
Typing with Leftovers1

A mechanization of Intuitionistic Multiplicative-Additive Linear Logic2

Guillaume Allais3

iCIS, Radboud University Nijmegen, The Netherlands4

gallais@cs.ru.nl5

Abstract6

We start from an untyped, well-scoped λ-calculus and introduce a bidirectional typing relation correspond-7

ing to a Multiplicative-Additive Intuitionistic Linear Logic. We depart from typical presentations to adopt8

one that is well-suited to the intensional setting of Martin-Löf Type Theory. This relation is based on9

the idea that a linear term consumes some of the resources available in its context whilst leaving behind10

leftovers which can then be fed to another program.11

Concretely, this means that typing derivations have both an input and an output context. This leads to12

a notion of weakening (the extra resources added to the input context come out unchanged in the output13

one), a rather direct proof of stability under substitution, an analogue of the frame rule of separation logic14

showing that the state of unused resources can be safely ignored, and a proof that typechecking is decidable.15

Finally, we demonstrate that this alternative formalization is sound and complete with respect to a more16

traditional representation of Intuitionistic Linear Logic.17

The work has been fully formalised in Agda, commented source files are provided as additional mate-18

rial available at https://github.com/gallais/typing-with-leftovers.19

2012 ACM Subject Classification Theory of computation → Type theory,Theory of computation →20

Linear logic21

Keywords and phrases Type System, Bidirectional, Linear Logic, Agda22

Digital Object Identifier 10.4230/LIPIcs.TYPES.2017.123

Supplement Material https://github.com/gallais/typing-with-leftovers24

Funding The research leading to these results has received funding from the European Research Council25

under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement nr.26

32057127

1 Introduction28

The strongly-typed functional programming community has benefited from a wealth of optimisations29

made possible precisely because the library author as well as the compiler are aware of the type of the30

program they are working on. These optimisations have ranged from Danvy’s type-directed partial31

evaluation [18] residualising specialised programs to erasure mechanisms –be they user-guided like32

Coq’s extraction [27] which systematically removes all the purely logical proofs put in Prop by the33

developer or automated like Brady and Tejišcák’s erased values [12, 13]– and including the library34

defining the State-Thread [25] monad which relies on higher-rank polymorphism and parametricity35

to ensure the safety of using an actual mutable object in a lazy, purely functional setting.36

However, in the context of the rising development of dependently-typed programming languages [11,37

31] which, unlike ghc’s Haskell [36], incorporate a hierarchy of universes in order to ensure that the38

underlying logic is consistent, some of these techniques are not applicable anymore. Indeed, the use39

of large quantification in the definition of the ST-monad crucially relies on impredicativity. As a con-40

sequence, the specification of programs allowed to update amutable object in a safe way has to change.41

© Guillaume Allais;
licensed under Creative Commons License CC-BY

23rd International Conference on Types for Proofs and Programs (TYPES 2017).
Editors: Andreas Abel, Fredrik Nordvall Forsberg, and Ambrus Kaposi; Article No. 1; pp. 1:1–1:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gallais@cs.ru.nl
https://github.com/gallais/typing-with-leftovers
http://dx.doi.org/10.4230/LIPIcs.TYPES.2017.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1:2 Typing with Leftovers

Idris has been extended with experimental support for uniqueness types inspired by Clean’s [1] and42

Rust’s ownership types [20], all of which stem from linear logic [22].43

In order to be able to use type theory to formally study the meta-theory of the programming44

languages whose type system includes notions of linearity, we need to have a good representation of45

such constraints.46

Section 2 introduces the well-scoped untyped λ-calculus we are going to use as our language of47

raw terms. Section 3 defines the linear typing rules for this language as relations which record the48

resources consumed by a program. The next sections are dedicated to proving properties of this type49

system: Section 4 proves that the status of unused variables rightfully does not matter, Section 550

(and respectively Section 6) demonstrates that these typing relations are stable under weakening51

