we
need to recover the source term the value corresponds to. Luckily we know it has to be
λ-headed and once we have introduced a fresh variable with ‘lam, we can project out
the source term of the body evaluated using this fresh variable as a placeholder value.

41

5. Variations on Normalisation by Evaluation

APP : ∀[Model (σ ‘→ τ)⇒ Model σ⇒ Model τ]
APP (f , inj1 whne) (t , _) = (‘app f t , inj1 (‘app whne t))
APP (_ , inj2 f) t = extract f t

IFTE : ∀[Model ‘Bool⇒ Model σ⇒ Model σ⇒ Model σ]
IFTE (b , inj1 whne) (l , _) (r , _) = (‘ifte b l r , inj1 (‘ifte whne l r))
IFTE (b , inj2 v) l r = if v then l else r

Figure 5.19: Semantical Counterparts of ‘app and ‘ifte

LAM : ∀[� (Model σ⇒ Model τ)⇒ Model (σ ‘→ τ)]
LAM b = (‘lam (proj1 (b extend var0)) , inj2 b)

Figure 5.20: Semantical Counterparts of ‘lam

We can finally put together all of these semantic counterparts to obtain a Semantics
corresponding to weak-head normalisation. We omit the now self-evident definition of
norm^βι as the composition of evaluation and reification.

42

Chapter 6

CPS Transformations

In their generic account of continuation passing style (CPS) transformations, Hatcliff
and Danvy (1994) decompose both call by name and call by value CPS transformations
in two phases. The first one, an embedding of the source language into Moggi’s Meta
Language (1991), picks an evaluation strategy whilst the second one is a generic erasure
from Moggi’s ML back to the original language. Looking closely at the structure of
the first pass, we can see that it is an instance of our Semantics framework.

Let us start with the definition of Moggi’s Meta Language (ML). Its types are fairly
straightforward, we simply have an extra constructor #_ for computations and the
arrow has been turned into a computational arrow meaning that its codomain is always
considered to be a computational type.

data CType : Set where
‘Unit : CType
‘Bool : CType
‘→# : (σ τ : CType)→ CType
#_ : CType→ CType

Figure 6.1: Inductive Definition of Types for Moggi’s ML

Then comes the Meta-Language itself (cf. fig. 6.2). It incorporates Term construc-
tors and eliminators with slightly different types: value constructors are associated to
value types whilst eliminators (and their branches) have computational types. Two new
term constructors have been added: ‘ret and ‘bind make #_ a monad. They can be used
to explicitly schedule the evaluation order of various subterms.

As explained in Hatcliff and Danvy’s paper, the translation from Type to CType
fixes the calling convention the CPS translation will have. Both call by name (CBV)
and call by value (CBV) can be encoded. They behave the same way on base types but
differ on the way they translate function spaces. In CBN the argument of a function is
a computation (i.e. it is wrapped in a #_ type constructor) whilst it is expected to have
been fully evaluated in CBV. Let us look more closely at these two translations.

43

6. CPS Transformations

data ML : CType −Scoped where
‘var : ∀[Var σ⇒ ML σ]
‘app : ∀[ML (σ ‘→# τ)⇒ ML σ⇒ ML (# τ)]
‘lam : ∀[(σ ::_) ` ML (# τ)⇒ ML (σ ‘→# τ)]
‘one : ∀[ML ‘Unit]
‘tt ‘ff : ∀[ML ‘Bool]
‘ifte : ∀[ML ‘Bool⇒ ML (# σ)⇒ ML (# σ)⇒ ML (# σ)]
‘ret : ∀[ML σ⇒ ML (# σ)]
‘bind : ∀[ML (# σ)⇒ ML (σ ‘→# τ)⇒ ML (# τ)]

Figure 6.2: Definition of Moggi’s Meta Language

6.1 Translation into Moggi’s Meta-Language

Call by Name

We define the translation CBN of Type in a call by name style together with a shorthand
for the computational version of the translation #CBN. As explained earlier, base types
are kept identical whilst function spaces are turned into function spaces whose domains
and codomains are computational.

mutual

#CBN : Type→ CType
#CBN σ = # (CBN σ)

CBN : Type→ CType
CBN ‘Unit = ‘Unit
CBN ‘Bool = ‘Bool
CBN (σ ‘→ τ) = #CBN σ ‘→# CBN τ

Figure 6.3: Translation of Type in a Call by Name style

Once we know how to translate types, we can start thinking about the way terms
are handled. The term’s type will have to be computational as there is no guarantee
that the input term is in normal form. In a call by name strategy, variables in context
are also assigned a computational type.

By definition of Semantics, our notions of environment values and computations
will have to be of type (Type −Scoped). This analysis leads us to define the generic
transformation _^CBN in fig. 6.4.

Our notion of environment values are then (Var ^CBN) whilst computations will be
(ML ^CBN). Once these design decisions are made, we can start drafting the semantical
counterpart of common combinators.

44

6.1. Translation into Moggi’s Meta-Language

_^CBN : CType −Scoped→ Type −Scoped
(T ^CBN) σ Γ = T (#CBN σ) (map #CBN Γ)

Figure 6.4: ·−Scoped Transformer for Call by Name

As usual, we define combinators corresponding to the two eliminators first. In
these cases, we need to evaluate the subterm the redex is potentially stuck on first. This
means evaluating the function first in an application node (which will then happily
consume the thunked argument) and the boolean in the case of boolean branching.

APP : ∀[(ML ^CBN) (σ ‘→ τ)⇒ (ML ^CBN) σ⇒ (ML ^CBN) τ]
APP f t = ‘bind f (‘lam (‘app (‘var z) (th^ML t extend)))

IFTE : ∀[(ML ^CBN) ‘Bool⇒ (ML ^CBN) σ⇒ (ML ^CBN) σ⇒ (ML ^CBN) σ]
IFTE b l r = ‘bind b (‘lam (‘ifte (‘var z) (th^ML l extend) (th^ML r extend)))

Figure 6.5: Semantical Counterparts for ‘app and ‘ifte

Values have a straightforward interpretation: they are already fully evaluated and
can thus simply be returned as trivial computations using ‘ret. This gives us everything
we need to define the embedding of STLC into Moggi’s ML in call by name style.

Call by Value

Call by value follows a similar pattern. As the name suggests, in call by value function
arguments are expected to be values already. In the definition of CBV this translates to
function spaces being turned into functions spaces where only the codomain is made
computational.

mutual

#CBV : Type→ CType
#CBV σ = # (CBV σ)

CBV : Type→ CType
CBV ‘Unit = ‘Unit
CBV ‘Bool = ‘Bool
CBV (σ ‘→ τ) = CBV σ ‘→# CBV τ

Figure 6.6: Translation of Type in a Call by Value style

45

6. CPS Transformations

We can then move on to the notion of values and computations for our call by
value Semantics. All the variables in scope should refer to values hence the choice to
translate Γ by mapping CBV over it in both cases. As with the call by name translation,
we need our target type to be computational: the input terms are not guaranteed to be
in normal form.

V^CBV : Type −Scoped
V^CBV σ Γ = Var (CBV σ) (map CBV Γ)

C^CBV : Type −Scoped
C^CBV σ Γ = ML (# CBV σ) (map CBV Γ)

Figure 6.7: Values and Computations for the CBN CPS Semantics

Albeit being defined at different types, the semantical counterparts of value con-
structors and ‘ifte are the same as in the call by name case. The interpretation of ‘app is
where we can see a clear difference: we need to evaluate the function and its argument
before applying one to the other. We pick a left-to-right evaluation order but that is
arbitrary: another decision would lead to a different but equally valid translation.

APP : ∀[C^CBV (σ ‘→ τ)⇒ C^CBV σ⇒ C^CBV τ]
APP f t = ‘bind f (‘lam (‘bind (th^ML t extend) (‘lam (‘app (‘var (s z)) (‘var z)))))

Figure 6.8: Semantical Counterparts for ‘app

Finally, the corresponding Semantics can be defined (code omitted here).

6.2 Translation Back from Moggi’s Meta-Language

Once we have picked an embedding from STLC to Moggi’s ML, we can kickstart it
by using an environment of placeholder values just like we did for normalisation by
evaluation. The last thing missing to get the full CPS translation is to have the generic
function elaborating terms in ML into STLC ones.

We first need to define a translation of types in Moggi’s Meta-Language to types in
the simply-typed lambda-calculus. The translation is parametrised by r, the return type.
Type constructors common to both languages are translated to their direct counterpart
and the computational type constructor is translated as double r-negation (i.e. (· ‘→ r)
‘→ r).

Once these translations have been defined, we give a generic elaboration function
getting rid of the additional language constructs available in Moggi’s ML. It takes any
term in Moggi’s ML and returns a term in STLC where both the type and the context
have been translated using (CPS[r]) for an abstract parameter r.

46

6.2. Translation Back from Moggi’s Meta-Language

mutual

#CPS[_] : Type→ CType→ Type
#CPS[r] σ = (CPS[r] σ ‘→ r) ‘→ r

CPS[_] : Type→ CType→ Type
CPS[r] ‘Bool = ‘Bool
CPS[r] ‘Unit = ‘Unit
CPS[r] (σ ‘→# τ) = CPS[r] σ ‘→ #CPS[r] τ
CPS[r] (# σ) = #CPS[r] σ

Figure 6.9: Translating Moggi’s ML’s Types to STLC Types

cps : ML σ Γ→ Term (CPS[r] σ) (map CPS[r] Γ)

All the constructors which appear both in Moggi’s ML and STLC are translated
in a purely structural manner. The only two interesting cases are ‘ret and ‘bind which
correpond to the # monad in Moggi’s ML and are interpreted as return and bind for the
continuation monad in STLC.

First, (‘ret t) is interpreted as the function which takes the current continuation and
applies it to its translated argument (cps t).

cps (‘ret t) = ‘lam (‘app (‘var z) (th^Term (cps t) extend))

Then, (‘bind m f) gets translated as the function grabbing the current continuation
k, and running the translation of m with the continuation which, provided the value v
obtained by running m, runs f applied to v and k. Because the translations of m and
f end up being used in extended contexts, we need to make use of the fact Terms are
thinnable.

cps (‘bind m f) = ‘lam $ ‘app m’ $ ‘lam $ ‘app (‘app f’ (‘var z)) (‘var (s z))
where m’ = th^Term (cps m) (pack s)

f’ = th^Term (cps f) (pack (s ◦ s))

By highlighting the shared structure, of the call by name and call by value trans-
lations we were able to focus on the interesting part: the ways in which they differ.
The formal treatment of the type translations underlines the fact that in both cases
the translation of a function’s domain is uniform. This remark opens the door to
alternative definitions; we could for instance consider a mixed strategy which is strict
in machine-representable types thus allowing an unboxed representation (Jones and
Launchbury [1991]) but lazy in every other type.

47

Chapter 7

Conclusion

7.1 Summary

We have now seen how to give an intrinsically well-scoped and well-typed presentation
of a simple calculus. We represent it as an inductive family indexed by the term’s type
and the context it lives in. Variables are represented by typed de Bruijn indices.

To make the presentation lighter, we have made heavy use of a small domain
specific language to define indexed families. This allows us to silently thread the
context terms live in and only ever explicitly talk about it when it gets extended.

We have seen a a handful of vital traversals such as thinning and substitution which,
now that they act on a well-typed and well-scoped syntax need to be guaranteed to be
type and scope preserving.

We have studied how McBride (2005) identifies the structure common to thinning
and substitution, introduces a notion of Kit and refactors the two functions as instances
of a more fundamental Kit-based traversal.

After noticing that other usual programs such as the evaluation function for normal-
isation by evaluation seemed to fit a similar pattern, we have generalised McBride’s
Kit to obtain our notion of Semantics. The accompanying fundamental lemma is
the core of this whole part. It demonstrates that provided a notion of values and a
notion of computations abiding by the Semantics constraints, we can write a scope-
and-type preserving traversal taking an environment of values, a term and returning a
computation.

Thinning, substitution, normalisation by evaluation, printing with names, and
various continuation passing style translations are all instances of this fundamental
lemma.

7.2 Related Work

This part of the work which focuses on programming and not (yet!) on proving, can be
fully replicated in Haskell. The subtleties of working with dependent types in Haskell
(Lindley and McBride [2014]) are outside the scope of this paper.

49

7. Conclusion

If the tagless and typeful normalisation by evaluation procedure derived in Haskell
from our Semantics framework is to the best of our knowledge the first of its kind,
Danvy, Keller and Puech have achieved a similar goal in OCaml (2013). But their
formalisation uses parametric higher order abstract syntax (Chlipala [2008]) freeing
them from having to deal with variable binding, contexts and use models à la Kripke at
the cost of using a large encoding. However we find scope safety enforced at the type
level to be a helpful guide when formalising complex type theories. It helps us root
out bugs related to fresh name generation, name capture or conversion from de Bruijn
levels to de Bruijns indices.

This construction really shines in a simply typed setting but it is not limited to it:
we have successfully used an analogue of our Semantics framework to enforce scope
safety when implementing the expected traversals (renaming, substitution, untyped
normalisation by evaluation and printing with names) for the untyped λ-calculus (for
which the notion of type safety does not make sense) or Martin-Löf type theory. Apart
from NbE (which relies on a non strictly-positive datatype), all of these traversals are
total.

This work is at the intersection of two traditions: the formal treatment of program-
ming languages and the implementation of embedded Domain Specific Languages
(eDSL, Hudak [1996]) both require the designer to deal with name binding and the
associated notions of renaming and substitution but also partial evaluation (Danvy
[1999]), or even printing when emitting code or displaying information back to the user
(Wiedijk [2012]). The mechanisation of a calculus in a meta language can use either a
shallow or a deep embedding (Svenningsson and Axelsson [2013], Gill [2014]).

The well-scoped and well typed final encoding described by Carette, Kiselyov, and
Shan (2009) allows the mechanisation of a calculus in Haskell or OCaml by represent-
ing terms as expressions built up from the combinators provided by a “Symantics”. The
correctness of the encoding relies on parametricity (Reynolds [1983]) and although
there exists an ongoing effort to internalise parametricity (Bernardy and Moulin [2013])
in Martin-Löf Type Theory, this puts a formalisation effort out of the reach of all the
current interactive theorem provers.

Because of the strong restrictions on the structure our models may have, we cannot
represent all the interesting traversals imaginable. Chapman and Abel’s work on
normalisation by evaluation (2009, 2014) which decouples the description of the big-
step algorithm and its termination proof is for instance out of reach for our system.
Indeed, in their development the application combinator may restart the computation
by calling the evaluator recursively whereas the app constraint we impose means that
we may only combine induction hypotheses.

McBride’s original unpublished work (2005) implemented in Epigram (McBride
and McKinna [2004]) was inspired by Goguen and McKinna’s Candidates for Substitu-
tion (1997). It focuses on renaming and substitution for the simply typed λ-calculus
and was later extended to a formalisation of System F (Girard [1972]) in Coq (Team
[2017]) by Benton, Hur, Kennedy and McBride (2012). Benton et al. both implement
a denotational semantics for their language and prove the properties of their traversals.
However both of these things are done in an ad-hoc manner: the meaning function
associated to their denotational semantics is not defined in terms of the generic traversal
and the proofs are manually discharged one by one.

50

7.3. Further Work

7.3 Further Work

There are three main avenues for future work and we will tackle all of these later on
this thesis. We could focus on the study of instances of Semantics, the generalisation
of Semantics to a whole class of syntaxes with binding rather than just our simple
STLC, or proving properties of the traversals that are instances of Semantics.

Other instances

The vast array of traversals captured by this framework from meta-theoretical results
(stability under thinning and substitution) to programming tools (printing with names)
and compilation passes (partial evaluation and continuation passing style translations)
suggests that this method is widely applicable. The quest of ever more traversals to
refactor as instances of the fundamental lemma of Semantics is a natural candidate for
further work.

We will see later on that once we start considering other languages including
variants with fewer invariants baked in, we can find new candidates. The fact that
erasure from a language with strong invariants to an untyped one falls into this category
may not be too surprising. The fact that the other direction, that is type checking of raw
terms or even elaboration of such raw terms to a typed core language also corresponds
to a notion of Semantics is perhaps more intriguing.

A Generic Notion of Semantics

If we look closely at the set of constraints a Semantics imposes on the notions of values
and computations, we can see that it matches tightly the structure of our language:

• Each base constructor needs to be associated to a computation of the same type;

• Each eliminator needs to be interpreted as a function combining the interpretation
of its subterms into the interpretation of the whole;

• The lambda case is a bit special: it uses a Kripke function space from values to
computation as its interpretation

We can apply this recipe mechanically to enrich our language with e.g. product
and sum types, their constructor and eliminators. This suggests that we ought to be
able to give a generic description of syntaxes with binding and the appropriate notion
of Semantics for each syntax. We will make this intuition precise in part II.

Properties of Semantics

Finally, because we know e.g. that we can prove generic theorems for all the programs
defined using fold (Malcolm [1990]), the fact that all of these traversals are instances
of a common fold-like function suggests that we ought to be able to prove general
theorems about its computational behaviour and obtain interesting results for each
instance as corollaries. This is the topic we will focus on for now.

51

Chapter 8

The Simulation Relation

Thanks to Semantics, we have already saved work by not reiterating the same traversals.
Moreover, this disciplined approach to building models and defining the associated
evaluation functions can help us refactor the proofs of some properties of these seman-
tics.

Instead of using proof scripts as Benton et al. (2012) do, we describe abstractly
the constraints the logical relations (Reynolds [1983]) defined on computations (and
environment values) have to respect to ensure that evaluating a term in related environ-
ments produces related outputs. This gives us a generic framework to state and prove,
in one go, properties about all of these semantics.

Our first example of such a framework will stay simple on purpose. However it is
no mere bureaucracy: the result proven here will actually be useful in the next section
when considering more complex properties.

This first example is describing the relational interpretation of the terms. It should
give the reader a good introduction to the setup before we take on more complexity. The
types involved might look a bit scarily abstract but the idea is rather simple: we have a
Simulation between two Semantics when evaluating a term in related environments
yields related values. The bulk of the work is to make this intuition formal.

8.1 Relations Between Scoped Families

We start by defining what it means to be a relation between two (I −Scoped) families T
and U: at every type σ and every context Γ, we expect to have a relation between (T σ Γ)
and (U σ Γ). We use a record wrapper for two reasons. First, we define the relations we
are interested in by copattern-matching thus preventing their eager unfolding by Agda;
this makes the goals much more readable during interactive development. Second,
it is easier for Agda to recover T and U by unification when they appear as explicit
parameters of a record rather than as applied families in the body of the definition.

If we have a relation for values, we can lift it in a pointwise manner to a relation on
environment of values. We call this relation transformer All. We also define it using a
record wrapper, for the same reasons.

53

8. The Simulation Relation

record Rel (T U : I −Scoped) : Set1 where
constructor mkRel
field rel : ∀ σ→ ∀[T σ⇒ U σ⇒ const Set]

Figure 8.1: Relation Between (I −Scoped) Families

record All (R : Rel T U) Γ (ρT : (Γ −Env) T ∆) (ρU : (Γ −Env) U ∆) : Set where
constructor packR

field lookupR : (k : Var σ Γ)→ rel R σ (lookup ρT k) (lookup ρU k)

Figure 8.2: Relation Between Environments of Values

For virtually every combinator on environments, we have a corresponding com-
binator for All: the empty environment ε is associated to εR the proof that two empty
environments are always related, to the environment extension _•_ corresponds the
relation on environment extension _•R_ which provided takes a proof that two en-
vironments are related and that two values are related and returns the proof that the
environments each extended with the appropriate value are both related, etc.

Once we have all of these definitions, we can spell out what it means to simulate a
semantics with another.

8.2 Simulation Constraints

The evidence that we have a Simulation between two Semantics is packaged in a
record indexed by the semantics as well as two relations. The first one (VR) relates
values and the second one (CR) describes simulation for computations.

record Simulation (SA : SemanticsVA CA) (SB : SemanticsVB CB)
(VR : RelVA VB) (CR : Rel CA CB) : Set where

The set of simulation constraints is in one-to-one correspondance with that of
semantical constructs. We start with value thinnings: provided two values are related,
their respective thinnings should still be related.

th^VR : (ρ : Thinning ∆ Θ)→ RV σ vA vB → RV σ (SA.th^V vA ρ) (SB.th^V vB ρ)

Our other constraints are going to heavily feature CR applied to one term evaluated
twice: once by SA with the environment of values ρA and once by SB with ρB. To make
the types more readable, we introduce an intermediate definition R making this pattern
explicit.

R : ∀ {Γ ∆} σ→ (Γ −Env)VA ∆→ (Γ −Env)VB ∆→ Term σ Γ→ Set
R σ ρA ρB t = rel CR σ (evalA ρA t) (evalB ρB t)

54

8.2. Simulation Constraints

The relational counterpart of ‘var and var is the first field to make use ofR: provided
that ρA and ρB carry values related by VR, the result of evaluating the variable v in
each respectively should yield computations related by CR.

varR : AllVR Γ ρA ρB → (v : Var σ Γ)→ R σ ρA ρB (‘var v)

Value constructors in the language follow a similar pattern: provided that the
evaluation environment are related, we expect the computations to be related too.

oneR : AllVR Γ ρA ρB → R ‘Unit ρA ρB ‘one
ttR : AllVR Γ ρA ρB → R ‘Bool ρA ρB ‘tt
ffR : AllVR Γ ρA ρB → R ‘Bool ρA ρB ‘ff

Then come the structural cases: for language constructs like ‘app and ‘ifte whose
subterms live in the same context as the overall term, the constraints are purely struc-
tural. Provided that the evaluation environments are related, and that the evaluation of
the subterms in each environment respectively are related then the evaluations of the
overall terms should also yield related results.

appR : AllVR Γ ρA ρB →

∀ f t→ R (σ ‘→ τ) ρA ρB f→ R σ ρA ρB t→
R τ ρA ρB (‘app f t)

ifteR : AllVR Γ ρA ρB →

∀ b l r→ R ‘Bool ρA ρB b→ R σ ρA ρB l→ R σ ρA ρB r→
R σ ρA ρB (‘ifte b l r)

Finally, we reach the most interesting case. The semantics attached to the body
of a ‘lam is expressed in terms of a Kripke function space. As a consequence, the
relational semantics will need a relational notion of Kripke function space (KripkeR) to
spell out the appropriate simulation constraint. This relational Kripke function space
states that in any thinning of the evaluation context and provided two related inputs,
the evaluation of the body in each thinned environment extended with the appropriate
value should yield related computations.

KripkeR : ∀ {Γ ∆} σ τ→ (Γ −Env)VA ∆→ (Γ −Env)VB ∆→

Term τ (σ :: Γ)→ Set
KripkeR {Γ} {∆} σ τ ρA ρB b =
∀ {Θ} (ρ : Thinning ∆ Θ) {uA uB}→ RV σ uA uB →

R τ (th^Env SA.th^V ρA ρ • uA) (th^Env SB.th^V ρB ρ • uB) b

Figure 8.3: Relational Kripke Function Spaces: From Related Inputs to Related Outputs

This allows us to describe the constraint for ‘lam: provided related environments of
values, if we have a relational Kripke function space for the body of the ‘lam then both
evaluations should yield related results.

55

8. The Simulation Relation

lamR : AllVR Γ ρA ρB → ∀ b→ KripkeR σ τ ρA ρB b→ R (σ ‘→ τ) ρA ρB (‘lam b)

This specification is only useful if it is accompanied by a a fundamental lemma of
simulations stating that the evaluation of a term on related inputs yields related outputs.

8.3 Fundamental Lemma of Simulations

Given two Semantics SA and SB in simulation with respect to relationsVR for values
and CR for computations, we have that for any term t and environments ρA and ρB, if the
two environments areVR-related in a pointwise manner then the semantics associated
to t by SA using ρA is CR-related to the one associated to t by SB using ρB.

In a manner reminiscent of our proof of the fundamental lemma of Semantics,
we introduce a Fundamental module parametrised by a record packing the evidence
that two semantics are in Simulation. This allows us to bring all of the corresponding
relational counterpart of term constructors into scope by opening the record. The
traversal then uses them to combine the induction hypotheses arising structurally.

module Fundamental (SR : Simulation SA SB VR CR) where

open Simulation SR

lemma : AllVR Γ ρA ρB → ∀ t→ R σ ρA ρB t
lemma ρR (‘var v) = varR ρR v
lemma ρR (‘app f t) = appR ρR f t (lemma ρR f) (lemma ρR t)
lemma ρR (‘lam b) = lamR ρR b $ λ ren vR →

lemma ((th^VR ren <$>R ρR) •R vR) b
lemma ρR ‘one = oneR ρR

lemma ρR ‘tt = ttR ρR

lemma ρR ‘ff = ffR ρR

lemma ρR (‘ifte b l r) = ifteR ρR b l r (lemma ρR b) (lemma ρR l) (lemma ρR r)

Figure 8.4: Fundamental Lemma of Simulations

We can now consider the second criterion for usefulness: the existence of interesting
instances of a Simulation.

8.4 Syntactic Traversals are Extensional

A first corollary of the fundamental lemma of simulations is the fact that semantics
arising from a Syntactic (cf. fig. 4.17) definition are extensional. We can demonstrate
this by proving that every syntactic semantics is in simulation with itself. That is to say
that the evaluation function yields propositionally equal values provided extensionally
equal environments of values.

Under the assumption that Syn is a Syntactic instance, we can define the corre-
sponding Semantics S by setting S = syntactic Syn. Using EqR the Rel defined as the

56

8.5. Renaming is a Substitution

pontwise lifting of propositional equality, we can make our earlier claim formal and
prove it. All the constraints are discharged either by reflexivity or by using congruence
to combine various hypotheses.

Syn-ext : Simulation S S EqR EqR

Syn-ext .th^VR = λ ρ eq→ cong (λ t→ th^T t ρ) eq
Syn-ext .varR = λ ρR v→ cong var (lookupR ρR v)
Syn-ext .lamR = λ ρR b bR → cong ‘lam (bR extend refl)
Syn-ext .appR = λ ρR f t→ cong2 ‘app
Syn-ext .ifteR = λ ρR b l r→ cong3 ‘ifte
Syn-ext .oneR = λ ρR → refl
Syn-ext .ttR = λ ρR → refl
Syn-ext .ffR = λ ρR → refl

Figure 8.5: Syntactic Traversals are in Simulation with Themselves

Because the Simulation statement is not necessarily extremely illuminating, we
spell out the type of the corollary to clarify what we just proved: whenever two
environments agree on each variable, evaluating a term with either of them produces
equal results.

syn-ext : All EqR Γ ρl ρr → (t : Term σ Γ)→ eval S ρl t ≡ eval S ρr t
syn-ext = simulation Syn-ext

Figure 8.6: Syntactic Traversals are Extensional

This may look like a trivial result however we have found multiple use cases for it
during the development of our solution to the POPLMark Reloaded challenge (2018):
when proceeding by equational reasoning, it is often the case that we can make progress
on each side of the equation only to meet in the middle with the same traversals using
two environments manufactured in slightly different ways but ultimately equal. This
lemma allows us to bridge that last gap.

8.5 Renaming is a Substitution

Similarly, it is sometimes the case that after a bit of rewriting we end up with an
equality between one renaming and one substitution. But it turns out that as long as the
substitution is only made up variables, it is indeed equal to the corresponding renaming.
We can make this idea formal by introducting the VarTermR relation stating that a
variable and a term are morally equal like so:

We can then state our result: we can prove a simulation lemma between Renaming
and Substitution where values (i.e. variables in the cases of renaming and terms in

57

8. The Simulation Relation

VarTermR : Rel Var Term
rel VarTermR σ v t = ‘var v ≡ t

Figure 8.7: Characterising Equal Variables and Terms

terms of substitution) are related by VarTermR and computations (i.e. terms) are related
by EqR. Once again we proceed by reflexivity and congruence.

RenSub^Sim : Simulation Renaming Substitution VarTermR EqR

RenSub^Sim .th^VR = λ ρ→ cong (λ t→ th^Term t ρ)
RenSub^Sim .varR = λ ρR v→ lookupR ρR v
RenSub^Sim .lamR = λ ρR b bR → cong ‘lam (bR extend refl)
RenSub^Sim .appR = λ ρR f t→ cong2 ‘app
RenSub^Sim .ifteR = λ ρR b l r→ cong3 ‘ifte
RenSub^Sim .oneR = λ ρR → refl
RenSub^Sim .ttR = λ ρR → refl
RenSub^Sim .ffR = λ ρR → refl

Figure 8.8: Renaming is in Simulation with Substitution

Rather than showing one more time the type of the corollary, we show a specialized
version where we pick the substitution to be precisely the thinning used on which we
have mapped the ‘var constructor.

ren-as-sub : (t : Term σ Γ) (ρ : Thinning Γ ∆)→ th^Term t ρ ≡ sub (‘var <$> ρ) t
ren-as-sub t ρ = simulation RenSub^Sim (packR (λ v→ refl)) t

Figure 8.9: Renaming as a Substitution

8.6 The PER for βιξη-Values is Closed under Evaluation

Now that we are a bit more used to the simulation framework and simulation lemmas,
we can look at a more complex example: the simulation lemma relating normalisation
by evaluation’s eval function to itself. This may seem bureaucratic but it is crucial: the
model definition uses the host language’s function space which contains more functions
than just the ones obtained by evaluating a simply-typed λ-term. A value at type (‘Bool
‘→ ‘Bool) may for instance behave like boolean negation on canonical terms but be the
constant ‘tt function on neutral value. It does not correspond to any term in the source
language: any candidate term would allow us to write expressions not stable under
substitution!

58

8.6. The PER for βιξη-Values is Closed under Evaluation

exotic : ∀[Model (‘Bool ‘→ ‘Bool)]
exotic ρ ‘tt = ‘ff
exotic ρ ‘ff = ‘tt
exotic ρ (‘neu _ _) = ‘tt

Figure 8.10: Exotic Value, Not Quite Equal to Negation

Clearly, these exotic functions have undesirable behaviours and need to be ruled
out if we want to be able to prove that normalisation has good properties. This is done
by defining a Partial Equivalence Relation (PER) (Mitchell [1996]) on the model which
is to say a relation which is symmetric and transitive but may not be reflexive for all
elements in its domain. The elements equal to themselves will be guaranteed to be well
behaved. We will show that given an environment of values PER-related to themselves,
the evaluation of a λ-term produces a computation equal to itself too.

We start by defining the PER for the model. It is constructed by induction on the
type and ensures that terms which behave the same extensionally are declared equal.
Values at base types are concrete data: either trivial for values of type ‘Unit or normal
forms for values of type ‘Bool. They are considered equal when they are effectively
syntactically the same, i.e. propositionally equal. Functions on the other hand are
declared equal whenever equal inputs map to equal outputs.

PER : Rel Model Model
rel PER ‘Unit t u = t ≡ u
rel PER ‘Bool t u = t ≡ u
rel PER (σ ‘→ τ) f g = ∀ {∆} (ρ : Thinning _ ∆) {t u}→

rel PER σ t u→ rel PER τ (f ρ t) (g ρ u)

Figure 8.11: Partial Equivalence Relation for Model Values

On top of being a PER (i.e. symmetric and transitive), we can prove by a simple
case analysis on the type that this relation is also stable under thinning for Model values
defined in fig. 5.6.

th^PER : ∀ σ {T U}→ rel PER σ T U→ (ρ : Thinning Γ ∆)→
rel PER σ (th^Model σ T ρ) (th^Model σ U ρ)

th^PER ‘Unit _ ρ = refl
th^PER ‘Bool bR ρ = cong (λ t→ th^Nf t ρ) bR

th^PER (σ ‘→ τ) fR ρ = λ σ→ fR (select ρ σ)

Figure 8.12: Stability of the PER under Thinning

59

8. The Simulation Relation

The interplay of reflect and reify with this notion of equality has to be described in
one go because of their mutual definition. It confirms that PER is an appropriate notion
of semantic equality: PER-related values are reified to propositionally equal normal
forms whilst propositionally equal neutral terms are reflected to PER-related values.

mutual

reflectR : ∀ σ {t u : Ne σ Γ}→ t ≡ u→ rel PER σ (reflect σ t) (reflect σ u)
reflectR ‘Unit _ = refl
reflectR ‘Bool t = cong (‘neu ‘Bool) t
reflectR (σ ‘→ τ) f = λ ρ t→ reflectR τ (cong2 ‘app (cong _ f) (reifyR σ t))

reifyR : ∀ σ {v w : Model σ Γ}→ rel PER σ v w→ reify σ v ≡ reify σ w
reifyR ‘Unit _ = refl
reifyR ‘Bool bR = bR

reifyR (σ ‘→ τ) fR = cong ‘lam (reifyR τ (fR extend (reflectR σ refl)))

Figure 8.13: Relational Versions of Reify and Reflect

Just like in the definition of the evaluation function, conditional branching is the
interesting case. Provided a pair of boolean values (i.e. normal forms of type ‘Bool)
which are PER-equal (i.e. syntactically equal) and two pairs of PER-equal σ-values
corresponding respectively to the left and right branches of the two if-then-elses, we
can prove that the two semantical if-then-else produce PER-equal values. Because of
the equality constraint on the booleans, Agda allows us to only write the three cases
we are interested in: all the other ones are trivially impossible.

In case the booleans are either ‘tt or ‘ff, we can immediately conclude by invoking
one of the hypotheses. Otherwise we remember from fig. 5.9 that the evaluation
function produces a value by reflecting the neutral term obtained after reifying both
branches. We can play the same game but at the relational level this time and we obtain
precisely the proof we wanted.

IFTER : (B C : Model ‘Bool Γ)→ rel PER ‘Bool B C→
rel PER σ L S→ rel PER σ R T→ rel PER σ (IFTE B L R) (IFTE C S T)

IFTER ‘tt ‘tt _ lR rR = lR

IFTER ‘ff ‘ff _ lR rR = rR

IFTER (‘neu a t) (‘neu b u) bR lR rR =
reflectR σ (cong3 ‘ifte (‘neu-injective bR) (reifyR σ lR) (reifyR σ rR))

Figure 8.14: Relational If-Then-Else

This provides us with all the pieces necessary to prove our simulation lemma.
The relational counterpart of ‘lam is trivial as the induction hypothesis corresponds

60

8.6. The PER for βιξη-Values is Closed under Evaluation

precisely to the PER-notion of equality on functions. Similarly the case for ‘app is
easily discharged: the PER-notion of equality for functions is precisely the strong
induction hypothesis we need to be able to make use of the assumption that the
respective function’s arguments are PER-equal.

Eval^Sim : Simulation Eval Eval PER PER
Eval^Sim .th^VR = λ ρ EQ→ th^PER _ EQ ρ
Eval^Sim .varR = λ ρR v→ lookupR ρR v
Eval^Sim .lamR = λ ρR b bR → bR

Eval^Sim .appR = λ ρR f t fR tR → fR identity tR

Eval^Sim .ifteR = λ ρR b l r→ IFTER _ _
Eval^Sim .oneR = λ ρR → refl
Eval^Sim .ttR = λ ρR → refl
Eval^Sim .ffR = λ ρR → refl

Figure 8.15: Normalisation by Evaluation is in PER-Simulation with Itself

As a corollary, we can deduce that evaluating a term in two environments related
pointwise by PER yields two semantic objects themselves related by PER. Which,
once reified, give us two equal terms.

normR : All PER Γ ρl ρr → ∀ t→ reify σ (eval ρl t) ≡ reify σ (eval ρr t)
normR ρR t = reifyR σ (Fundamental.lemma Eval^Sim ρR t)

Figure 8.16: Normalisation in PER-related Environments Yields Equal Normal Forms

We can now move on to the more complex example of a proof framework built
generically over our notion of Semantics.

61

Chapter 9

The Fusion Relation

When studying the meta-theory of a calculus, one systematically needs to prove fusion
lemmas for various semantics. For instance, Benton et al. (2012) prove six such lemmas
relating renaming, substitution and a typeful semantics embedding their calculus into
Coq. This observation naturally lead us to defining a fusion framework describing
how to relate three semantics: the pair we sequence and their sequential composition.
The fundamental lemma we prove can then be instantiated six times to derive the
corresponding corollaries.

9.1 Fusion Constraints

The evidence that SA, SB and SAB are such that SA followed by SB is equivalent to SAB

(e.g. Substitution followed by Renaming can be reduced to Substitution) is packed
in a record Fusion indexed by the three semantics but also three relations. The first
one (ER) characterises the triples of environments (one for each one of the semantics)
which are compatible. The second one (VR) states what it means for two environment
values of SB and SAB respectively to be related. The last one (CR) relates computations
obtained as results of running SB and SAB respectively.

record Fusion
(SA : SemanticsVA CA) (SB : SemanticsVB CB) (SAB : SemanticsVAB CAB)
(ER : ∀ {Γ ∆ Θ}→ (Γ −Env)VA ∆→ (∆ −Env)VB Θ→ (Γ −Env)VAB Θ→ Set)
(VR : RelVB VAB) (CR : Rel CB CAB) : Set where

As before, most of the fields of this record describe what structure these relations
need to have. However, we start with something slightly different: given that we are
planing to run the Semantics SB after having run SA, we need two components: a way
to extract a term from an SA and a way to manufacture a placeholder SA value when
going under a binder. Our first two fields are therefore:

reifyA : ∀[CA σ⇒ Term σ]
var0A : ∀[(σ ::_) ` VA σ]

63

9. The Fusion Relation

Then come two constraints dealing with the relations talking about evaluation
environments. _•R_ tells us how to extend related environments: one should be able to
push related values onto the environments for SB and SAB whilst merely extending the
one for SA with the token value var0A.

th^ER guarantees that it is always possible to thin the environments for SB and SAB

in a ER preserving manner.

•R : ER ρA ρB ρAB → relVR σ vB vAB →

ER (th^Env SA.th^V ρA extend • var0A) (ρB • vB) (ρAB • vAB)
th^ER : ER ρA ρB ρAB → (ρ : Thinning Θ Ω)→

ER ρA (th^Env SB.th^V ρB ρ) (th^Env SAB.th^V ρAB ρ)

Then we have the relational counterpart of the various term constructors. We can
once again introduce an extra definition R which will make the type of the combinators
defined later on clearer. R relates at a given type a term and three environments by
stating that the computation one gets by sequentially evaluating the term in the first
and then the second environment is related to the one obtained by directly evaluating
the term in the third environment. Note the use of reifyA to recover a Term from a
computation in CA before using the second evaluation function evalB.