(respectively substitution), Section 7 demonstrates that these relations are functional, and Section 852

that they are decidable i.e. provides uswith a typechecking algorithm. Finally Section 9 goes back to a53

more traditional presentation of Intuitionistic Multiplicative-Additive Linear Logic and demonstrates54

it is equivalent to our type system.55

Notations56

This whole development has been fully formalised in Agda. Rather than using Agda’s syntax, the57

results are reformulated in terms of definitions, lemmas, theorems, and examples. However it is58

important to keep in mind the distinction between various kinds of objects. Teletype is used to59

denote data constructors, SMALL CAPITALS are characteristic of defined types. A type family’s index60

is written as a subscript e.g. VAR𝑛.61

We use two kinds of inference rules to describe inductive families: double rules are used to
define types whilst simple ones correspond to constructors. In each case the premises correspond
to arguments (usually called parameters and indices for types) and the conclusion shows the name
of the constructor. A typical example is the inductively defined set of unary natural numbers. The
inductive type is called NAT and it has two constructors: 0 takes no argument whilst 1+⋅ takes a NAT
𝑛 and represents its successor.

NAT ∶ Set
==========

0 ∶ NAT
−−−−−−−−−

𝑛 ∶ NAT

1+𝑛 ∶ NAT
−−−−−−−−−−−

2 The Calculus of Raw Terms62

The calculus we study in this paper is meant to be a core language, even though it will be rather easy63

to write programs in it. As a consequence all the design choices have been guided by the goal of64

facilitating its mechanical treatment in a dependently-typed language. That is why we use de Bruijn65

indices to represent variable bindings. We demonstrate in the code accompanying the paper how to66

combine a parser and a scope checker to turn a surface level version of the language using strings as67

variable names into this representation.68

Following Bird and Patterson [9] and Altenkirch and Reus [5], we define the raw terms of our69

language not as an inductive type but rather as an inductive family [21]. This technique, sometimes70

dubbed “type-level de Bruijn indices”, makes it possible to keep track, in the index of the family,71

of the free variables currently in scope. As is nowadays folklore, instead of using a set-indexed72

presentation where a closed terms is indexed by the empty set ⊥ and fresh variables are introduced73

by wrapping the index in a Maybe type constructor1, we index our terms by a natural number instead.74

1 The value nothing represents the fresh variable whilst the constructor just lifts the other ones in the new scope.

G. Allais 1:3

The VAR type family2 defined below represents the de Bruijn indices [19] corresponding to the 𝑛 free75

variables present in a scope 𝑛.76

𝑛 ∶ NAT

VAR𝑛 ∶ Set
============

z ∶ VAR1+𝑛
−−−−−−−−−−−−

𝑘 ∶ VAR𝑛

s 𝑘 ∶ VAR1+𝑛
−−−−−−−−−−−−−−

We present the calculus in a bidirectional fashion [32]. This definition style scales well to more77

complex type theories where full type-inference is not tractable anymore whilst keeping the type78

annotations the programmer needs to add to a minimum. The term constructors of the calculus are79

split in two different syntactic categories corresponding to constructors of canonical values on one80

hand and eliminators on the other. These categories characterise the flow of information during81

typechecking: given a context assigning a type to each free variable, canonical values (which we call82

CHECK) can be checked against a type whilst we may infer the type of computations (which we call83

INFER). Each type is indexed by a scope:84

𝑛 ∶ NAT

INFER𝑛 ∶ Set
==============

𝑛 ∶ NAT

CHECK𝑛 ∶ Set
===============

On top of the constructors onewould expect for a usual definition of the untyped λ-calculus (var ⋅,85

app ⋅ ⋅, andlam ⋅) we have constructors and eliminators for sums (inl ⋅, inr ⋅, case ⋅return ⋅of ⋅%% ⋅),86

products (prd ⋅ ,let ⋅:= ⋅in ⋅, prj1 ⋅, prj2 ⋅), unit (unit, let ⋅:= ⋅in ⋅) and void (exfalso ⋅ ⋅).87