R : ∀ σ→ (Γ −Env)VA ∆→ (∆ −Env)VB Θ→ (Γ −Env)VAB Θ→

Term σ Γ→ Set
R σ ρA ρB ρAB t = rel CR σ (evalB ρB (reifyA (evalA ρA t))) (evalAB ρAB t)

As with the previous section, only a handful of these combinators are out of the
ordinary. We will start with the ‘var case. It states that fusion indeed happens when
evaluating a variable using related environments.

varR : ER ρA ρB ρAB → (v : Var σ Γ)→ R σ ρA ρB ρAB (‘var v)

Just like for the simulation relation, the relational counterpart of value constructors
in the language state that provided that the evaluation environment are related, we
expect the computations to be related too.

oneR : ER ρA ρB ρAB → R ‘Unit ρA ρB ρAB ‘one
ttR : ER ρA ρB ρAB → R ‘Bool ρA ρB ρAB ‘tt
ffR : ER ρA ρB ρAB → R ‘Bool ρA ρB ρAB ‘ff

Similarly, we have purely structural constraints for term constructs which have
purely structural semantical counterparts. For ‘app and ‘ifte, provided that the evaluation
environments are related and that the evaluation of the subterms in each environment
respectively are related then the evaluations of the overall terms should also yield
related results.

appR : ER ρA ρB ρAB →

∀ f t→ R (σ ‘→ τ) ρA ρB ρAB f→ R σ ρA ρB ρAB t→
R τ ρA ρB ρAB (‘app f t)

ifteR : ER ρA ρB ρAB →

64

9.2. Fundamental Lemma of Fusions

∀ b l r→ R ‘Bool ρA ρB ρAB b→ R σ ρA ρB ρAB l→ R σ ρA ρB ρAB r→
R σ ρA ρB ρAB (‘ifte b l r)

Finally, the ‘lam-case puts some strong restrictions on the way the λ-abstraction’s
body may be used by SA: we assume it is evaluated in an environment thinned by one
variable and extended using var0A. But it is quite natural to have these restrictions:
given that reifyA quotes the result back, we are expecting this type of evaluation in an
extended context (i.e. under one lambda). And it turns out that this is indeed enough
for all of our examples. The evaluation environments used by the semantics SB and
SAB on the other hand can be arbitrarily thinned before being extended with related
values to be substituted for the variable bound by the ‘lam.

lamR : ER ρA ρB ρAB → ∀ b→
(∀ {Ω} (ρ : Thinning Θ Ω) {vB vAB}→ relVR σ vB vAB →

let σA = th^Env SA.th^V ρA extend • var0A

σB = th^Env SB.th^V ρB ρ • vB

σAB = th^Env SAB.th^V ρAB ρ • vAB

in R τ σA σB σAB b)→
R (σ ‘→ τ) ρA ρB ρAB (‘lam b)

9.2 Fundamental Lemma of Fusions

As with simulation, we measure the usefulness of this framework by the way we can
prove its fundamental lemma and then obtain useful corollaries. Once again, having
carefully identified what the constraints should be, proving the fundamental lemma is
not a problem.

module Fundamental (F : Fusion SA SB SAB ER VR CR) where

open Fusion F

lemma : ER ρA ρB ρAB → ∀ t→ R σ ρA ρB ρAB t
lemma ρR (‘var v) = varR ρR v
lemma ρR (‘app f t) = appR ρR f t (lemma ρR f) (lemma ρR t)
lemma ρR (‘lam b) = lamR ρR b $ λ ren vR → lemma (th^ER ρR ren •R vR) b
lemma ρR ‘one = oneR ρR

lemma ρR ‘tt = ttR ρR

lemma ρR ‘ff = ffR ρR

lemma ρR (‘ifte b l r) = ifteR ρR b l r (lemma ρR b) (lemma ρR l) (lemma ρR r)

9.3 The Special Case of Syntactic Semantics

The translation from Syntactic to Semantics uses a lot of constructors as their own
semantic counterpart, it is hence possible to generate evidence of Syntactic triplets
being fusable with much fewer assumptions. We isolate them and prove the result

65

9. The Fusion Relation

generically to avoid repetition. A SynFusion record packs the evidence for Syntactic
semantics SynA, SynB and SynAB. It is indexed by these three Syntactics as well as two
relations (T R and ER) corresponding to theVR and ER ones of the Fusion framework;
CR will always be EqR as we are talking about terms.

record SynFusion
(SynA : Syntactic T A) (SynB : Syntactic T B) (SynAB : Syntactic T AB)
(ER : ∀ {Γ ∆ Θ}→ (Γ −Env) T A ∆→ (∆ −Env) T B Θ→ (Γ −Env) T AB Θ→ Set)
(T R : Rel T B T AB) : Set where

The first two constraints _•R_ and th^ER are directly taken from the Fusion speci-
fication: we still need to be able to extend existing related environment with related
values, and to thin environments in a relatedness-preserving manner.

•R : ER ρA ρB ρAB → rel T R σ tB tAB →

ER (th^Env SynA.th^T ρA extend • SynA.zro) (ρB • tB) (ρAB • tAB)
th^ER : ER ρA ρB ρAB → (ρ : Thinning Θ Ω)→

ER ρA (th^Env SynB.th^T ρB ρ) (th^Env SynAB.th^T ρAB ρ)

We once again define R, a specialised version of its Fusion counterpart stating that
the results of the two evaluations are propositionally equal.

R : ∀ σ→ (Γ −Env) T A ∆→ (∆ −Env) T B Θ→ (Γ −Env) T AB Θ→

Term σ Γ→ Set
R σ ρA ρB ρAB t = evalB ρB (evalA ρA t) ≡ evalAB ρAB t

Once we have R, we can concisely write down the constraint varR which is also
already present in the definition of Fusion.

varR : ER ρA ρB ρAB → (v : Var σ Γ)→ R σ ρA ρB ρAB (‘var v)

Finally, we have a fourth constraint (zroR) saying that SynB and SynAB’s respective
zros are producing related values. This will provide us with just the right pair of related
values to use in Fusion’s lamR.

zroR : rel T R σ {σ :: Γ} SynB.zro SynAB.zro

Everything else is a direct consequence of the fact we are only considering syn-
tactic semantics. Given a SynFusion relating three Syntactic semantics, we get a
Fusion relating the corresponding Semantics where CR is EqR, the pointwise lifting of
propositional equality. The proof relies on the way the translation from Syntactic to
Semantics is formulated in section 4.5.

We are now ready to give our first examples of Fusions. They are the first results
one typically needs to prove when studying the meta-theory of a language.

9.4 Interactions of Renaming and Substitution

Renaming and Substitution can interact in four ways: all but one of these combinations
is equivalent to a single substitution (the sequential execution of two renamings is

66

9.4. Interactions of Renaming and Substitution

module Fundamental (F : SynFusion SynA SynB SynAB ER T R) where

open SynFusion F

lemma : Fusion (fromSyn SynA) (fromSyn SynB) (fromSyn SynAB) ER T R EqR

lemma .Fusion.reifyA = id
lemma .Fusion.var0A = SynA.zro
lemma .Fusion._•R_ = _•R_
lemma .Fusion.th^ER = th^ER

lemma .Fusion.varR = varR

lemma .Fusion.oneR = λ ρR → refl
lemma .Fusion.ttR = λ ρR → refl
lemma .Fusion.ffR = λ ρR → refl
lemma .Fusion.appR = λ ρR f t→ cong2 ‘app
lemma .Fusion.ifteR = λ ρR b l r→ cong3 ‘ifte
lemma .Fusion.lamR = λ ρR b bR → cong ‘lam (bR extend zroR)

Figure 9.1: Fundamental Lemma of Syntactic Fusions

equivalent to a single renaming). These four lemmas are usually proven in painful
separation. Here we discharge them by rapid successive instantiation of our framework,
using the earlier results to satisfy the later constraints. We only present the first instance
in full details and then only spell out the SynFusion type signature which makes
explicit the relations used to constraint the input environments.

First, we have the fusion of two sequential renaming traversals into a single renam-
ing. Environments are related as follows: the composition of the two environments used
in the sequential traversals should be pointwise equal to the third one. The composition
operator select is defined in fig. 4.11.

RenRen : SynFusion Syn^Ren Syn^Ren Syn^Ren
(λ ρA ρB → All EqR _ (select ρA ρB)) EqR

RenRen ._•R_ = λ ρR tR → packR λ where
z → tR

(s v)→ lookupR ρR v
RenRen .th^ER = λ ρR ρ→ cong (λ v→ th^Var v ρ) <$>R ρR

RenRen .varR = λ ρR v→ cong ‘var (lookupR ρR v)
RenRen .zroR = refl

Figure 9.2: Syntactic Fusion of Two Renamings

Using the fundamental lemma of syntactic fusions, we get a proper Fusion record
on which we can then use the fundamental lemma of fusions to get the renaming fusion

67

9. The Fusion Relation

law we expect.

renren : (t : Term σ Γ)→ ren ρ2 (ren ρ1 t) ≡ ren (select ρ1 ρ2) t
renren = let fus = Syntactic.Fundamental.lemma RenRen

in Fusion.Fundamental.lemma fus reflR

Figure 9.3: Corollary: Renaming Fusion Law

A similar proof gives us the fact that a renaming followed by a substitution is
equivalent to a substitution. Environments are once more related by composition.

RenSub : SynFusion Syn^Ren Syn^Sub Syn^Sub
(λ ρA ρB → All EqR _ (select ρA ρB)) EqR

rensub : (t : Term σ Γ)→ sub ρ2 (ren ρ1 t) ≡ sub (select ρ1 ρ2) t
rensub = let fus = Syntactic.Fundamental.lemma RenSub

in Fusion.Fundamental.lemma fus reflR

Figure 9.4: Renaming - Substitution Fusion Law

For the proof that a substitution followed by a renaming is equivalent to a substi-
tution, we need to relate the environments in a different manner: composition now
amounts to applying the renaming to every single term in the substitution. We also
depart from the use of EqR as the relation for values: indeed we now compare variables
and terms. The relation VarTermR defined in fig. 8.7 relates variables and terms by
wrapping the variable in a ‘var constructor and demanding it is equal to the term.

SubRen : SynFusion Syn^Sub Syn^Ren Syn^Sub
(λ ρA ρB → All EqR _ (ren ρB <$> ρA)) VarTermR

subren : (t : Term σ Γ)→ ren ρ2 (sub ρ1 t) ≡ sub (ren ρ2 <$> ρ1) t
subren = let fus = Syntactic.Fundamental.lemma SubRen

in Fusion.Fundamental.lemma fus reflR

Figure 9.5: Substitution - Renaming Fusion Law

Finally, the fusion of two sequential substitutions into a single one uses a similar
notion of composition. Here the second substitution is applied to each term of the
first and we expect the result to be pointwise equal to the third. Values are once more
considered related whenever they are propositionally equal.

68

9.5. Other Examples of Fusions

SubSub : SynFusion Syn^Sub Syn^Sub Syn^Sub
(λ ρA ρB → All EqR _ (sub ρB <$> ρA)) EqR

subsub : (t : Term σ Γ)→ sub ρ1 (sub ρ2 t) ≡ sub (sub ρ1 <$> ρ2) t
subsub = let fus = Syntactic.Fundamental.lemma SubSub

in Fusion.Fundamental.lemma fus reflR

Figure 9.6: Substitution Fusion Law

As we are going to see in the following section, we are not limited to Syntactic
statements.

9.5 Other Examples of Fusions

The most simple example of fusion of two Semantics involving a non Syntactic one is
probably the proof that Renaming followed by normalization by evaluation’s Eval is
equivalent to Eval with an adjusted environment.

Fusion of Renaming Followed by Evaluation

As is now customary, we start with an auxiliary definition which will make our type
signatures a lot lighter. It is a specialised version of the relation R introduced when
spelling out the Fusion constraints. Here the relation is PER and the three environments
carry respectively Var (i.e. it is a Thinning) for the first one, and Model values for the
two other ones.

R : ∀ {Γ ∆ Θ} σ (ρA : Thinning Γ ∆) (ρB : (∆ −Env) Model Θ)
(ρAB : (Γ −Env) Model Θ)→ Term σ Γ→ Set

R σ ρA ρB ρAB t = rel PER σ (eval ρB (th^Term t ρA)) (eval ρAB t)

We start with the most straigtforward of the non-trivial cases: the relational coun-
terpart of ‘app. The KripkeR structure of the induction hypothesis for the function has
precisely the strength we need to make use of the hypothesis for its argument.

APPR : ∀ f t→ R (σ ‘→ τ) ρA ρB ρAB f→ R σ ρA ρB ρAB t→
R τ ρA ρB ρAB (‘app f t)

APPR f t fR tR = fR identity tR

Figure 9.7: Relational Application

The relational counterpart of ‘ifte is reminiscent of the one we used when proving
that normalisation by evaluation is in simulation with itself in fig. 8.14: we have two

69

9. The Fusion Relation

arbitrary boolean values resulting from the evaluation of b in two distinct manners
but we know them to be the same thanks to them being PER-related. The canonical
cases are trivially solved by using one of the assumptions whilst the neutral case can
be proven to hold thanks to the relational versions of reify and reflect.

IFTER : ∀ b l r→ R ‘Bool ρA ρB ρAB b→ R σ ρA ρB ρAB l→ R σ ρA ρB ρAB r→
R σ ρA ρB ρAB (‘ifte b l r)

IFTER b l r bR lR rR with eval ρB (th^Term b ρA) | eval ρAB b
... | ‘tt | ‘tt = lR

... | ‘ff | ‘ff = rR

... | ‘neu _ b1 | ‘neu _ b2 =
reflectR σ $ cong3 ‘ifte (‘neu-injective bR) (reifyR σ lR) (reifyR σ rR)

Figure 9.8: Relational If-Then-Else

The rest of the constraints can be discharged fairly easily; either by using a con-
structor, combining some of the provided hypotheses or using general results such as
the stability of PER-relatedness under thinning of the Model values.

RenEval : Fusion Renaming Eval Eval
(λ ρA ρB → All PER _ (select ρA ρB)) PER PER

RenEval .reifyA = id
RenEval .var0A = z
RenEval ._•R_ = λ ρR vR → vR ::R lookupR ρR

RenEval .th^ER = λ ρR ρ→ (λ v→ th^PER _ v ρ) <$>R ρR

RenEval .varR = λ ρR → lookupR ρR

RenEval .oneR = λ ρR → refl
RenEval .ttR = λ ρR → refl
RenEval .ffR = λ ρR → refl
RenEval .appR = λ ρR → APPR

RenEval .ifteR = λ ρR → IFTER

RenEval .lamR = λ ρR b bR → bR

Figure 9.9: Renaming Followed by Evaluation is an Evaluation

By the fundamental lemma of Fusion, we get the result we are looking for: a
renaming followed by an evaluation is equivalent to an evaluation in a touched up
environment.

This gives us the tools to prove the substitution lemma for evaluation.

70

9.5. Other Examples of Fusions

reneval : (th : Thinning Γ ∆) (ρ : (∆ −Env) Model Θ)→ All PER ∆ ρ ρ→
∀ t→ rel PER σ (eval ρ (th^Term t th)) (eval (select th ρ) t)

reneval th ρ ρR t = Fundamental.lemma RenEval (selectR th ρR) t

Figure 9.10: Corollary: Fusion Principle for Renaming followed by Evaluation

Substitution Lemma for Evaluation

Given any semantics, the substitution lemma (see for instance Mitchell and Moggi
[1991]) states that evaluating a term after performing a substitution is equivalent to
evaluating the term with an environment obtained by evaluating each term in the
substitution. Formally (t is a term, γ a substitution, ρ an evaluation environment, _[_]
denotes substitution, and ~_�_ evaluation):

~ t [γ] � ρ ≡ ~ t � (~ γ � ρ)

This is a key lemma in the study of a language’s meta-theory and it fits our
Fusion framework perfectly. We start by describing the constraints imposed on the
environments. They may seem quite restrictive but they are actually similar to the
Uniformity condition described by C. Coquand (2002) in her detailed account of NBE
for a STλC with explicit substitution and help root out exotic term (cf. fig. 8.10).

First we expect the two evaluation environments to only contain Model values
which are PER-related to themselves. Second, we demand that the evaluation of the
substitution in a thinned version of the first evaluation environment is PER-related
in a pointwise manner to the similarly thinned second evaluation environment. This
constraint amounts to a weak commutation lemma between evaluation and thinning;
a stronger version would be to demand that thinning of the result is equivalent to
evaluation in a thinned environment.

SubR : (Γ −Env) Term ∆→ (∆ −Env) Model Θ→ (Γ −Env) Model Θ→ Set
SubR ρA ρB ρAB = All PER ∆ ρB ρB × All PER Γ ρAB ρAB ×

(∀ {Ω} (ρ : Thinning Θ Ω)→
All PER Γ (eval (th^Env (th^Model _) ρB ρ) <$> ρA)

(th^Env (th^Model _) ρAB ρ))

Figure 9.11: Constraints on Triples of Environments for the Substitution Lemma

We can then state and prove the substitution lemma using SubR as the constraint
on environments and PER as the relation for both values and computations.

The proof is similar to that of fusion of renaming with evaluation in section 9.5: we
start by defining a notation R to lighten the types, then combinators APPR and IFTER.
The cases for th^ER, _•R_, and varR are a bit more tedious: they rely crucially on the
fact that we can prove a fusion principle and an identity lemma for th^Model as well

71

9. The Fusion Relation

SubEval : Fusion Substitution Eval Eval SubR PER PER

Figure 9.12: Substitution Followed by Evaluation is an Evaluation

as an appeal to reneval (fig. 9.10) and multiple uses of Eval^Sim (fig. 8.15). Because
the technical details do not give any additional hindsight, we do not include the proof
here.

72

Chapter 10

Conclusion

10.1 Summary

We have demonstrated that we can exploit the shared structure highlighted by the
introduction of Semantics to further alleviate the implementer’s pain by tackling the
properties of these Semantics in a similarly abstract approach.

We characterised, using a first logical relation, the traversals which were producing
related outputs provided they were fed related inputs. We then provided useful instances
of this schema thus proving that syntactic traversals are extensional, that renaming is a
special case of substitution or even that normalisation by evaluation produces equal
normal forms provided PER-related evaluation environments.

A more involved second logical relation gave us a general description of fusion
of traversals where we study triples of semantics such that composing the two first
ones would yield an instance of the third one. We then saw that the four lemmas about
the possible interactions of pairs of renamings and/or substitutions are all instances of
this general framework and can be proven sequentially, the later results relying on the
former ones. We then went on to proving the substitution lemma for Normalisation by
Evaluation.

10.2 Related Work

Benton, Hur, Kennedy and McBride’s joint work (2012) was not limited to defining
traversals. They proved fusion lemmas describing the interactions of renaming and
substitution using tactics rather than defining a generic proof framework like we do.
They have also proven the evaluation function of their denotational semantics correct;
however they chose to use propositional equality and to assume function extensionality
rather than resorting to the traditional Partial Equivalence Relation approach we use.

Throught the careful study of the recursion operator associated to each strictly
positive datatype, Malcolm defined proof principles (Malcolm [1990]) which can be
also used as optimisation principles, just like our fusion principles. Other optimisations
such as deforestation (Wadler [1990]) or transformation to an equivalent but tail-
recursive program (Tomé Cortiñas and Swierstra [2018]) have seen a generic treatment.

73

10. Conclusion

10.3 Further work

We have now fulfilled one of the three goals we highlighted in chapter 7. The question of
finding more instances of Semantics and of defining a generic notion of Semantics for
all syntaxes with binding is still open. Analogous questions for the proof frameworks
arise naturally.

Other Instances

We have only seen a handful of instances of both the Simulation lemma and the Fusion
one. They already give us important lemmas when studying the meta-theory of a
language. However there are potential opportunities for more instances to be defined.

We would like to know whether the idempotence of normalisation by evaluation
can be proven as a corollary of a fusion lemma for evaluation. This would give us
a nice example of a case where the reifyA is not the identity and actually does some
important work.

Another important question is whether it is always possible to fuse a preliminary
renaming followed by a semantics S into a single pass of S. Note that the Printer
semantics guarantees that this cannot be true when the preliminary traversal is a
substitution.

Other Proof Frameworks

After implementing Simulation and Fusion, we can wonder whether there are any other
proof schemas we can make formal.

As we have explained in chapter 8, Simulation gives the relational interpretation
of evaluation. Defining a similar framework dealing with a single semantics would
give us the predicate interpretation of evaluation. This would give a generalisation of
the fundamental lemma of logical predicates which, once specialised to substitution,
would be exactly the traditional definition one would expect.

Another possible candidate is an Identity framework which would, provided that
some constraints hold of the values in the environment, an evaluation is the identity.
So far we have only related pairs of evaluation results but to prove an identity lemma
we would need to relate the evaluation of a term to the original term itself. Although
seamingly devoid of interest, identity lemmas are useful in practice both when proving
or when optimising away useless traversals.

We actually faced these two challenges when working on the POPLMark Reloaded
challenge (Abel et al. [2018]). We defined the proper generalisation of the fundamental
lemma of logical predicates but could only give ad-hoc identity lemmas for renaming
(and thus substitution because they are in simulation).

Generic Proof Frameworks

In the next part, we are going to define a universe of syntaxes with binding and a
generic notion of semantics over these syntaxes. We naturally want to be able to also

74

10.3. Further work

prove generic results about these generic traversals. We are going to have to need to
generalise the proof frameworks to make them syntax generic.

75

Part II

A Universe of Well
Kinded-and-Scoped Syntaxes with

Binding, their Programs and Proofs

77

Chapter 11

Plea For a Universe of Syntaxes with
Binding

Now that we have a way to structure our traversals and proofs about them, we can tackle
a practical example. Let us look at the formalisation of an apparently straightforward
program transformation: the inlining of let-bound variables by substitution and the
proof of a simple correctness lemma. We have two languages: the source (S), which
has let-bindings, and the target (T), which only differs in that it does not. We want
to write a function elaborating source term into target ones and then prove that each
reduction step on the source term can be simulated by zero or more reduction steps on
its elaboration.