Two additional rules (neu ⋅ and cut ⋅ ⋅ respectively) allow the embedding of INFER into CHECK and88

vice-versa. They make it possible to form redexes by embedding canonical values into computations89

and then applying eliminators to them. In terms of typechecking, they correspond to a change of90

direction between inferring and checking.91

⟨INFER𝑛⟩ ::= var ⟨VAR𝑛⟩
| app ⟨INFER𝑛⟩ ⟨CHECK𝑛⟩
| case ⟨INFER𝑛⟩ return ⟨TYPE⟩ of ⟨CHECK1+𝑛⟩ %% ⟨CHECK1+𝑛⟩
| prj1 ⟨INFER𝑛⟩ | prj2 ⟨INFER𝑛⟩
| exfalso ⟨TYPE⟩ ⟨INFER𝑛⟩
| cut ⟨CHECK𝑛⟩ ⟨TYPE⟩

⟨CHECK𝑛⟩ ::= lam ⟨CHECK1+𝑛⟩
| let ⟨PATTERN𝑚⟩:= ⟨INFER𝑛⟩in ⟨CHECK𝑚+𝑛⟩
| unit

| inl ⟨CHECK𝑛⟩ | inr ⟨CHECK𝑛⟩
| prd ⟨CHECK𝑛⟩ ⟨CHECK𝑛⟩
| neu ⟨INFER𝑛⟩

Figure 1 Grammar of the Language of Raw Terms

The constructors cut, case, and exfalso take an extra TYPE argument in order to guarantee92

the success and uniqueness of type-inference for INFER terms.93

A notable specificity of this language is the ability to use nested patterns in a let binder rather than94

having to resort to cascading lets. This is achieved thanks to a rather simple piece of kit: the PATTERN95

2 It is also known as Fin (for “finite set”) in the dependently typed programming community.

TYPES 2017

1:4 Typing with Leftovers

type family. A value of type PATTERN𝑛 represents an irrefutable pattern binding 𝑛 variables. Because96

variables are represented as de Bruijn indices, the base pattern does not need to be associated with97

a name, it simply is a constructor v binding exactly one variable. The brackets pattern ⟨⟩ matches98

unit values and binds nothing. The comma pattern constructor takes two nested patterns respectively99

binding 𝑚 and 𝑛 variables and uses them to deeply match a pair thus binding (𝑚 + 𝑛) variables.100

𝑛 ∶ NAT

PATTERN𝑛 ∶ Set
==================

v ∶ PATTERN1
−−−−−−−−−−−−−−−−

⟨⟩ ∶ PATTERN0
−−−−−−−−−−−−−−−−−

𝑝 ∶ PATTERN𝑚 𝑞 ∶ PATTERN𝑛

𝑝,𝑞 ∶ PATTERN𝑚+𝑛
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

The grammar of raw terms only guarantees that all expressions are well-scoped by construction.101

It does not impose any other constraint, which means that a user may write valid programs but also102

invalid ones as the following examples demonstrate:103

▶ Example 1. swap is a closed, well-typed linear term taking a pair as an input and swapping its104

components. It corresponds to the mathematical function (𝑥, 𝑦) ↦ (𝑦, 𝑥).105

106
swap = lam (let (v , v) := var z107

in prd (neu (var (s z))) (neu (var z)))108109

▶ Example 2. illTyped is a closed linear term. However it is manifestly ill-typed: the let-110

binding it uses tries to break down a function as if it were a pair.111

112
illTyped = let (v , v) := cut (lam (neu (var z))) (a ⊸ a)113

in prd (neu (var z)) (neu (var (s z)))114115

▶ Example 3. Finally, diagonal is a term typable in the simply-typed lambda calculus but it is116

not linear: it duplicates its input just like 𝑥 ↦ (𝑥, 𝑥) does.117

118
diagonal = lam (prd (neu (var z)) (neu (var z)))119120

3 Linear Typing Rules121

These examples demonstrate that we need to define a typing relation describing the rules terms need122

to abide by in order to qualify as well-typed linear programs. We start by defining the types our123

programs may have using the grammar in Figure 2. Apart from the usual linear type formers, we124

have a constructor κ which makes it possible to have countably many different base types.125