Breaking the task down, we need to start by defining the two languages. We already
now how to do this from chapter 3. The only downside is that we need to write down
the same constructor types twice for ‘var, ‘lam, and ‘app.

data S : Type −Scoped where
‘var : ∀[Var σ⇒ S σ]
‘lam : ∀[(σ ::_) ` S τ⇒ S (σ ‘→ τ)]
‘app : ∀[S (σ ‘→ τ)⇒ S σ⇒ S τ]
‘let : ∀[S σ⇒ (σ ::_) ` S τ⇒ S τ]

data T : Type −Scoped where
‘var : ∀[Var σ⇒ T σ]
‘lam : ∀[(σ ::_) ` T τ⇒ T (σ ‘→ τ)]
‘app : ∀[T (σ ‘→ τ)⇒ T σ⇒ T τ]

Figure 11.1: Source and Target Languages

Ignoring for now the Semantics framework, we jump straight to defining the
program transformation we are interested in. We notice immediately that we need to

79

11. Plea For a Universe of Syntaxes with Binding

prove T to be Thinnable first so that we may push the environment of inlined terms
under binders. We also notice that the only interesting case is the one dealing with ‘let:
all the other ones are purely structural.

unlet : (Γ −Env) T ∆→ S σ Γ→ T σ ∆

unlet ρ (‘var v) = lookup ρ v
unlet ρ (‘lam b) = ‘lam (unlet (th^Env th^T ρ extend • ‘var z) b)
unlet ρ (‘app f t) = ‘app (unlet ρ f) (unlet ρ t)
unlet ρ (‘let e t) = unlet (ρ • unlet ρ e) t

Figure 11.2: Let-Inlining Traversal

We now want to state our correctness lemma: each reduction step on a source term
can be simulated by zero or more reduction steps on its elaboration. We need to define
an operational semantics for each language. We only show the one for S in fig. 11.3:
the one for T is exactly the same minus the ‘let-related rules. We immediately notice
that to write down the type of β we need to define substitution (and thus renaming) for
each of the languages.

data _`_3_{S_ : ∀ Γ σ→ S σ Γ→ S σ Γ→ Set where
� computation
β : ∀ (b : S τ (σ :: Γ)) u→ Γ ` τ 3 ‘app (‘lam b) u{S b 〈 u /0〉^S
ζ : ∀ e (t : S τ (σ :: Γ))→ Γ ` τ 3 ‘let e t{S t 〈 e /0〉^S

� structural
‘lam : (σ :: Γ) ` τ 3 b{S c→ Γ ` σ ‘→ τ 3 ‘lam b{S ‘lam c
‘appl : Γ ` σ ‘→ τ 3 f{S g→ ∀ t→ Γ ` τ 3 ‘app f t{S ‘app g t
‘appr : ∀ f→ Γ ` σ 3 t{S u→ Γ ` τ 3 ‘app f t{S ‘app f u
‘letl : Γ ` σ 3 d{S e→ ∀ t→ Γ ` τ 3 ‘let d t{S ‘let e t
‘letr : ∀ e→ (σ :: Γ) ` τ 3 t{S u→ Γ ` τ 3 ‘let e t{S ‘let e u

Figure 11.3: Operational Semantics for the Source Language

In the course of simply stating our problem, we have already had to define two
eerily similar languages, spell out all the purely structural cases when defining the
transformation we are interested in and implement four auxiliary traversals which are
essentially the same.

In the course of proving the correctness lemma (which we abstain from doin here),
we discover that we need to prove eight lemmas about the interactions of renaming,
substitution, and let-inlining. They are all remarkably similar, but must be stated and
proved separately (e.g, as in Benton et al. [2012]).

Even after doing all of this work, we have only a result for a single pair of source
and target languages. If you were to change our languages S or T, we would have
to repeat the same work all over again or at least do a lot of cutting, pasting, and

80

editing. And if we add more constructs to both languages, we will have to extend our
transformation with more and more code that essentially does nothing of interest.

This state of things is not inevitable. After having implemented numerous semantics
in part I, we have gained an important insight: the structure of the constraints telling
us how to define a Semantics is tightly coupled to the definition of the language. So
much so that we should in fact be able to derive them directly from the definition of
the language.

This is what we set out to do in this part and in particular in section 14.2 where we
define a generic notion of let-binding to extend any language with together with the
corresponding generic let-inlining transformation.

81

Chapter 12

A Primer on the Universe of Data
Types

Chapman, Dagand, McBride and Morris (CDMM, 2010) defined a universe of data
types inspired by Dybjer and Setzer’s finite axiomatisation of Inductive-Recursive
definitions (1999) and Benke, Dybjer and Jansson’s universes for generic programs
and proofs (2003). This explicit definition of codes for data types empowers the user
to write generic programs tackling all of the data types one can obtain this way. In this
section we recall the main aspects of this construction we are interested in to build up
our generic representation of syntaxes with binding.

12.1 Descriptions and Their Meaning as Functors

The first component of CDMM’s universe’s definition is an inductive type of Descriptions
of strictly positive functors from SetJ to SetI . It has three constructors: ‘σ to store data
(the rest of the description can depend upon this stored value), ‘X to attach a recursive
substructure indexed by J and ‘� to stop with a particular index value.

data Desc (I J : Set) : Set1 where
‘σ : (A : Set)→ (A→ Desc I J)→ Desc I J
‘X : J→ Desc I J→ Desc I J
‘� : I→ Desc I J

Figure 12.1: Datatype Descriptions

The recursive function ~_� makes the interpretation of the descriptions formal.
Interpretation of descriptions give rise to right-nested tuples terminated by equality
constraints.

These constructors give the programmer the ability to build up the data types they
are used to. For instance, the functor corresponding to lists of elements in A stores a
Boolean which stands for whether the current node is the empty list or not. Depending

83

12. A Primer on the Universe of Data Types

~_� : Desc I J→ (J→ Set)→ (I→ Set)
~ ‘σ A d � X i = Σ[a ∈ A] (~ d a � X i)
~ ‘X j d � X i = X j × ~ d � X i
~ ‘� j � X i = i ≡ j

Figure 12.2: Descriptions’ meanings as Functors

on its value, the rest of the description is either the “stop” token or a pair of an element
in A and a recursive substructure i.e. the tail of the list. The List type is unindexed, we
represent the lack of an index with the unit type >.

listD : Set→ Desc > >
listD A = ‘σ Bool $ λ isNil→

if isNil then ‘� tt
else ‘σ A (λ _→ ‘X tt (‘� tt))

Figure 12.3: The Description of the base functor for List A

Indices can be used to enforce invariants. For example, the type (Vec A n) of
length-indexed lists. It has the same structure as the definition of listD. We start with a
Boolean distinguishing the two constructors: either the empty list (in which case the
branch’s index is enforced to be 0) or a non-empty one in which case we store a natural
number n, the head of type A and a tail of size n (and the branch’s index is enforced to
be (suc n).

vecD : Set→ Desc N N
vecD A = ‘σ Bool $ λ isNil→

if isNil then ‘� 0
else ‘σ N (λ n→ ‘σ A (λ _→ ‘X n (‘� (suc n))))

Figure 12.4: The Description of the base functor for Vec A n

The payoff for encoding our datatypes as descriptions is that we can define generic
programs for whole classes of data types. The decoding function ~_� acted on the
objects of SetJ , and we will now define the function fmap by recursion over a code d.
It describes the action of the functor corresponding to d over morphisms in SetJ . This
is the first example of generic programming over all the functors one can obtain as the
meaning of a description.

84

12.2. Datatypes as Least Fixpoints

fmap : (d : Desc I J)→ ∀[X⇒ Y]→ ∀[~ d � X⇒ ~ d � Y]
fmap (‘σ A d) f (a , v) = (a , fmap (d a) f v)
fmap (‘X j d) f (r , v) = (f r , fmap d f v)
fmap (‘� i) f t = t

Figure 12.5: Action on Morphisms of the Functor corresponding to a Description

12.2 Datatypes as Least Fixpoints

All the functors obtained as meanings of Descriptions are strictly positive. So we
can build the least fixpoint of the ones that are endofunctors i.e. the ones for which I
equals J. This fixpoint is called µ and its iterator is given by the definition of fold d. In
fig. 12.6 the Size (Abel [2010]) index added to the inductive definition of µ plays a
crucial role in getting the termination checker to see that fold is a total function, just
like sizes played a crucial role in proving that map^Rose was total in section 2.2.

data µ (d : Desc I I) (s : Size) : I→ Set where
‘con : {s’ : Size< s}→ ~ d � (µ d s’) i→ µ d s i

fold : (d : Desc I I)→ ∀[~ d � X⇒ X]→ ∀[µ d s⇒ X]
fold d alg (‘con t) = alg (fmap d (fold d alg) t)

Figure 12.6: Least Fixpoint of an Endofunctor and Corresponding Generic Fold

The CDMM approach therefore allows us to generically define iteration principles
for all data types that can be described. These are exactly the features we desire for
a universe of syntaxes with binding, so in the next section we will see how to extend
CDMM’s approach to include binding.

The functor underlying any well scoped and sorted syntax can be coded as some
Desc (I × List I) (I × List I), with the free monad construction from CDMM uniformly
adding the variable case. Whilst a good start, Desc treats its index types as unstructured,
so this construction is blind to what makes the List I index a scope. The resulting ‘bind’
operator demands a function which maps variables in any sort and scope to terms in the
same sort and scope. However, the behaviour we need is to preserve sort while mapping
between specific source and target scopes which may differ. We need to account for
the fact that scopes change only by extension, and hence that our specifically scoped
operations can be pushed under binders by weakening.

85

Chapter 13

A Universe of Scope Safe and Well
Kinded Syntaxes

Our universe of scope safe and well kinded syntaxes follows the same principle as
CDMM’s universe of datatypes, except that we are not building endofunctors on SetI

any more but rather on I −Scoped. We now think of the index type I as the sorts used
to distinguish terms in our embedded language. The ‘σ and ‘� constructors are as in the
CDMM Desc type, and are used to represent data and index constraints respectively.

13.1 Descriptions and Their Meaning as Functors

What distinguishes this new universe Desc from that of Section 12 is that the ‘X
constructor is now augmented with an additional List I argument that describes the
new binders that are brought into scope at this recursive position. This list of the kinds
of the newly-bound variables will play a crucial role when defining the description’s
semantics as a binding structure in figs. 13.2, 13.3 and 13.5.

data Desc (I : Set) : Set1 where
‘σ : (A : Set)→ (A→ Desc I)→ Desc I
‘X : List I→ I→ Desc I → Desc I
‘� : I → Desc I

Figure 13.1: Syntax Descriptions

The meaning function ~_� we associate to a description follows closely its CDMM
equivalent. It only departs from it in the ‘X case and the fact it is not an endofunctor
on I −Scoped; it is more general than that. The function takes an X of type List I→ I
−Scoped to interpret ‘X ∆ j (i.e. substructures of sort j with newly-bound variables in
∆) in an ambient scope Γ as X ∆ j Γ.

The astute reader may have noticed that ~_� is uniform in X and Γ; however
refactoring ~_� to use the partially applied X _ _ Γ following this observation would

87

13. A Universe of Scope Safe andWell Kinded Syntaxes

~_� : Desc I→ (List I→ I −Scoped)→ I −Scoped
~ ‘σ A d � X i Γ = Σ[a ∈ A] (~ d a � X i Γ)
~ ‘X ∆ j d � X i Γ = X ∆ j Γ × ~ d � X i Γ

~ ‘� j � X i Γ = i ≡ j

Figure 13.2: Descriptions’ Meanings

lead to a definition harder to use with the combinators for indexed sets described in
section 2.3 which make our types much more readable.

If we pre-compose the meaning function ~_� with a notion of ‘de Bruijn scopes’
(denoted Scope here) which turns any I −Scoped family into a function of type List
I → I −Scoped by appending the two List indices, we recover a meaning function
producing an endofunctor on I −Scoped.

Scope : I −Scoped→ List I→ I −Scoped
Scope T ∆ i = (∆ ++_) ` T i

Figure 13.3: De Bruijn Scopes

So far we have only shown the action of the functor on objects; its action on
morphisms is given by a function fmap defined by induction over the description just
like in Section 12. We give fmap the most general type we can, the action of functors
is then a specialized version of it.

fmap : (d : Desc I)→ (∀ Θ i→ X Θ i Γ→ Y Θ i ∆)→ ~ d � X i Γ→ ~ d � Y i ∆

fmap (‘σ A d) f = Prod.map2 (fmap (d _) f)
fmap (‘X ∆ j d) f = Prod.map (f ∆ j) (fmap d f)
fmap (‘� i) f = id

Figure 13.4: Action of Syntax Functors on Morphism

13.2 Terms as Free Relative Monads

The endofunctors thus defined are strictly positive and we can take their fixpoints. As
we want to define the terms of a language with variables, instead of considering the
initial algebra, this time we opt for the free relative monad (Altenkirch et al. [2010,
2014]) with respect to the functor Var. The ‘var constructor corresponds to return, and
we will define bind (also known as the parallel substitution sub) in the next section. We
have once more a Size index to get all the benefits of type based termination checking
when defining traversals over terms.

88

13.2. Terms as Free Relative Monads

data Tm (d : Desc I) : Size→ I −Scoped where
‘var : ∀[Var i ⇒ Tm d (↑ s) i]
‘con : ∀[~ d � (Scope (Tm d s)) i⇒ Tm d (↑ s) i]

Figure 13.5: Term Trees: The Free Var-Relative Monads on Descriptions

Because we often use closed terms of size∞ (that is to say fully-defined) in concrete
examples, we name this notion.

TM : Desc I→ I→ Set
TM d i = Tm d∞ i []

Figure 13.6: Type of Closed Terms

Examples of Syntaxes With Binding

Coming back to our original example, we now have the ability to give a code for
the intrinsically typed STλC. But we start with a simpler example to lay down the
foundations: the well scoped untyped λ-calculus. In both cases, the variable case will
be added by the free monad construction so we only have to describe two constructors:
application and λ-abstraction.

Untyped languages are, as Harper would say, uni-typed syntaxes and can thus be
modelled using descriptions whose kind parameter is the unit type. We take the disjoint
sum of the respective descriptions for the application and λ-abstraction constructors by
using the classic construction in type theory: a dependent pair of a Bool picking one of
the two branches and a second component whose type is either that of application or
λ-abstraction depending on that boolean.

Application has two substructures (‘X) which do not bind any extra argument and
λ-abstraction has exactly one substructure with precisely one extra bound variable.
Both constructors’ descriptions end with (‘� tt), the only inhabitant of the trivial kind.

UTLC : Desc >
UTLC = ‘σ Bool $ λ isApp→ if isApp

then ‘X [] tt (‘X [] tt (‘� tt))
else ‘X (tt :: []) tt (‘� tt)

Figure 13.7: Description of The Untyped Lambda Calculus

89

13. A Universe of Scope Safe andWell Kinded Syntaxes

Typed syntax comes with extra constraints: our tags need to carry extra information
about the types involved so we use the ad-hoc ‘STLC type. The description is then
the dependent pairing of an ‘STLC tag together with its decoding defined by a pattern-
matching λ-expression in Agda.

Application has two substructures none of which bind extra variables. The first has
a function type and the second the type of its domain. The overall type of the branch is
enforced to be that of the function’s codomain by the ‘� constructor.

λ-abstraction has exactly one substructure of type τ with a newly-bound variable
of type σ. The overall type of the branch is once more enforced by ‘�: it is (σ ‘→ τ).

data ‘STLC : Set where
App Lam : Type→ Type→ ‘STLC

STLC : Desc Type
STLC = ‘σ ‘STLC $ λ where

(App σ τ)→ ‘X [] (σ ‘→ τ) (‘X [] σ (‘� τ))
(Lam σ τ)→ ‘X (σ :: []) τ (‘� (σ ‘→ τ))

Figure 13.8: Description of the Simply Typed Lambda Calculus

For convenience we use Agda’s pattern synonyms corresponding to the original
constructors in section 3.2: ‘app for application and ‘lam for λ-abstraction. These
synonyms can be used when pattern-matching on a term and Agda resugars them when
displaying a goal. This means that the end user can seamlessly work with encoded terms
without dealing with the gnarly details of the encoding. These pattern definitions can
omit some arguments by using “_”, in which case they will be filled in by unification
just like any other implicit argument: there is no extra cost to using an encoding! The
only downside is that the language currently does not allow the user to specify type
annotations for pattern synonyms.

pattern ‘app f t = ‘con (App _ _ , f , t , refl)
pattern ‘lam b = ‘con (Lam _ _ , b , refl)

‘id : TM STLC (σ ‘→ σ)
‘id = ‘lam (‘var z)

Figure 13.9: Recovering Readable Syntax via Pattern Synonyms

90

13.3. Common Combinators and Their Properties

13.3 Common Combinators and Their Properties

In order to avoid repeatedly re-encoding the same logic, we introduce combinators
demonstrating that descriptions are closed under finite sums and finite products of
recursive positions.

Closure under Disjoint Union

As we wrote, the construction used in fig. 13.7 to define the syntax for the untyped
λ-calculus is classic. It is actually the third time (the first and second times being the
definition of listD and vecD in figs. 12.3 and 12.4) that we use a Bool to distinguish
between two constructors.

We define once and for all the disjoint union of two descriptions thanks to the _‘+_
combinator. It comes togeter with an appropriate eliminator case which, given two
continuations, picks the one corresponding to the chosen branch.

‘+ : Desc I→ Desc I→ Desc I
d ‘+ e = ‘σ Bool $ λ isLeft→ if isLeft then d else e

case : (~ d � X i Γ→ A)→ (~ e � X i Γ→ A)→ (~ d ‘+ e � X i Γ→ A)
case l r (true , t) = l t
case l r (false , t) = r t

Figure 13.10: Descriptions are Closed Under Disjoint Sums

A concrete use case for the disjoint union combinator and its eliminator will be
given in section 14.2 where we explain how to seamlessly enrich any existing syntax
with let-bindings and how to use the Semantics framework to elaborate them away.

Closure Under Finite Product of Recursive Positions

Closure under product does not hold in general. Indeed, the equality constraints
introduced by the two end tokens of two descriptions may be incompatible. So far, a
limited form of closure (closure under finite product of recursive positions) has been
sufficient for all of our use cases. Provided a list of pairs of context extensions and
kinds, we can add to an existing description that many recursive substructures.

‘Xs : List (List I × I)→ Desc I→ Desc I
‘Xs ∆js d = foldr (uncurry ‘X) d ∆js

Figure 13.11: Descriptions are Closed Under Finite Product of Recursive Positions

91

13. A Universe of Scope Safe andWell Kinded Syntaxes

As with coproducts, we can define an appropriate eliminator. The function unXs
takes a value in the encoding and extracts its constituents (All P xs is defined in Agda’s
standard library and makes sure that the predicate P holds true of all the elements in
the list xs).

unXs : ∀ ∆js→ ~ ‘Xs ∆js d � X i Γ→

All (uncurry $ λ ∆ j→ X ∆ j Γ) ∆js × ~ d � X i Γ

unXs [] v = [] , v
unXs (σ :: ∆) (r , v) = Prod.map1 (r ::_) (unXs ∆ v)

Figure 13.12: Breaking Down a Finite Product of Recursive Positions

We will see in section 14.2 how to define let-bindings as a generic language
extension and their inlining as a generic semantics over the extended syntax and into
the base one. Closure under a finite product of recursive positions demonstrates that
we could extend this construction to parallel (or even mutually-recursive) let-bindings
where the number and the types of the bound expressions can be arbitrary. We will not
go into the details of this construction as it is essentially a combination of Xs, unXs
and the techniques used when defining single let-bindings.

92

Chapter 14

Generic Scope Safe and Well Kinded
Programs for Syntaxes

The set of constraints we called a Semantics in section 4.4 for the specific example of
the simply typed λ-calculus could be divided in two groups: the one arising from the
fact that we need to be able to push environment values under binders and the ones in
one-to-one correspondence with constructors for the language.

Based on this observation, we can define a generic notion of semantics for all
syntax descriptions. It is once more parametrised by two (I−Scoped) familiesV and
C corresponding respectively to values associated to bound variables and computations
delivered by evaluating terms.

record Semantics (d : Desc I) (V C : I −Scoped) : Set where

These two families have to abide by three constraints. First, values should be
thinnable so that we can push the evaluation environment under binders.

th^V : Thinnable (V σ)

Second, values should embed into computations for us to be able to return the value
associated to a variable in the environment as the result of its evaluation.

var : ∀[V σ⇒ C σ]

Third, we have a constraint similar to the one needed to define fold in chapter 12
(fig. 12.6). We should have an algebra taking a term whose substructures have already
been evaluated and returning a computation for the overall term.

alg : ∀[~ d � (KripkeV C) σ⇒ C σ]

To make formal this idea of “hav[ing] already been evaluated” we crucially use
the fact that the meaning of a description is defined in terms of a function interpreting
substructures which has the type (List I → I−Scoped), i.e. that gets access to the
current scope but also the exact list of the newly bound variables’ kinds.

93

14. Generic Scope Safe andWell Kinded Programs for Syntaxes

We define a function Kripke by case analysis on the number of newly bound
variables. It is essentially a subcomputation waiting for a value associated to each
one of the fresh variables. If it’s 0 we expect the substructure to be a computation
corresponding to the result of the evaluation function’s recursive call; but if there
are newly bound variables then we expect to have a function space. In any context
extension, it will take an environment of values for the newly-bound variables and
produce a computation corresponding to the evaluation of the body of the binder.

Kripke : (V C : I −Scoped)→ (List I→ I −Scoped)
KripkeV C [] j = C j
KripkeV C ∆ j = � ((∆ −Env)V⇒ C j)

It is once more the case that the abstract notion of Semantics comes with a funda-
mental lemma: all I −Scoped familiesV and C satisfying the three criteria we have
put forward give rise to an evaluation function. We introduce a notion of computation
_−Comp analogous to that of environments: instead of associating values to variables,
it associates computations to terms.

_−Comp : List I→ I −Scoped→ List I→ Set
(Γ −Comp) C ∆ = ∀ {s σ}→ Tm d s σ Γ→ C σ ∆

Figure 14.1: _−Comp: Associating Computations to Terms

We can now define the type of the fundamental lemma (called semantics) which
takes a semantics and returns a function from environments to computations. It is
defined mutually with a function body turning syntactic binders into semantics binders:
to each de Bruijn Scope (i.e. a substructure in a potentially extended context) it
associates a Kripke (i.e. a subcomputation expecting a value for each newly bound
variable).

semantics : (Γ −Env)V ∆→ (Γ −Comp) C ∆

body : (Γ −Env)V ∆→ ∀ Θ σ→
Scope (Tm d s) Θ σ Γ→ KripkeV C Θ σ ∆

Figure 14.2: Statement of the Fundamental Lemma of Semantics

The proof of semantics is straightforward now that we have clearly identified the
problem’s structure and the constraints we need to enforce. If the term considered is a
variable, we lookup the associated value in the evaluation environment and turn it into a
computation using var. If it is a non variable constructor then we call fmap to evaluate
the substructures using body and then call the algebra to combine these results.

The auxiliary lemma body distinguishes two cases. If no new variable has been
bound in the recursive substructure, it is a matter of calling semantics recursively.

94

14.1. Our First Generic Programs: Renaming and Substitution

semantics ρ (‘var k) = var (lookup ρ k)
semantics ρ (‘con t) = alg (fmap d (body ρ) t)

Figure 14.3: Proof of the Fundamental Lemma of Semantics – semantics

Otherwise we are provided with a Thinning, some additional values and evaluate the
substructure in the thinned and extended evaluation environment thanks to a auxiliary
function _>>_ which given two environments (Γ −Env) V Θ and (∆ −Env) V Θ

produces an environment ((Γ ++ ∆) −Env)V Θ).

body ρ [] i t = semantics ρ t
body ρ (_ :: _) i t = λ σ vs→ semantics (vs >> th^Env th^V ρ σ) t

Figure 14.4: Proof of the Fundamental Lemma of Semantics – body

Given that fmap introduces one level of indirection between the recursive calls and
the subterms they are acting upon, the fact that our terms are indexed by a Size is once
more crucial in getting the termination checker to see that our proof is indeed well
founded.

Because most of our examples involve closed terms (for which we have introduced
a special notation in fig. 13.6), we define a specialised of the fundamental lemma of
semantics for closed terms and apply it to the empty environment.

closed : TM d σ→ C σ []
closed = semantics ε

Figure 14.5: Special Case: Fundamental Lemma of Semantics for Closed Terms

14.1 Our First Generic Programs: Renaming and Substitution

Similarly to section 4.5 renaming and substitutions can be defined generically for all
syntax descriptions.

Renaming is a semantics with Var as values and Tm as computations. The first two
constraints on Var described earlier are trivially satisfied. Observing that renaming
strictly respects the structure of the term it goes through, it makes sense for the algebra
to be implemented using fmap. When dealing with the body of a binder, we ‘reify’ the
Kripke function by evaluating it in an extended context and feeding it placeholder values
corresponding to the extra variables introduced by that context. This is reminiscent

95

14. Generic Scope Safe andWell Kinded Programs for Syntaxes

both of what we did in section 4.5 and the definition of reification in the setting of
normalisation by evaluation (see e.g. Coquand’s work 2002).

Renaming : Semantics d Var (Tm d∞)
Renaming .th^V = th^Var
Renaming .var = ‘var
Renaming .alg = ‘con ◦ fmap d (reify vl^Var)

Figure 14.6: Renaming: A Generic Semantics for Syntaxes with Binding

From this instance, we can derive the proof that all terms are Thinnable as a
corollary of the fundamental lemma of Semantics.

th^Tm : Thinnable (Tm d∞ σ)
th^Tm t ρ = Semantics.semantics Renaming ρ t

Figure 14.7: Corollary: Generic Thinning

Substitution is defined in a similar manner with Tm as both values and computations.
Of the two constraints applying to terms as values, the first one corresponds to renaming
and the second one is trivial. The algebra is once more defined by using fmap and
reifying the bodies of binders. We can, once more, obtain parallel substitution as a
corollary of the fundamental lemma of Semantics.

Substitution : Semantics d (Tm d∞) (Tm d∞)
Substitution .th^V = th^Tm
Substitution .var = id
Substitution .alg = ‘con ◦ fmap d (reify vl^Tm)

sub : (Γ −Env) (Tm d∞) ∆→ Tm d∞ σ Γ→ Tm d∞ σ ∆

sub ρ t = Semantics.semantics Substitution ρ t

Figure 14.8: Generic Parallel Substitution for All Syntaxes with Binding

The reification process mentioned in the definition of renaming and substitution
can be implemented generically for Semantics families which have VarLike values
(vl^Var and vl^Tm are proofs of VarLike for Var and Tm respectively) i.e. values which
are thinnable and such that we can craft placeholder values in non-empty contexts.

96

14.2. Sugar and Desugaring as a Semantics

record VarLike (V : I −Scoped) : Set where
field th^V : Thinnable (V σ)

new : ∀[(σ ::_) ` V σ]

Figure 14.9: VarLike: Thinnable and with placeholder values

For any VarLike V, we can define freshr of type ((Γ −Env) V (∆ ++ Γ)) and
freshl of type ((Γ −Env)V (Γ ++ ∆)) by combining the use of placeholder values and
thinnings. Hence, we can then write a generic reify (fig. 14.10) turning Kripke function
spaces fromV to C into Scopes of C computations.

reify : VarLikeV→ ∀ ∆ i→ KripkeV C ∆ i Γ→ Scope C ∆ i Γ

reify vl^V [] i b = b
reify vl^V ∆@(_ :: _) i b = b (freshr vl^Var ∆) (freshl vl^V Γ)

Figure 14.10: Generic Reification thanks to VarLike Values

We can now showcase other usages by providing a catalogue of generic programs
for syntaxes with binding.

14.2 Sugar and Desugaring as a Semantics

One of the advantages of having a universe of programming language descriptions is
the ability to concisely define an extension of an existing language by using Description
transformers grafting extra constructors à la Swiestra (2008). This is made extremely
simple by the disjoint sum combinator _‘+_ we defined in Section 13.3. An example of
such an extension is the addition of let-bindings to an existing language.

Let bindings allow the user to avoid repeating themselves by naming sub-expressions
and then using these names to refer to the associated terms. Preprocessors adding these
types of mechanisms to existing languages (from C to CSS) are rather popular. We
introduce a description of Let-bindings which can be used to extend any language
description d to d ‘+ Let (where ‘+ is the disjoint of sum of two descriptions defined in
Figure 13.10):

Let : Desc I
Let = ‘σ (I × I) $ uncurry $ λ σ τ→ ‘X [] σ (‘X (σ :: []) τ (‘� τ))

Figure 14.11: Description of a Single Let Binding

This description states that a let-binding node stores a pair of types σ and τ and
two subterms. First comes the let-bound expression of type σ and second comes the

97

14. Generic Scope Safe andWell Kinded Programs for Syntaxes

body of the let which has type τ in a context extended with a fresh variable of type σ.
This defines a term of type τ.

In a dependently typed language, a type may depend on a value which in the
presence of let bindings may be a variable standing for an expression. The user
naturally does not want it to make any difference whether they used a variable referring
to a let-bound expression or the expression itself. Various typechecking strategies
can accommodate this expectation: in Coq (Team [2017]) let bindings are primitive
constructs of the language and have their own typing and reduction rules whereas in
Agda they are elaborated away to the core language by inlining.

This latter approach to extending a language d with let bindings by inlining them
before typechecking can be implemented generically as a semantics over (d ‘+ Let). For
this semantics values in the environment and computations are both let-free terms. The
algebra of the semantics can be defined by parts thanks to case defined in section 13.3:
the old constructors are kept the same by interpreting them using the generic Substitu-
tion algebra; whilst the let-binder precisely provides the extra value to be added to the
environment.

UnLet : Semantics (d ‘+ Let) (Tm d∞) (Tm d∞)
UnLet .th^V = th^Tm
UnLet .var = id
UnLet .alg = case (Substitution .alg) λ where

(_ , e , t , refl)→ extract t (ε • e)

Figure 14.12: Let-Elaboration as a Semantics

The process of removing let binders is kickstarted with a placeholder environment
associating each variable to itself.

unlet : ∀[Tm (d ‘+ Let)∞ σ⇒ Tm d∞ σ]
unlet = Semantics.semantics UnLet (‘var <$> identity)

Figure 14.13: Corollary: Let-Elaboration via Evaluation with Placeholders

In half a dozen lines of code we have defined a generic extension of syntaxes with
binding together with a semantics which corresponds to an elaborator translating away
this new construct. We have seen in chapter 6 that it is similarly possible to implement
a Continuation Passing Style transformation as a semantics for STLC.

We have demonstrated how easily one can define extensions and combine them
on top of a base language without having to reimplement common traversals for each
one of the intermediate representations. Moreover, it is possible to define generic
transformations elaborating these added features in terms of lower-level ones. This
suggests that this setup could be a good candidate to implement generic compilation

98

14.3. (Unsafe) Normalisation by Evaluation

passes and could deal with a framework using a wealth of slightly different intermediate
languages à la Nanopass (Keep and Dybvig [2013]).

14.3 (Unsafe) Normalisation by Evaluation

A key type of traversal we have not studied yet is a language’s evaluator. Our universe
of syntaxes with binding does not impose any typing discipline on the user-defined
languages and as such cannot guarantee their totality. This is embodied by one of our
running examples: the untyped λ-calculus. As a consequence there is no hope for a
safe generic framework to define normalisation functions.

The clear connection between the Kripke functional space characteristic of our
semantics and the one that shows up in normalisation by evaluation suggests we ought
to manage to give an unsafe generic framework for normalisation by evaluation. By
temporarily disabling Agda’s positivity checker, we can define a generic reflexive
domain Dm in which to interpret our syntaxes. It has three constructors corresponding
respectively to a free variable, a constructor’s counterpart where scopes have become
Kripke functional spaces on Dm and an error token because the evaluation of untyped
programs may go wrong.

{-# NO_POSITIVITY_CHECK #-}
data Dm (d : Desc I) : Size→ I −Scoped where

V : ∀[Var σ ⇒ Dm d i σ]
C : ∀[~ d � (Kripke (Dm d i) (Dm d i)) σ⇒ Dm d (↑ i) σ]
⊥ : ∀[Dm d (↑ i) σ]

Figure 14.14: Corollary: Let-Elaboration via Evaluation with Placeholders

This datatype definition is utterly unsafe. The more conservative user will happily
restrict herself to typed settings where the domain can be defined as a logical predicate
or opt instead for a step-indexed approach. But this domain does make it possible to
define a generic nbe semantics by only specifying an algebra to evaluate one “layer”
of term. This constraint is minimal: there is no way for us to know a priori what
a constructor means; a binder could represent λ-abstractions, Σ-types, fixpoints, or
anything else.

Thanks to the fact we have picked a universe of finitary syntaxes, we can traverse
(McBride and Paterson [2008]) the functor to define a (potentially failing) reification
function turning elements of the reflexive domain into terms. The Kripke function
spaces can themselves be reified: Dm is VarLike thanks to the V constructor.

By composing them, we obtain the normalisation function which gives its name
to normalisation by evaluation: provided a term, we produce a value in the reflexive
domain by evaluating it in an environment made of placeholder values and then reify it
to a (maybe) term.

99

14. Generic Scope Safe andWell Kinded Programs for Syntaxes

Alg : Desc I→ Set
Alg d = ∀ {σ}→ ∀[~ d � (Kripke (Dm d∞) (Dm d∞)) σ⇒ Dm d∞ σ]

nbe : Alg d→ Semantics d (Dm d∞) (Dm d∞)
nbe alg .th^V = th^Dm
nbe alg .var = id
nbe alg .alg = alg

Figure 14.15: Evaluation as a Semantics

reify^Dm : ∀[Dm d i σ⇒ Maybe ◦ Tm d∞ σ]
reify^Dm ⊥ = nothing
reify^Dm (V k) = just (‘var k)
reify^Dm (C v) = ‘con <$> sequenceA d (fmap d reify^Kripke v)

where reify^Kripke = λ Θ i kr→ reify^Dm (reify vl^Dm Θ i kr)

Figure 14.16: Generic Reification via sequenceA

norm : Alg d→ ∀[Tm d∞ σ⇒ Maybe ◦ Tm d∞ σ]
norm alg t = reify^Dm (semantics (nbe alg) (base vl^Dm) t)

Figure 14.17: Normalisation by Evaluation

Example: Evaluator for the Untyped Lambda-Calculus

Using this setup, we can write a normaliser for the untyped λ-calculus: we use a
pattern matching lambda to distinguish between the counterpart of the λ-abstraction
constructor on one hand and the application one on the other. The former is trivial:
functions are already values! The semantical counterpart of application proceeds by
case analysis on the function: if it corresponds to a λ-abstraction, we can fire the
redex by using the Kripke functional space; otherwise we grow the spine of stuck
applications.

We have not used the ⊥ constructor so if the evaluation terminates (by disabling
the strict positivity check we have lost all guarantees of the sort) we know we will get
a term in normal form. For instance: identity applied twice to itself yield a strongly
normalising term and if we run the evaluator we indeed get the identity as an output as
demonstrated in fig. 14.19.

100

14.4. Printing with Names, Generically

norm : ∀[Tm UTLC∞ _⇒ Maybe ◦ Tm UTLC∞ _]
norm = NbyE.norm $ λ where

(false , b) → C (false , b)
(true , C (false , b , _) , t , _)→ b (base vl^Var) (ε • t)
(true , ft) → C (true , ft)

Figure 14.18: Normalisation for the Untyped λ-calculus

_ : norm (‘app ‘id (‘app ‘id ‘id)) ≡ just ‘id
_ = refl

Figure 14.19: Normalization Example

14.4 Printing with Names, Generically

Coming back to our work on (rudimentary) printing with names in section 4.6, we can
now give a generic account of it. This is a particularly interesting example because
it demonstrates that we may sometimes want to give Desc a different semantics to
accomodate a specific use-case: we do not want our users to deal explicitly with name
generation, explicit variable binding, etc.

We are going to reuse some of the components defined in section 4.6: we can rely
on the same state monad for name generation, the same fresh function and the same
notions of Name and Printer for the semantics’ values and computations.

The first piece of the puzzle is Pieces. The structure of Semantics would suggest
giving our users an interface where sub-structures are interpreted as Kripke function
spaces expecting fresh names for the fresh variables and returning a monadic computa-
tion delivering a printer. However we can do better: we can preemptively generate a
set of fresh names for the newly-bound variables and hand them to the user together
with the result of printing the body with these names. As usual we have a special case
for the substructures without any newly-bound variable. Note that the specific target
context of the environment of Names is only picked for convenience as Name ignores
the scope: (∆ ++ Γ) is what freshl gives us.

Pieces : List I→ I −Scoped
Pieces [] i Γ = String
Pieces ∆ i Γ = (∆ −Env) Name (∆ ++ Γ) × String

Figure 14.20: Interpretation of Recursive Substructures: Printing Pieces

The key component making this work is the reification function reify^M turning the

101

14. Generic Scope Safe andWell Kinded Programs for Syntaxes

Kripke spaces we get from the semantics framework into Pieces. This function has to
be monadic so that we may generate fresh names. It uses the fact that environments
are traversable and that (M Name) is easily proven to be VarLike (fresh generates
new names and they are trivially Thinnable as they ignore their scope) to generate an
environment of names for the newly-bound variables.

reify^M : ∀ ∆ i→ Kripke Name Printer ∆ i Γ→ M (Pieces ∆ i Γ)
reify^M [] i p = p
reify^M ∆@(_ :: _) i f = do
ρ← sequenceA (freshl vl^MName _)
b← f (freshr vl^Var ∆) ρ
return (ρ , b)

Figure 14.21: Reification: from Kripke Functions to Pieces

We also expect the user to provide us with a syntax-specific (Display d) explaining
how to print one “layer” of term where the subterms are Pieces i.e. both the names of
the variables bound in the subterms and the string representation of the subterms are
available. See section 14.4 for a concrete example of such a Display.

Display : Desc I→ Set
Display d = ∀ {i Γ}→ ~ d � Pieces i Γ→ String

Figure 14.22: Syntax-Specific Display Instructions

Once we have these key components, we can write our printer as a Semantics. The
two first constraints are trivial: Name is constant in its scope argument and therefore
trivially thinnable and names (strings) are trivially printers (strings in the M monad).
The algebra is trickier to define. But because we know how to convert Kripke function
spaces from Names to Printer into M-wrapped Pieces and because the functor induced
by a description is traversable, we can get a layer of term where the subterms are
Pieces. It is then just a matter of applying the user-supplied Display directive to obtain
a string representation of the term.

printing : Display d→ Semantics d Name Printer
printing dis .th^V = th^const
printing dis .var = return
printing dis .alg = λ v→ dis <$> sequenceA d (fmap d reify^M v)

Figure 14.23: Printing as a Generic Semantics

102

14.4. Printing with Names, Generically

Using the closed version of the fundamental lemma of semantics defined in fig. 14.5
and reusing the name supply defined in section 4.6 we obtain a printer for closed terms.

print : Display d→ TM d σ→ String
print dis t = proj1 $ closed (printing dis) t names

Figure 14.24: Printer for closed terms

Example: Printing Terms of STLC

Our only purpose here is to show how one typically defines a Display to define a
printer. Remember that we get one “layer” of term as an input, in this specific case it
means either an application or a λ-abstraction. We use a pattern-matching lambda to
distinguish the two cases. If we have an application then we have already been given a
string f for the function and t for the argument; we use Krivine’s convention of writing
(f)t for the application. If we have a λ-abstraction, it means we are handed a pair of a
(singleton) environment containing a fresh name x for the variable bound by the lambda
together with a representation b of the body using that name; we return λx.b.

display^STLC : Display STLC
display^STLC = λ where

(App _ _ , f , t , _)→ "(" ++ f ++ ") " ++ t
(Lam _ _ , (x , b) , _)→ "λ" ++ lookup x z ++ ". " ++ b

Figure 14.25: Display Directive for STLC

We can of course run the printer and check that it does produce the string we would
expect.

_ : let f : TM STLC (α ‘→ α); f = ‘app ‘id ‘id
in print display^STLC f ≡ "(λa. a) λb. b"

_ = refl

103

Chapter 15

Typechecking as a Semantics

In the previous chapter we have seen various generic semantics one may be interested
in when working on a deeply embedded language: renaming, substitution, desugaring,
evaluation, and printing with names. All of these fit neatly in the Semantics framework.
Now we wish to study a specific language in particular and see how we can take
advantage of the same framework to structure language-specific traversals.

15.1 An Algebraic Approach to Typechecking

Recalling Atkey (2015), we can consider type checking and type inference as a possible
semantics for a bi-directional language (Pierce and Turner [2000]). We represent the
raw syntax of a simply typed bi-directional calculus as a bi-sorted language using a
notion of Mode to distinguish between terms for which we will be able to Infer the
type and the ones for which we will have to Check a type candidate. Cuts will be
Type-annotated so we also introduce the set of types at hand.

data Mode : Set where
Check Infer : Mode

data Type : Set where
α : Type
‘→ : Type→ Type→ Type

Figure 15.1: Modes and Types

We define the language of (Mode −Scoped) terms using our language of descrip-
tions. We start once more with LangC, the language’s constructors, and dispatch over
such constructors using a pattern-matching lambda. Following traditional presentations,
eliminators give rise to Inferrable terms under the condition that the term they are elim-
inating is also Inferrable and the other arguments are Checkable whilst constructors
and their arguments are always Checkable. Two extra constructors allow changes of
direction: Cut annotates a checkable term with its Type thus making it inferrable whilst
Emb embeds inferrables into checkables.