⟨TYPE⟩ ::= κ ⟨ℕ⟩ | 𝟘 | 𝟙
| ⟨TYPE⟩ ⊸ ⟨TYPE⟩ | ⟨TYPE⟩ ⊗ ⟨TYPE⟩
| ⟨TYPE⟩ ⊕ ⟨TYPE⟩ | ⟨TYPE⟩ & ⟨TYPE⟩

Figure 2 Grammar of TYPE

A linear type system is characterised by the fact that all the resources available in the context have126

to be used exactly once by the term being checked. In traditional presentations of linear logic this is127

achieved by representing the context as a multiset and, in each rule, cutting it up and distributing its128

parts among the premises. This is epitomised by the introduction rule for tensor.129

However, multisets are an intrinsically extensional notion and therefore quite arduous to work130

with in an intensional type theory. Various strategies can be applied to tackle this issue; most of131

them rely on using linked lists to represent contexts together with ways to reorganise the context.132

G. Allais 1:5

In Figure 3 we show two of the most common representations of the tensor rule. The first one133

splits the context into Γ and Δ and dispatches them into the subproofs; it relies on the existence134

of structural rules which the user will be able to use to reorganise the context appropriately. The135

second one is a combined rule letting the user re-arrange the context on the fly by using the notion136

of “bag-equivalence” for lists denoted _ ≈ _.137

Γ ⊢ 𝜎 Δ ⊢ 𝜏
Γ, Δ ⊢ 𝜎 ⊗ 𝜏

⊗𝑖
Γ ⊢ 𝜎 Δ ⊢ 𝜏 Γ, Δ ≈ Θ

Θ ⊢ 𝜎 ⊗ 𝜏
⊗𝑖

Figure 3 Introduction rules for tensor (left: usual presentation, right: with reordering on the fly)

In both of these cases, the user has to explicitly rearrange the context either by using structural138

rules or proving that two distinct contexts are bag equivalent. Although one can find coping mecha-139

nisms to handle such clunky systems (for instance using a solver for bag-equivalence [17] based on140

the proof-by-reflection [10] approach to automation), we would rather not.141

All of these strategies are artefacts of the unfortunate mismatch between the ideal mathematical142

objects one wishes to model and their internal representation in the proof assistant. Short of having143

proper quotient types, this will continue to be an issue when dealing with multisets. The solution144

described in the rest of this paper is syntax-directed; it does not try to replicate a set-theoretic approach145

in intuitionistic type theory but rather strives to find the type theoretical structures which can make146

the problemmore tractable. Indeed, given the right abstractions most proofs become direct structural147

inductions.148

3.1 Usage Annotations149

McBride’s recent work [29] on combining linear and dependent types highlights the distinction one150

canmake between referring to a resource and actually consuming it. In the same spirit, rather than dis-151

patching the available resources in the appropriate subderivations, we consider that a term is checked152

in a given context on top of which usage annotations are super-imposed. These usage annotations153

indicate whether resources have been consumed already or are still available. Type-inference (resp.154

Type-checking) is then inferring (resp. checking) a term’s type but also annotating the resources155

consumed by the term in question and returning the leftovers which gave their name to this paper.156

▶ Definition 4. A CONTEXT is a list of TYPEs indexed by its length. It can be formally described
by the following inference rules:

𝑛 ∶ NAT

CONTEXT𝑛 ∶ Set
==================

[] ∶ CONTEXT0
−−−−−−−−−−−−−−−−−

𝛾 ∶ CONTEXT𝑛 𝜎 ∶ TYPE

𝛾 ∙ 𝜎 ∶ CONTEXT1+𝑛
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

▶ Definition 5. A USAGE is a predicate on a type 𝜎 describing whether the resource associated157

to it is available or not. We name the constructors describing these two states f (for fresh) and s158

(for stale) respectively. These are naturally lifted to contexts in a pointwise manner and we reuse the159

USAGE name and the f and s names for the functions taking a context and returning either a fully160

fresh or fully stale USAGE for it.161

𝜎 ∶ TYPE

USAGE𝜎 ∶ Set
===============

f𝜎 ∶