105

15. Typechecking as a Semantics

data LangC : Set where
App Lam Emb : LangC
Cut : Type→ LangC

Lang : Desc Mode
Lang = ‘σ LangC $ λ where

App → ‘X [] Infer (‘X [] Check (‘� Infer))
Lam → ‘X (Infer :: []) Check (‘� Check)
(Cut σ)→ ‘X [] Check (‘� Infer)
Emb → ‘X [] Infer (‘� Check)

Figure 15.2: A Bidirectional Simply Typed Language

Both the values and computations will be constant in the scope. The values stored
in the environment will be Type information for bound variables. Instead of considering
that we get a type no matter what the Mode of the variable is, we enforce the fact that
all variables need to be Inferrable.

data Var- : Mode→ Set where
‘var : Type→ Var- Infer

Figure 15.3: Values as Type Assignments for Variables

In contrast, the generated computations will, depending on the mode, either take
a type candidate and Check it is valid or Infer a type for their argument. These
computations are always potentially failing so we use the Maybe monad.

Type- : Mode→ Set
Type- Check = Type→ Maybe >
Type- Infer = Maybe Type

Figure 15.4: Computations as Mode-indexed Type Checking or Inference

Before defining typechecking as a Semantics we need to introduce two simple
checks: a first function checking that two types are equal and a second making sure its
input is a function type and returning its domain and codomain.

== : (σ τ : Type)→ Maybe >
α == α = just tt
(σ1 ‘→ τ1) == (σ2 ‘→ τ2) =
σ1 == σ2 >> τ1 == τ2

_ == _ = nothing

isArrow : Type→ Maybe (Type × Type)
isArrow (σ ‘→ τ) = just (σ , τ)
isArrow α = nothing

106

15.1. An Algebraic Approach to Typechecking

Equipped with these combinators, we can define the two most interesting cases as
top-level combinators: application and λ-abstraction. When dealing with an application:
infer the type of the function, make sure it is an arrow type, check the argument at the
domain’s type and return the codomain (_<$_ takes an A and a Maybe B and returns a
Maybe A which has the same structure as its second argument).

APP : Type- Infer→ Type- Check→ Type- Infer
APP f t = do
σ‘→τ ← f
(σ , τ)← isArrow σ‘→τ
τ <$ t σ

For a λ-abstraction: check the input type is an arrow type and check the body at
the codomain type in the extended environment where the newly-bound variable is
Inferrable and is assigned the type of the domain.

LAM : Kripke (const ◦ Var-) (const ◦ Type-) (Infer :: []) Check Γ→ Type- Check
LAM b σ‘→τ = do

(σ , τ)← isArrow σ‘→τ
b (bind Infer) (ε • ‘var σ) τ

We can now define typechecking itself. Because values are constant in the scope,
the th^V constraint is trivial. The var constraint is also easy: values correspond to
Inferrable terms so we can simply return the type looked up in the environment. The
algebra describes the algorithm by pieces. We have already handled application and
λ-abstraction, a cut always comes with a type candidate against which to check the term
and to be returned in case of success. Finally, the change of direction from Inferrable
to Checkable is successful when the inferred type is equal to the expected one.

Typecheck : Semantics Lang (const ◦ Var-) (const ◦ Type-)
Typecheck .th^V = th^const
Typecheck .var = λ where (‘var t)→ just t
Typecheck .alg = λ where

(App , f , t , refl)→ APP f t
(Lam , b , refl) → LAM b
(Cut σ , t , refl) → σ <$ t σ
(Emb , t , refl) → λ σ→ t >>= σ ==_

Figure 15.5: Typechecking as a Semantics

From this we can derive our type-(Infer/Check) function which takes a closed term
and computes either an inferred type or a validation function for a type candidate. We
make use of the special case of semantics for closed term introduced in fig. 14.5.

We can run this typechecking function on an example and verify that we do get the
type we expect.

107

15. Typechecking as a Semantics

type- : ∀ m→ TM Lang m→ Type- m
type- m t = Semantics.closed Typecheck t

Figure 15.6: Type Inference and Type Checking as Mode-indexed Semantics

_ : let ‘id : TM Lang Check
‘id = ‘lam (‘emb (‘var z))

in type- Infer (‘app (‘cut ((α ‘→ α) ‘→ (α ‘→ α)) ‘id) ‘id) ≡ just (α ‘→ α)
_ = refl

We have demonstrated how to define a bidirectional typechecker for this simple
language by leveraging the Semantics framework. However the output of this function
is not very informative. We can do better.

15.2 An Algebraic Approach to Elaboration

Instead of simply generating a type or checking that a candidate will do, we can use our
Descriptions to describe not only the source language but also a language of evidence.
During typechecking we generate at the same time an expression’s type and a well
scoped and well typed term of that type. We use STLC (defined in fig. 13.8) as our
internal language. That is to say that starting from a Lang term, the typechecking
process should generate an STLC term.

Before we can jump right in, we need to set the stage: a Semantics for a Lang
term will involve (Mode −Scoped) notions of values and computations but an STLC
term is (Type −Scoped). We first introduce a Typing associating types to each of the
modes in scope, together with fromTyping extracting the context thus defined.

Typing : List Mode→ Set
Typing = All (const Type)

fromTyping : Typing ms→ List Type
fromTyping [] = []
fromTyping (σ :: Γ) = σ :: fromTyping Γ

Figure 15.7: Typing: From Contexts of Modes to Contexts of Types

We can then explain what it means for elaboration to target T a (Type −Scoped) at
a type σ: provided a list of modes and a corresponding typing, we should get a T of
type σ in the context induced by that Typing.

In particular, our environment values are elaboration functions targetting Var. We
expect all values to be in scope i.e. provided any typing of the scope of modes, we are
guaranteed to return a type together with a variable of that type in the context induced
by the typing. We once more limit environment values to the Infer mode only.

The computations are a bit more tricky. On the one hand, if we are in checking
mode then we expect that for any typing of the scope of modes and any type candidate

108

15.2. An Algebraic Approach to Elaboration

Elab : Type −Scoped→ Type→ (ms : List Mode)→ Typing ms→ Set
Elab T σ _ Γ = T σ (fromTyping Γ)

Figure 15.8: Elaboration of a Scoped Family

data Var- : Mode −Scoped where
‘var : (infer : ∀ Γ→ Σ[σ ∈ Type] Elab Var σ ms Γ)→ Var- Infer ms

Figure 15.9: Values as Variables and Inference Functions

we can Maybe return a term at that type in the induced context. On the other hand, in
the inference mode we expect that given any typing of the scope, we can Maybe return
a type together with a term at that type in the induced context.

Type- : Mode −Scoped
Type- Check ms = ∀ Γ→ (σ : Type)→ Maybe (Elab (Tm STLC∞) σ ms Γ)
Type- Infer ms = ∀ Γ→ Maybe (Σ[σ ∈ Type] Elab (Tm STLC∞) σ ms Γ)

Figure 15.10: Computations as Mode-indexed Elaboration Functions

Because we are now writing a typechecker which returns evidence of its claims,
we need more informative variants of the equality and isArrow checks. In the equality
checking case we want to get a proof of propositional equality but we only care about
the successful path and will happily return nothing when failing. Agda’s support for
(dependent!) do-notations makes writing the check really easy. For the arrow type, we
introduce a family Arrow constraining the shape of its index to be an arrow type and
redefine isArrow as a view targetting this inductive family (Wadler [1987]).

== : (σ τ : Type)→ Maybe (σ ≡ τ)
α == α = just refl
(σ1 ‘→ τ1) == (σ2 ‘→ τ2) = do

refl← σ1 == σ2
refl← τ1 == τ2
return refl

_ == _ = nothing

data Arrow : Type→ Set where
‘→ : (σ τ : Type)→ Arrow (σ ‘→ τ)

isArrow : ∀ σ→ Maybe (Arrow σ)
isArrow α = nothing
isArrow (σ ‘→ τ) = just (σ ‘→ τ)

Figure 15.11: Informative Equality Check and Arrow View

We now have all the basic pieces and can start writing elaboration code. We once

109

15. Typechecking as a Semantics

more start by dealing with each constructor in isolation before putting everything
together to get a Semantics. These steps are very similar to the ones in the previous
section.

In the application case, we start by elaborating the function and we get its type
together with an internal term. We then check that the inferred type is indeed an Arrow
and elaborate the argument using the corresponding domain. We conclude by returning
the codomain together with the internal function applied to the internal argument.

APP : ∀[Type- Infer⇒ Type- Check⇒ Type- Infer]
APP f t Γ = do

(σ‘→τ , F)← f Γ

(σ ‘→ τ) ← isArrow σ‘→τ
T ← t Γ σ
return (τ , ‘app F T)

Figure 15.12: Elaboration of Applications

The λ-abstraction case, we start by checking that the type candidate is an Arrow.
We can then elaborate the body of the lambda in a context extended with one Infer
variable assigned an inference function thanks to the auxiliary function var0. From this
we get an internal term corresponding to the body of the λ-abstraction and conclude by
returning it wrapped in a ‘lam constructor.

VAR0 : Var- Infer (Infer :: ms)
VAR0 = ‘var λ where (σ :: _)→ (σ , z)

LAM : ∀[Kripke Var- Type- (Infer :: []) Check⇒ Type- Check]
LAM b Γ σ‘→τ = do

(σ ‘→ τ)← isArrow σ‘→τ
B← b (bind Infer) (ε • VAR0) (σ :: Γ) τ
return (‘lam B)

Figure 15.13: Elaboration of Lambda-Abstraction

This time we also stop to consider the semantical counterpart of the change of
direction Emb which turns an inferrable into a checkable. We not only want to check
that the inferred type and the type candidate are equal: we need to cast the internal term
labelled with the inferred type to match the type candidate. Luckily, Agda’s dependent
do-notations make once again our job easy: when we make the pattern refl explicit, the
equality holds in the rest of the block.

We have almost everything we need to define elaboration as a semantics. Discharg-
ing the th^V constraint is a bit laborious and the proof doesn’t yield any additional
insight so we leave it out here. The semantical counterpart of variables (var) is fairly

110

15.2. An Algebraic Approach to Elaboration

EMB : ∀[Type- Infer⇒ Type- Check]
EMB t Γ σ = do

(τ , T)← t Γ

refl ← σ == τ
return T

Figure 15.14: Elaboration of Embedding

straightforward: provided a Typing, we run the inference and touch it up to return a term
rather than a mere variable. Finally we define the algebra (alg) by pattern-matching on
the constructor and using our previous combinators; the only case left is Cut whose
Type annotation provides precisely the piece of information we need.

Elaborate : Semantics Lang Var- Type-
Elaborate .th^V = th^Var-
Elaborate .var = λ where (‘var infer) Γ→ just (map2 ‘var (infer Γ))
Elaborate .alg = λ where

(App , f , t , refl)→ APP f t
(Lam , b , refl) → LAM b
(Emb , t , refl) → EMB t
(Cut σ , t , refl) → λ Γ→ (σ ,_) <$> t Γ σ

Figure 15.15: Elaboration as a Semantics

111

Chapter 16

Building Generic Proofs about
Generic Programs

We have already shown in chapters 8 and 9 that, for the simply typed λ-calculus,
introducing an abstract notion of Semantics not only reveals the shared structure of
common traversals, it also allows us to give abstract proof frameworks for simulation or
fusion lemmas. These ideas naturally extend to our generic presentation of semantics
for all syntaxes.

The most important concept going forward is (Zip d), a relation transformer which
characterises structurally equal layers such that their substructures are themselves
related by the relation it is passed as an argument. It inherits a lot of its relational
arguments’ properties: whenever R is reflexive (respectively symmetric or transitive)
so is Zip d R.

It is defined by induction on the description and case analysis on the two layers
which are meant to be equal:

• In the stop token case ‘� i, the two layers are considered to be trivially equal (i.e.
the constraint generated is the unit type)

• When facing a recursive position ‘X ∆ j d, we demand that the two substructures
are related by R ∆ j and that the rest of the layers are related by Zip d R

• Two nodes of type ‘σ A d will be related if they both carry the same payload a of
type A and if the rest of the layers are related by Zip (d a) R.

If we were to take a fixpoint of Zip, we could obtain a structural notion of equal-
ity for terms which we could prove equivalent to propositional equality. Although
interesting in its own right, we will instead focus on more advanced use-cases.

16.1 Simulation Lemma

We first revisit the Simulation relation defined in chapter 8 for STLC, reusing as much
as possible the same notations. A Zip constraint appears naturally when we want to say
that a semantics can simulate another one.

113

16. Building Generic Proofs about Generic Programs

Zip : (d : Desc I)→ (∀ ∆ i→ ∀[X ∆ i⇒ Y ∆ i⇒ const Set])
→ ∀[~ d � X i⇒ ~ d � Y i⇒ const Set]

Zip (‘� j) R x y = >
Zip (‘X ∆ j d) R (r , x) (r’ , y) = R ∆ j r r’ × Zip d R x y
Zip (‘σ A d) R (a , x) (a’ , y) = Σ[eq ∈ a’ ≡ a] Zip (d a) R x (rew eq y)

where rew = subst (λ a→ ~ d a � _ _ _)

Figure 16.1: Zip: Characterising Structurally Equal Values with Related Substructures

Given a relationVR connecting values inVA andVB, and a relation CR connecting
computations in CA and CB, we can define KripkeR relating values Kripke VA CA

and Kripke VB CB by stating that they send related inputs to related outputs. It is a
generalisation of the KripkeR defined in fig. 8.3 to accomodate non-binders and binders
introducing more than one variable.

KripkeR : ∀ ∆ i→ ∀[KripkeVA CA ∆ i⇒ KripkeVB CB ∆ i⇒ const Set]
KripkeR [] σ kA kB = rel CR σ kA kB

KripkeR ∆@(_ :: _) σ kA kB = ∀ {Θ} (ρ : Thinning _ Θ) {vsA vsB}→
AllVR ∆ vsA vsB → rel CR σ (kA ρ vsA) (kB ρ vsB)

Figure 16.2: Relational Kripke Function Spaces: From Related Inputs to Related
Outputs

Simulation Constraints

We can then combine Zip and KripkeR to formulate the core of the Simulation constraint.
It is parametrised by a description, two semantics and the two relations over values and
computations respectively mentioned earlier.

record Simulation (d : Desc I)
(SA : Semantics dVA CA) (SB : Semantics dVB CB)
(VR : RelVA VB) (CR : Rel CA CB) : Set where

The set of constraint closely matches the ones spelt out in chapter 8. We start with
a constraint thR stating that related values should still be related once thinned.

thR : (ρ : Thinning Γ ∆)→ relVR σ vA vB →

relVR σ (SA.th^V vA ρ) (SB.th^V vB ρ)

We then expect related values to yield related computations once var-wrapped.

varR : relVR σ vA vB → rel CR σ (SA.var vA) (SB.var vB)

114

16.1. Simulation Lemma

Finally, algR express the idea that two semantic objects of respective types ~ d �
(KripkeVA CA) and ~ d � (KripkeVB CB) are in simulation by using Zip to force them
to be in lock-step and KripkeR to guarantee the subterms are themselves in simulation.

algR : (b : ~ d � (Scope (Tm d s)) σ Γ)→ AllVR Γ ρA ρB →

let vA = fmap d (SA.body ρA) b
vB = fmap d (SB.body ρB) b

in Zip d (KripkeR VR CR) vA vB → rel CR σ (SA.alg vA) (SB.alg vB)

Fundamental Lemma of Simulations

The fundamental lemma of simulations is a generic theorem showing that for each pair
of Semantics respecting the Simulation constraints, we get related computations given
environments of related input values. This theorem is once more mutually proven with
a statement about Scopes, and Sizes play a crucial role in ensuring that the function is
indeed total.

sim : AllVR Γ ρA ρB → (t : Tm d s σ Γ)→
rel CR σ (SA.semantics ρA t) (SB.semantics ρB t)

body : AllVR Γ ρA ρB → ∀ ∆ j→ (t : Scope (Tm d s) ∆ j Γ)→
KripkeR VR CR ∆ j (SA.body ρA ∆ j t) (SB.body ρB ∆ j t)

sim ρR (‘var k) = varR (lookupR ρR k)
sim ρR (‘con t) = algR t ρR (zip d (body ρR) t)

body ρR [] i t = sim ρR t
body ρR (_ :: _) i t = λ σ vsR → sim (vsR >>R (thR σ <$>R ρR)) t

Figure 16.3: Fundamental Lemma of Simulations

Applications

Instantiating this generic simulation lemma, we can for instance get that renaming and
substitution are extensional (cf. fig. 16.4, given extensionally equal environments they
produce syntactically equal terms), or that renaming is a special case of substitution
(cf. fig. 16.5). Of course these results are not new but having them generically over
all syntaxes with binding is convenient; which we have experienced first hand when
tackling the POPLMark Reloaded challenge (2018).

When studying specific languages, new opportunities to deploy the fundamental
lemma of simulations arise. Our solution to the POPLMark Reloaded challenge for
instance describes the fact that (sub ρ t) reduces to (sub ρ’ t) whenever for all v, ρ(v)
reduces to ρ’(v) as a Simulation. The main theorem (strong normalisation of STLC via
a logical relation) is itself an instance of (the unary version of) the simulation lemma,
that is to say the fundamental lemma of logical predicates.

115

16. Building Generic Proofs about Generic Programs

RenExt : Simulation d Renaming Renaming EqR EqR

RenExt .thR = λ ρ→ cong (lookup ρ)
RenExt .varR = cong ‘var
RenExt .algR = λ _ _→

cong ‘con ◦ zip^reify EqR (reifyR EqR EqR (vl^Refl vl^Var)) d

SubExt : Simulation d Substitution Substitution EqR EqR

SubExt .thR = λ ρ→ cong (ren ρ)
SubExt .varR = id
SubExt .algR = λ _ _→

cong ‘con ◦ zip^reify EqR (reifyR EqR EqR (vl^Refl vl^Tm)) d

Figure 16.4: Self-Simulation: Renaming and Substitution are Extensional

RenSub : Simulation d Renaming Substitution VarTmR EqR

RenSub .varR = id
RenSub .thR = λ ρ→ cong (λ t→ th^Tm t ρ)
RenSub .algR = λ _ _→

cong ‘con ◦ zip^reify VarTmR (reifyR VarTmR EqR vl^VarTm) d

rensub : (ρ : Thinning Γ ∆) (t : Tm d∞ σ Γ)→ ren ρ t ≡ sub (‘var <$> ρ) t
rensub ρ = Simulation.sim RenSub (packR (λ _→ refl))

Figure 16.5: Renaming as a Substitution via Simulation

The simulation proof framework is the simplest examples of the abstract proof
frameworks we introduced in part 1 for the specific case of STLC. We also explained
how a similar framework can be defined for fusion lemmas and deploy it for the
renaming-substitution interactions but also their respective interactions with normalisa-
tion by evaluation. Now that we are familiarised with the techniques at hand, we can
tackle this more complex example for all syntaxes definable in our framework.

16.2 Fusion Lemma

Results which can be reformulated as the ability to fuse two traversals obtained as
Semantics into one abound. When claiming that Tm is a Functor, we have to prove
that two successive renamings can be fused into a single renaming where the Thinnings
have been composed. Similarly, demonstrating that Tm is a relative Monad (Altenkirch
et al. [2014]) implies proving that two consecutive substitutions can be merged into a
single one whose environment is the first one, where the second one has been applied in

116

16.2. Fusion Lemma

a pointwise manner. The Substitution Lemma central to most model constructions (see
for instance Mitchell and Moggi [1991]) states that a syntactic substitution followed by
the evaluation of the resulting term into the model is equivalent to the evaluation of the
original term with an environment corresponding to the evaluated substitution.

A direct application of these results is our (to be published) entry to the POPLMark
Reloaded challenge (2017). By using a Desc-based representation of intrinsically well
typed and well scoped terms we directly inherit not only renaming and substitution
but also all four fusion lemmas as corollaries of our generic results. This allows us to
remove the usual boilerplate and go straight to the point. As all of these statements
have precisely the same structure, we can once more devise a framework which will,
provided that its constraints are satisfied, prove a generic fusion lemma.

Fusion is more involved than simulation so we will step through each one of the
constraints individually, trying to give the reader an intuition for why they are shaped
the way they are.

The Fusion Constraints

The notion of fusion is defined for a triple of Semantics; each Si being defined for
values inVi and computations in Ci. The fundamental lemma associated to such a set
of constraints will state that running SB after SA is equivalent to running SAB only.

The definition of fusion is parametrised by three relations: ER relates triples of
environments of values in (Γ −Env) VA ∆, (∆ −Env) VB Θ and (Γ −Env) VAB Θ

respectively;VR relates pairs of valuesVB andVAB; and CR, our notion of equivalence
for evaluation results, relates pairs of computation in CB and CAB.

record Fusion (d : Desc I) (SA : Semantics dVA CA) (SB : Semantics dVB CB)
(SAB : Semantics dVAB CAB)
(ER : ∀ Γ ∆ {Θ}→ (Γ −Env)VA ∆→ (∆ −Env)VB Θ→ (Γ −Env)VAB Θ→ Set)
(VR : RelVB VAB) (CR : Rel CB CAB) : Set where

The first obstacle we face is the formal definition of “running SB after SA”: for this
statement to make sense, the result of running SA ought to be a term. Or rather, we
ought to be able to extract a term from a CA. Hence the first constraint: the existence
of a reifyA function, which we supply as a field of the record Fusion. When dealing
with syntactic semantics such as renaming or substitution this function will be the
identity. However nothing prevents to try to prove for instance that normalisation by
evaluation is idempotent in which case a bona fide reification function extracting terms
from model values will be used.

reifyA : ∀ σ→ ∀[CA σ⇒ Tm d∞ σ]

Then, we have to think about what happens when going under a binder: SA will
produce a Kripke function space where a syntactic value is required. Provided thatVA

is VarLike, we can make use of reify to get a Scope back. Hence the second constraint.

vl^VA : VarLikeVA

117

16. Building Generic Proofs about Generic Programs

We can combine these two functions to define the reification procedure we will use
in practice when facing Kripke function spaces: quoteA which takes such a function
and returns a term by first feeding placeholder values to the Kripke function space and
getting a CA back and then reifying it thanks to reifyA.

quoteA : ∀ ∆ i→ KripkeVA CA ∆ i Γ→ Tm d∞ i (∆ ++ Γ)
quoteA ∆ i k = reifyA i (reify vl^VA ∆ i k)

Still thinking about going under binders: if three evaluation environments ρA of
type (Γ −Env)VA ∆,VB in (∆ −Env)VB Θ, and ρAB in (Γ −Env)VAB Θ are related
by ER and we are given a thinning ρ from Θ to Ω then ρA, the thinned VB and the
thinned ρAB should still be related.

th^ER : ER Γ ∆ ρA ρB ρAB → (ρ : Thinning Θ Ω)→
ER Γ ∆ ρA (th^Env SB.th^V ρB ρ) (th^Env SAB.th^V ρAB ρ)

Remembering that _>>_ is used in the definition of body (cf. fig. 14.4) to combine
two disjoint environments (Γ −Env)V Θ and (∆ −Env)V Θ into one of type ((Γ ++
∆) −Env) V Θ), we mechanically need a constraint stating that _>>_ is compatible
with ER. We demand as an extra precondition that the values ρB and ρAB are extended
with are related in a pointwise manner according to VR. Lastly, for all the types to
match up, ρA has to be extended with placeholder variables which we can do thanks to
the VarLike constraint vl^VA.

>>R : ER Γ ∆ ρA ρB ρAB → AllVR Θ vsB vsAB →

let id>>ρA = freshl vl^VA ∆ >> th^Env SA.th^V ρA (freshr vl^Var Θ)
in ER (Θ ++ Γ) (Θ ++ ∆) id>>ρA (vsB >> ρB) (vsAB >> ρAB)

We finally arrive at the constraints focusing on the semantical counterparts of the
terms’ constructors. In order to have readable type we introduce an auxiliary definition
R. Just like in chapter 9, it relates at a given type a term and three environments by
stating that sequentially evaluating the term in the first and then the second environment
on the one hand and directly evaluating the term in the third environment on the other
yields related computations.

R : ∀ σ→ (Γ −Env)VA ∆→ (∆ −Env)VB Θ→ (Γ −Env)VAB Θ→

Tm d s σ Γ→ Set
R σ ρA ρB ρAB t = rel CR σ (evalB ρB (reifyA σ (evalA ρA t))) (evalAB ρAB t)

As one would expect, the varR constraint states that from related environments the
two evaluation processes described by R yield related outputs.

varR : ER Γ ∆ ρA ρB ρAB → ∀ v→ R σ ρA ρB ρAB (‘var v)

The case of the algebra follows a similar idea albeit being more complex. It states
that we should be able to prove that a ‘con-headed term’s evaluations are related
according to R provided that the evaluation of the constructor’s body one way or the
other yields structurally similar results (hence the use of the (Zip d) relation transformer

118

16.2. Fusion Lemma

defined in chapter 16) where the relational Kripke function space relates the semantical
objects one can find in place of the subterms.

algR : ER Γ ∆ ρA ρB ρAB → (b : ~ d � (Scope (Tm d s)) σ Γ)→
let bA : ~ d � (KripkeVA CA) _ _

bA = fmap d (SA.body ρA) b
bB = fmap d (λ ∆ i→ SB.body ρB ∆ i ◦ quoteA ∆ i) bA

bAB = fmap d (SAB.body ρAB) b
in Zip d (KripkeR VR CR) bB bAB → R σ ρA ρB ρAB (‘con b)

Fundamental Lemma of Fusion

This set of constraint is enough to prove a fundamental lemma of Fusion stating that
from a triple of related environments, one gets a pair of related computations: the
composition of SA and SB on one hand and SAB on the other.

fusion : ER Γ ∆ ρA ρB ρAB → (t : Tm d s σ Γ)→ R σ ρA ρB ρAB t

Figure 16.6: Statement of the Fundamental Lemma of Fusion

This lemma is once again proven mutually with its counterpart for Semantics’
body’s action on Scopes: given related environments and a scope, the evaluation of
the recursive positions using SA followed by their reification and their evaluation in
SB should yield a piece of data structurally equal to the one obtained by using SAB

instead where the values replacing the recursive substructures are KripkeR-reladed.

body : ER Γ ∆ ρA ρB ρAB → ∀ ∆ σ→ (b : Scope (Tm d s) ∆ σ Γ)→
let vB = SB.body ρB ∆ σ (quoteA ∆ σ (SA.body ρA ∆ σ b))

vAB = SAB.body ρAB ∆ σ b
in KripkeR VR CR ∆ σ vB vAB

Figure 16.7: Statement of the Fundamental Lemma of Fusion for Bodies

The proofs involve two functions we have not mentiond before: zip maps a proof
that a property holds for any recursive substructure over the arguments of constructor
to obtain a Zip object. The proof we obtain does not exactly match the premise in algR;
we need to adjust it by rewriting an fmap-fusion equality called fmap2.

Applications

A direct consequence of this result is the four lemmas collectively stating that any pair
of renamings and / or substitutions can be fused together to produce either a renaming
(in the renaming-renaming interaction case) or a substitution (in all the other cases).

119

16. Building Generic Proofs about Generic Programs

fusion ρR (‘var v) = varR ρR v
fusion ρR (‘con t) = algR ρR t (rew (zip d (body ρR) t)) where

eq = fmap2 d (SA.body _) (λ ∆ i t→ SB.body _ ∆ i (quoteA ∆ i t)) t
rew = subst (λ v→ Zip d (KripkeR VR CR) v _) (sym eq)

body ρR [] i b = fusion ρR b
body ρR (σ :: ∆) i b = λ ρ vsR → fusion (th^ER ρR ρ >>R vsR) b

Figure 16.8: Proof of the Fundamental Lemma of Fusion

One such example is the fusion of substitution followed by renaming into a single
substitution where the renaming has been applied to the environment.

subren : (t : Tm d i σ Γ) (ρ1 : (Γ −Env) (Tm d∞) ∆) (ρ2 : Thinning ∆ Θ)→
ren ρ2 (sub ρ1 t) ≡ sub (ren ρ2 <$> ρ1) t

Figure 16.9: Generic Substitution-Renaming Fusion Principle

All four lemmas are proved in rapid succession by instantiating the Fusion frame-
work four times, using the first results to discharge constraints in the later ones. The
last such result is the generic fusion result for substitution with itself.

sub2 : (t : Tm d i σ Γ) (ρ1 : (Γ −Env) (Tm d∞) ∆) (ρ2 : (∆ −Env) (Tm d∞) Θ)→
sub ρ2 (sub ρ1 t) ≡ sub (sub ρ2 <$> ρ1) t

Figure 16.10: Generic Substitution-Substitution Fusion Principle

Another corollary of the fundamental lemma of fusion is the observation that
Kaiser, Schäfer, and Stark (2018) make: assuming functional extensionality, all of
our kind-and-scope safe traversals are compatible with variable renaming. We can
reproduce this result generically for all syntaxes (see accompanying code) but refrain
from using it in practice when an axiom-free alternative is provable.

120

Chapter 17

Conclusion

17.1 Summary

In the first half of this thesis, we have expanded on the work published in Allais et al.
[2017a]. Starting from McBride’s Kit (2005) making explicit the common structure of
renaming and substitution, we observed that normalisation by evaluation had a similar
shape. This led us to defining a notion of type-and-scope preserving Semantics where,
crucially, λ-abstraction is interpreted as a Kripke function space. This pattern was
general enough to encompass not only renaming, substitution and normalisation by
evaluation but also printing with names, continuation passing style transformations and
as we have seen later on even let-inlining, typechecking and elaboration to a typed core
language.

Once this shared structure was highlighted, we took advantage of it and designed
proof frameworks to prove simulation lemmas and fusion principles for the traversals
defined as instances of Semantics. These allowed us to prove, among other things,
that syntactic traversals are extensional, that multiple renamings and substitutions can
be fused in a single pass and that the substitution lemma holds for NBE’s evaluation.
Almost systematically, previous results where used to discharge the goals arising in the
later proofs.

In the second half, we have built on the work published in Allais et al. [2018a]. By
extending Chapman, Dagand, McBride, and Morris’ universe of datatype descriptions
(2010) to support a notion of binding, we have given a generic presentation of syntaxes
with binding. We then defined a generic notion of type-and-scope preserving Seman-
tics for these syntaxes with binding. It captures a large class of scope-and-type safe
generic programs: from renaming and substitution, to normalisation by evaluation, the
desugaring of new constructors added by a language transformer, printing with names
or typechecking.

We have seen how to construct generic proofs about these generic programs. We
first introduced a simulation relation showing what it means for two semantics to yield
related outputs whenever they are fed related inputs. We then built on our experience
to tackle a more involved case: identifying a set of constraints guaranteeing that two
semantics run consecutively can be subsumed by a single pass of a third one.

121

17. Conclusion

We have put all of these results into practice by using them to solve the (to be
published) POPLMark Reloaded challenge which consists in formalising strong nor-
malisation for the simply typed λ-calculus via a logical-relation argument. This also
gave us the opportunity to try our framework on larger languages by tackling the chal-
lenge’s extensions to sum types and Gödel’s System T. Compared to the Coq solution
contributed by our co-authors, we could not rely on tactics and had to write all proof
terms by hand. However the expressiveness of dependently-typed pattern-matching,
the power of size-based termination checking and the consequent library we could rely
on thanks to the work presented in this thesis meant that our proofs were just as short
as the tactics-based ones.

17.2 Further Work

The diverse influences leading to this work suggest many opportunities for future
research.

Total Compilers with Typed Intermediate Representations

Some of our core examples of generic semantics correspond to compiler passes:
desugaring, elaboration to a typed core, type-directed partial evaluation, or CPS trans-
formation. This raises the question of how many such common compilation passes can
be implemented generically.

Other semantics such as printing with names or a generic notion of raw terms
together with a generic scope checker (not shown here but available in Allais et al.
[2018b]) are infrastructure a compiler would have to rely on. Together with our library
of total parser combinators (Allais [2018]) and our declarative syntax for defining
hierarchical command line interfaces (Allais [2017]), this suggests we are close to
being able to define an entire (toy) compiler with strong invariants enforced in the
successive intermediate representations.

To tackle modern languages with support for implicit arguments, a total account of
(higher-order) unification is needed. It would ideally be defined generically over our
notion of syntax thus allowing us to progressively extend our language as we see fit
without having to revisit that part of the compiler.

Generic Meta-Theory

If we cannot use our descriptions to define an intrinsically-typed syntax for a dependently-
typed theory, we can however give a well-scoped version and then define typing
judgments. When doing so we have a lot of freedom in how we structure them and
a natural question to ask is whether we can identify a process which will always
give us judgments with good properties e.g. stability under substitution or decidable
typechecking.

We can in fact guarantee such results by carefully managing the flow of information
in the judgments and imposing that no information ever comes out of nowhere. This
calls for the definition of a universe of typing judgments and the careful analysis of its
properties.

122

17.2. Further Work

A Theory of Ornaments for Syntaxes

The reseach programme introduced by McBride’s unpublished paper introducing
ornaments for inductive families (2017) allows users to make explicit the fact that some
inductive families are refinements of others. Once their shared structure is known, the
machine can assist the user in transporting an existing codebase from the weakly-typed
version of the datatype to its strongly typed variant (Dagand and McBride [2014]).
These ideas can be useful even in ML-style settings (Williams et al. [2014]).

Working out a similar notion of ornaments for syntaxes would yield similar benefits
but for manipulating binding-aware families. This is particularly evident when consider-
ing the elaboration semantics which given a scoped term produces a scoped-and-typed
term by type-checking or type-inference.

If the proofs we developped in this thesis would still be out of reach for ML-
style languages, the programming part can be replicated using the usual Generalised
Algebraic Data Types (GADTs) based encodings (Danvy et al. [2013], Lindley and
McBride [2014]) and could thus still benefit from such ornaments being made first
order.

Derivatives of Syntaxes

Our work on the POPLMark Reloaded challenge highlighted a need for a generic
definition of evaluation contexts (i.e. terms with holes), congruence closures and the
systematic study of their properties. This would build on the work of Huet (1997) and
Abbott, Altenkirch, McBride and Ghani (2005) and would allow us to revisit previous
work based on concrete instances of our Semantics-based approach to formalising
syntaxes with binding such as McLaughlin, McKinna and Stark (2018).

123

List of Figures

3.1 Well-Scoped Untyped Lambda Calculus as the Fixpoint of a Functor . . . 15
3.2 Types used in our Running Example . 16
3.3 Grammar of our Language . 16
3.4 Typed and Scoped Definitions . 17
3.5 Well Scoped and Typed de Bruijn indices 17
3.6 Well Scoped and Typed Calculus . 18

4.1 Renaming and Substitution for the STλC 20
4.2 Kitas a set of constraints on � . 20
4.3 Fundamental lemma of Kit . 21
4.4 Kitfor Renaming, Renaming as a Corrolary of kit 21
4.5 Kitfor Substitution, Substitution as a Corrolary of kit 21
4.6 Normalisation by Evaluation for the STλC 22
4.7 Generic Notion of Environment . 23
4.8 Empty Environment . 23
4.9 Environment Extension . 23
4.10 Thinnings: A Special Case of Environments 24
4.11 Examples of Thinning Combinators . 24
4.12 The �Functor is a Comonad . 24
4.13 Thinning Principle and the Cofree Thinnable � 25
4.14 Thinnable Instances for Variables and Environments 25
4.15 Generic Notion of Computation . 26
4.16 Fundamental Lemma of Semantics . 27
4.17 Every Syntacticgives rise to a Semantics 28
4.18 Thinning as a SyntacticInstance . 28
4.19 Parallel Substitution as a SyntacticInstance 29
4.20 Names and Printer for the Printing Semantics 29
4.21 Printer . 31
4.22 Printing an Open Term . 31

5.1 η-expansion and β-reduction in terms or th^Termand sub 33
5.2 βη Rules for our Calculus . 34
5.3 ιξ Rules for our Calculus . 34
5.4 Neutral and Normal Forms . 35

125

List of Figures

5.5 Model for Normalisation by Evaluation 35
5.6 Values in the Model are Thinnable . 35
5.7 Semantic Counterpart of ‘app . 36
5.8 Reify and Reflect . 36
5.9 Semantic Counterpart of ‘ifte . 37
5.10 Evaluation is a Semantics . 37
5.11 Normalisation as Reification of an Evaluated Term 37
5.12 Model Definition for βιξ . 38
5.13 The Modelis Thinnable . 38
5.14 Reflect, Reify and Interpretation for Fresh Variables 39
5.15 Semantical Counterpart of ‘app . 39
5.16 Semantical Counterpart of ‘ifte . 40
5.17 Weak-Head Normal and Neutral Forms 41
5.18 Model Definition for Computing Weak-Head Normal Forms 41
5.19 Semantical Counterparts of ‘appand ‘ifte 42
5.20 Semantical Counterparts of ‘lam . 42

6.1 Inductive Definition of Types for Moggi’s ML 43
6.2 Definition of Moggi’s Meta Language 44
6.3 Translation of Typein a Call by Name style 44
6.4 ·−ScopedTransformer for Call by Name 45
6.5 Semantical Counterparts for ‘appand ‘ifte 45
6.6 Translation of Typein a Call by Value style 45
6.7 Values and Computations for the CBNCPS Semantics 46
6.8 Semantical Counterparts for ‘app . 46
6.9 Translating Moggi’s ML’s Types to STLC Types 47

8.1 Relation Between (I−Scoped) Families 54
8.2 Relation Between Environments of Values 54
8.3 Relational Kripke Function Spaces: From Related Inputs to Related Outputs 55
8.4 Fundamental Lemma of Simulations . 56
8.5 Syntactic Traversals are in Simulation with Themselves 57
8.6 Syntactic Traversals are Extensional . 57
8.7 Characterising Equal Variables and Terms 58
8.8 Renaming is in Simulation with Substitution 58
8.9 Renaming as a Substitution . 58
8.10 Exotic Value, Not Quite Equal to Negation 59
8.11 Partial Equivalence Relation for Model Values 59
8.12 Stability of the PER under Thinning . 59
8.13 Relational Versions of Reify and Reflect 60
8.14 Relational If-Then-Else . 60
8.15 Normalisation by Evaluation is in PER-Simulation with Itself 61
8.16 Normalisation in PER-related Environments Yields Equal Normal Forms 61

9.1 Fundamental Lemma of Syntactic Fusions 67
9.2 Syntactic Fusion of Two Renamings . 67

126

List of Figures

9.3 Corollary: Renaming Fusion Law . 68
9.4 Renaming - Substitution Fusion Law . 68
9.5 Substitution - Renaming Fusion Law . 68
9.6 Substitution Fusion Law . 69
9.7 Relational Application . 69
9.8 Relational If-Then-Else . 70
9.9 Renaming Followed by Evaluation is an Evaluation 70
9.10 Corollary: Fusion Principle for Renaming followed by Evaluation 71
9.11 Constraints on Triples of Environments for the Substitution Lemma . . . 71
9.12 Substitution Followed by Evaluation is an Evaluation 72

11.1 Source and Target Languages . 79
11.2 Let-Inlining Traversal . 80
11.3 Operational Semantics for the Source Language 80

12.1 Datatype Descriptions . 83
12.2 Descriptions’ meanings as Functors . 84
12.3 The Description of the base functor for ListA 84
12.4 The Description of the base functor for VecAn 84
12.5 Action on Morphisms of the Functor corresponding to a Description . . . 85
12.6 Least Fixpoint of an Endofunctor and Corresponding Generic Fold 85

13.1 Syntax Descriptions . 87
13.2 Descriptions’ Meanings . 88
13.3 De Bruijn Scopes . 88
13.4 Action of Syntax Functors on Morphism 88
13.5 Term Trees: The Free Var-Relative Monads on Descriptions 89
13.6 Type of Closed Terms . 89
13.7 Description of The Untyped Lambda Calculus 89
13.8 Description of the Simply Typed Lambda Calculus 90
13.9 Recovering Readable Syntax via Pattern Synonyms 90
13.10Descriptions are Closed Under Disjoint Sums 91
13.11Descriptions are Closed Under Finite Product of Recursive Positions . . . 91
13.12Breaking Down a Finite Product of Recursive Positions 92

14.1 _−Comp: Associating Computations to Terms 94
14.2 Statement of the Fundamental Lemma of Semantics 94
14.3 Proof of the Fundamental Lemma of Semantics– semantics 95
14.4 Proof of the Fundamental Lemma of Semantics– body 95
14.5 Special Case: Fundamental Lemma of Semanticsfor Closed Terms . . . 95
14.6 Renaming: A Generic Semantics for Syntaxes with Binding 96
14.7 Corollary: Generic Thinning . 96
14.8 Generic Parallel Substitution for All Syntaxes with Binding 96
14.9 VarLike: Thinnableand with placeholder values 97
14.10Generic Reification thanks to VarLikeValues 97
14.11Description of a Single Let Binding . 97

127

List of Figures

14.12Let-Elaboration as a Semantics . 98
14.13Corollary: Let-Elaboration via Evaluation with Placeholders 98
14.14Corollary: Let-Elaboration via Evaluation with Placeholders 99
14.15Evaluation as a Semantics . 100
14.16Generic Reification via sequenceA . 100
14.17Normalisation by Evaluation . 100
14.18Normalisation for the Untyped λ-calculus 101
14.19Normalization Example . 101
14.20Interpretation of Recursive Substructures: Printing Pieces 101
14.21Reification: from Kripke Functions to Pieces 102
14.22Syntax-Specific DisplayInstructions . 102
14.23Printing as a Generic Semantics . 102
14.24Printer for closed terms . 103
14.25Display Directive for STLC . 103

15.1 Modes and Types . 105
15.2 A Bidirectional Simply Typed Language 106
15.3 Values as Type Assignments for Variables 106
15.4 Computations as Mode-indexed Type Checking or Inference 106
15.5 Typechecking as a Semantics . 107
15.6 Type Inference and Type Checking as Mode-indexed Semantics 108
15.7 Typing: From Contexts of Modes to Contexts of Types 108
15.8 Elaboration of a Scoped Family . 109
15.9 Values as Variables and Inference Functions 109
15.10Computations as Mode-indexed Elaboration Functions 109
15.11Informative Equality Check and Arrow View 109
15.12Elaboration of Applications . 110
15.13Elaboration of Lambda-Abstraction . 110
15.14Elaboration of Embedding . 111
15.15Elaboration as a Semantics . 111

16.1 Zip: Characterising Structurally Equal Values with Related Substructures 114
16.2 Relational Kripke Function Spaces: From Related Inputs to Related Outputs114
16.3 Fundamental Lemma of Simulations . 115
16.4 Self-Simulation: Renaming and Substitution are Extensional 116
16.5 Renaming as a Substitution via Simulation 116
16.6 Statement of the Fundamental Lemma of Fusion 119
16.7 Statement of the Fundamental Lemma of Fusion for Bodies 119
16.8 Proof of the Fundamental Lemma of Fusion 120
16.9 Generic Substitution-Renaming Fusion Principle 120
16.10Generic Substitution-Substitution Fusion Principle 120

128

Bibliography

M. Abbott, T. Altenkirch, C. McBride, and N. Ghani. ∂ for data: Differentiating data
structures. Fundamenta Informaticae, 65(1-2):1–28, 2005.

A. Abel. Miniagda: Integrating sized and dependent types. In A. Bove, E. Komen-
dantskaya, and M. Niqui, editors, Proceedings Workshop on Partiality and Recursion
in Interactive Theorem Provers, PAR 2010, Edinburgh, UK, 15th July 2010., vol-
ume 43 of EPTCS, pages 14–28, 2010. doi: 10.4204/EPTCS.43.2.

A. Abel and J. Chapman. Normalization by evaluation in the delay monad. MSFP
2014, 2014.

A. Abel, B. Pientka, D. Thibodeau, and A. Setzer. Copatterns: programming infinite
structures by observations. In ACM SIGPLAN Notices, volume 48, pages 27–38.
ACM, 2013a.

A. Abel, B. Pientka, D. Thibodeau, and A. Setzer. Copatterns: Programming infinite
structures by observations. pages 27–38, 2013b. URL http://dl.acm.org/
citation.cfm?id=2429069.

A. Abel, A. Momigliano, and B. Pientka. Poplmark reloaded. Proceedings of the
Logical Frameworks and Meta-Languages: Theory and Practice Workshop, 2017.

A. Abel, G. Allais, S. Schäfer, A. Hameer, A. Momigliano, B. Pientka, and K. Stark.
Poplmark reloaded: Mechanizing proofs by logical relations. Submitted to Journal
of Functional Programming, 2018.

G. Allais. agdARGS – Declarative hierarchical command line interfaces. In TTT : Type
Theory Based Tools, 2017.

G. Allais. agdarsec – Total parser combinators. In JFLA 2018 Journées Francophones
des Langages Applicatifs, page 45, 2018.

G. Allais, C. McBride, and P. Boutillier. New equations for neutral terms: A sound and
complete decision procedure, formalized. In Proceedings of the 2013 ACM SIGPLAN
Workshop on Dependently-typed Programming, DTP ’13, pages 13–24, New York,
NY, USA, 2013. ACM. ISBN 978-1-4503-2384-0. doi: 10.1145/2502409.2502411.
URL http://doi.acm.org/10.1145/2502409.2502411.

129

http://dl.acm.org/citation.cfm?id=2429069
http://dl.acm.org/citation.cfm?id=2429069
http://doi.acm.org/10.1145/2502409.2502411

Bibliography

G. Allais, J. Chapman, C. McBride, and J. McKinna. Type-and-scope safe programs
and their proofs. In Proceedings of the 6th ACM SIGPLAN Conference on Certified
Programs and Proofs, CPP 2017, pages 195–207. ACM, 2017a. ISBN 978-1-4503-
4705-1. doi: 10.1145/3018610.3018613.

G. Allais, J. Chapman, C. McBride, and J. McKinna. Type-and-scope safe programs
and their proofs – agda formalization, 2017b. Also from github https://github.
com/gallais/type-scope-semantics.

G. Allais, R. Atkey, J. Chapman, C. McBride, and J. McKinna. A type and scope safe
universe of syntaxes with binding: Their semantics and proofs. Proc. ACM Program.
Lang., 2(ICFP):90:1–90:30, July 2018a. ISSN 2475-1421. doi: 10.1145/3236785.
URL http://doi.acm.org/10.1145/3236785.

G. Allais, R. Atkey, J. Chapman, C. McBride, and J. McKinna. A type and scope safe
universe of syntaxes with binding: Their semantics and proofs – agda formalization,
2018b. From github https://github.com/gallais/generic-syntax.

T. Altenkirch and B. Reus. Monadic presentations of lambda terms using generalized
inductive types. In CSL, pages 453–468. Springer, 1999.

T. Altenkirch, M. Hofmann, and T. Streicher. Categorical reconstruction of a reduction
free normalization proof. In LNCS, volume 530, pages 182–199. Springer, 1995.

T. Altenkirch, J. Chapman, and T. Uustalu. Monads Need Not Be Endofunctors,
pages 297–311. Springer, 2010. ISBN 978-3-642-12032-9. doi: 10.1007/

978-3-642-12032-9_21.

T. Altenkirch, J. Chapman, and T. Uustalu. Relative monads formalised. Journal of
Formalized Reasoning, 7(1):1–43, 2014. ISSN 1972-5787.

R. Atkey. An algebraic approach to typechecking and elab-
oration. 2015. URL http://bentnib.org/posts/
2015-04-19-algebraic-approach-typechecking-and-elaboration.
html.

F. Bellegarde and J. Hook. Substitution: A formal methods case study using monads
and transformations. Science of Computer Programming, 23(2):287 – 311, 1994.
ISSN 0167-6423.

M. Benke, P. Dybjer, and P. Jansson. Universes for generic programs and proofs in
dependent type theory. Nordic J. of Computing, 10(4):265–289, Dec. 2003. ISSN
1236-6064. URL http://dl.acm.org/citation.cfm?id=985799.985801.

N. Benton, C.-K. Hur, A. J. Kennedy, and C. McBride. Strongly typed term representa-
tions in Coq. JAR, 49(2):141–159, 2012.

U. Berger. Program extraction from normalization proofs. In TLCA, pages 91–106.
Springer, 1993.

130

https://github.com/gallais/type-scope-semantics
https://github.com/gallais/type-scope-semantics
http://doi.acm.org/10.1145/3236785
https://github.com/gallais/generic-syntax
http://bentnib.org/posts/2015-04-19-algebraic-approach-typechecking-and-elaboration.html
http://bentnib.org/posts/2015-04-19-algebraic-approach-typechecking-and-elaboration.html
http://bentnib.org/posts/2015-04-19-algebraic-approach-typechecking-and-elaboration.html
http://dl.acm.org/citation.cfm?id=985799.985801

Bibliography

U. Berger and H. Schwichtenberg. An inverse of the evaluation functional for typed
λ-calculus. In LICS, pages 203–211. IEEE, 1991.

J.-P. Bernardy. A pretty but not greedy printer (functional pearl). Proc. ACM Program.
Lang., 1(ICFP):6:1–6:21, Aug. 2017. ISSN 2475-1421. doi: 10.1145/3110250. URL
http://doi.acm.org/10.1145/3110250.

J.-P. Bernardy and G. Moulin. Type-theory in color. SIGPLAN Notices, 48(9):61–72,
2013.

R. S. Bird and R. Paterson. de Bruijn notation as a nested datatype. Journal of
Functional Programming, 9(1):77–91, 1999.

J. Carette, O. Kiselyov, and C.-c. Shan. Finally tagless, partially evaluated. JFP, 2009.

J. Chapman, P.-E. Dagand, C. McBride, and P. Morris. The gentle art of levitation. In
Proceedings of the 15th ACM SIGPLAN International Conference on Functional
Programming, ICFP ’10, pages 3–14. ACM, 2010. ISBN 978-1-60558-794-3. doi:
10.1145/1863543.1863547.

J. M. Chapman. Type checking and normalisation. PhD thesis, University of Notting-
ham (UK), 2009.

A. Chlipala. Parametric higher-order abstract syntax for mechanized semantics. In
ACM Sigplan Notices, volume 43, pages 143–156. ACM, 2008.

C. Coquand. A formalised proof of the soundness and completeness of a simply
typed lambda-calculus with explicit substitutions. Higher-Order and Symbolic
Computation, 15(1):57–90, 2002.

T. Coquand and P. Dybjer. Intuitionistic model constructions and normalization proofs.
MSCS, 7(01):75–94, 1997.

P.-E. Dagand and C. McBride. Transporting functions across ornaments. Jour-
nal of Functional Programming, 24(2-3):316–383, 2014. doi: 10.1017/

S0956796814000069.

N. A. Danielsson and U. Norell. Parsing mixfix operators. In S.-B. Scholz and O. Chitil,
editors, Implementation and Application of Functional Languages, pages 80–99,
Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. ISBN 978-3-642-24452-0.

O. Danvy. Type-directed partial evaluation. In Partial Evaluation, pages 367–411.
Springer, 1999.

O. Danvy, C. Keller, and M. Puech. Tagless and typeful normalization by evaluation
using generalized algebraic data types. 2013.

N. G. de Bruijn. Lambda Calculus notation with nameless dummies. In Indagationes
Mathematicae, volume 75, pages 381–392. Elsevier, 1972.

131

http://doi.acm.org/10.1145/3110250

Bibliography

P. Dybjer. Inductive sets and families in Martin- Löf’s type theory and their set-theoretic
semantics. Logical Frameworks, 2:6, 1991.

P. Dybjer. Inductive families. Formal aspects of computing, 6(4):440–465, 1994.

P. Dybjer and A. Setzer. A Finite Axiomatization of Inductive-Recursive Definitions,
pages 129–146. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999. ISBN
978-3-540-48959-7. doi: 10.1007/3-540-48959-2_11.

A. Gill. Domain-specific languages and code synthesis using Haskell. Queue, 12(4):
30, 2014.

J.-Y. Girard. Interprétation fonctionelle et élimination des coupures de l’arithmétique
d’ordre supérieur. 1972.

H. Goguen and J. McKinna. Candidates for substitution. LFCS, Edinburgh Techreport,
1997.

J. Hatcliff and O. Danvy. A generic account of continuation-passing styles. In Proceed-
ings of the 21st ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 458–471. ACM, 1994.

P. Hudak. Building domain-specific embedded languages. ACM Computing Surveys
(CSUR), 28(4es):196, 1996.

G. Huet. The zipper. Journal of Functional Programming, 7(5):549–554, 1997.

J. Hughes. The design of a pretty-printing library. In AFP Summer School, pages
53–96. Springer, 1995.

A. Jeffrey. Associativity for free! http://thread.gmane.org/gmane.comp.lang.
agda/3259, 2011.

S. L. P. Jones and J. Launchbury. Unboxed values as first class citizens in a non-strict
functional language. In J. Hughes, editor, Functional Programming Languages and
Computer Architecture, pages 636–666, Berlin, Heidelberg, 1991. Springer Berlin
Heidelberg. ISBN 978-3-540-47599-6.

J. Kaiser, S. Schäfer, and K. Stark. Binder aware recursion over well-scoped de bruijn
syntax. In Proceedings of the 7th ACM SIGPLAN International Conference on
Certified Programs and Proofs, CPP 2018, pages 293–306. ACM, 2018. ISBN 978-
1-4503-5586-5. doi: 10.1145/3167098. URL http://doi.acm.org/10.1145/
3167098.

A. W. Keep and R. K. Dybvig. A nanopass framework for commercial compiler devel-
opment. SIGPLAN Not., 48(9):343–350, Sept. 2013. ISSN 0362-1340. doi: 10.1145/

2544174.2500618. URL http://doi.acm.org/10.1145/2544174.2500618.

S. Lindley and C. McBride. Hasochism. SIGPLAN Notices, 48(12):81–92, 2014.

132

http://thread.gmane.org/gmane.comp.lang.agda/3259
http://thread.gmane.org/gmane.comp.lang.agda/3259
http://doi.acm.org/10.1145/3167098
http://doi.acm.org/10.1145/3167098
http://doi.acm.org/10.1145/2544174.2500618

Bibliography

G. Malcolm. Data structures and program transformation. Sci. Comput. Program., 14
(2-3):255–279, 1990. doi: 10.1016/0167-6423(90)90023-7. URL https://doi.
org/10.1016/0167-6423(90)90023-7.

P. Martin-Löf. Constructive mathematics and computer programming. Studies in Logic
and the Foundations of Mathematics, 104:153–175, 1982.

C. McBride. Type-preserving renaming and substitution. 2005.

C. McBride. Ornamental algebras, algebraic ornaments. 2017. URL https://
personal.cis.strath.ac.uk/conor.mcbride/pub/OAAO/Ornament.pdf.

C. McBride and J. McKinna. The view from the left. JFP, 14(01):69–111, 2004.

C. McBride and R. Paterson. Applicative programming with effects. Journal of
Functional Programming, 18(1):1–13, 2008. doi: 10.1017/S0956796807006326.

C. McLaughlin, J. McKinna, and I. Stark. Triangulating context lemmas. In Proceed-
ings of the 7th ACM SIGPLAN Conference on Certified Programs and Proofs, CPP
2018, pages 102–114. ACM, 2018. ISBN 978-1-4503-5586-5. doi: 10.1145/3167081.
URL http://doi.acm.org/10.1145/3167081.

J. C. Mitchell. Foundations for programming languages, volume 1. MIT press, 1996.

J. C. Mitchell and E. Moggi. Kripke-style models for typed lambda calculus. Annals
of Pure and Applied Logic, 51(1):99–124, 1991.

E. Moggi. Notions of computation and monads. Information and Computation, 93(1):
55–92, 1991.

U. Norell. Dependently typed programming in Agda. In AFP Summer School, pages
230–266. Springer, 2009.

B. C. Pierce and D. N. Turner. Local type inference. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 22(1):1–44, 2000.

J. C. Reynolds. Types, abstraction and parametric polymorphism. 1983.

J. Svenningsson and E. Axelsson. Combining deep and shallow embedding for EDSL.
In TFP, pages 21–36. Springer, 2013.

W. Swiestra. Data types à la carte. Journal of Functional Programming, 18(4):423–436,
2008. doi: 10.1017/S0956796808006758.

T. C. D. Team. The Coq proof assistant reference manual. πr2 Team, 2017. URL
http://coq.inria.fr. Version 8.6.

C. Tomé Cortiñas and W. Swierstra. From algebra to abstract machine: A verified
generic construction. In Proceedings of the 3rd ACM SIGPLAN International
Workshop on Type-Driven Development, TyDe 2018, pages 78–90, New York, NY,
USA, 2018. ACM. ISBN 978-1-4503-5825-5. doi: 10.1145/3240719.3241787. URL
http://doi.acm.org/10.1145/3240719.3241787.

133

https://doi.org/10.1016/0167-6423(90)90023-7
https://doi.org/10.1016/0167-6423(90)90023-7
https://personal.cis.strath.ac.uk/conor.mcbride/pub/OAAO/Ornament.pdf
https://personal.cis.strath.ac.uk/conor.mcbride/pub/OAAO/Ornament.pdf
http://doi.acm.org/10.1145/3167081
http://coq.inria.fr
http://doi.acm.org/10.1145/3240719.3241787

Bibliography

P. Wadler. Views: A way for pattern matching to cohabit with data abstraction.
In Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, POPL ’87, pages 307–313, New York, NY, USA, 1987.
ACM. ISBN 0-89791-215-2. doi: 10.1145/41625.41653. URL http://doi.acm.
org/10.1145/41625.41653.

P. Wadler. Deforestation: Transforming programs to eliminate trees. TCS, 73(2):
231–248, 1990.

P. Wadler. A prettier printer. The Fun of Programming, Cornerstones of Computing,
pages 223–243, 2003.

F. Wiedijk. Pollack-inconsistency. ENTCS, 285:85–100, 2012.

T. Williams, P.-E. Dagand, and D. Rémy. Ornaments in practice. In Proceedings
of the 10th ACM SIGPLAN Workshop on Generic Programming, WGP ’14, pages
15–24, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-3042-8. doi: 10.1145/

2633628.2633631. URL http://doi.acm.org/10.1145/2633628.2633631.

134

http://doi.acm.org/10.1145/41625.41653
http://doi.acm.org/10.1145/41625.41653
http://doi.acm.org/10.1145/2633628.2633631

	Introduction
	Our Contributions
	Source Material

	Introduction to Agda
	Data and (co)pattern matching
	Sized Types and Termination Checking
	Working with Indexed Families

	Type and Scope Preserving Programs, and Their Proofs
	Intrinsically Scoped and Typed Syntax
	A Primer on Scope And Type Safe Terms
	The Calculus and Its Embedding

	Refactoring Common Traversals
	McBride's Kit
	Opportunities for Further Generalizations
	A Generic Notion of Environment
	Semantics and Their Generic Evaluators
	Syntax Is the Identity Semantics
	Printing with Names

	Variations on Normalisation by Evaluation
	Normalisation by Evaluation for
	Normalisation by Evaluation for
	Normalisation by Evaluation for

	CPS Transformations
	Translation into Moggi's Meta-Language
	Translation Back from Moggi's Meta-Language

	Conclusion
	Summary
	Related Work
	Further Work

	The Simulation Relation
	Relations Between Scoped Families
	Simulation Constraints
	Fundamental Lemma of Simulations
	Syntactic Traversals are Extensional
	Renaming is a Substitution
	The PER for -Values is Closed under Evaluation

	The Fusion Relation
	Fusion Constraints
	Fundamental Lemma of Fusions
	The Special Case of Syntactic Semantics
	Interactions of Renaming and Substitution
	Other Examples of Fusions

	Conclusion
	Summary
	Related Work
	Further work

	A Universe of Well Kinded-and-Scoped Syntaxes with Binding, their Programs and Proofs
	Plea For a Universe of Syntaxes with Binding
	A Primer on the Universe of Data Types
	Descriptions and Their Meaning as Functors
	Datatypes as Least Fixpoints

	A Universe of Scope Safe and Well Kinded Syntaxes
	Descriptions and Their Meaning as Functors
	Terms as Free Relative Monads
	Common Combinators and Their Properties

	Generic Scope Safe and Well Kinded Programs for Syntaxes
	Our First Generic Programs: Renaming and Substitution
	Sugar and Desugaring as a Semantics
	(Unsafe) Normalisation by Evaluation
	Printing with Names, Generically

	Typechecking as a Semantics
	An Algebraic Approach to Typechecking
	An Algebraic Approach to Elaboration

	Building Generic Proofs about Generic Programs
	Simulation Lemma
	Fusion Lemma

	Conclusion
	Summary
	Further Work

	List of Figures
	Bibliography

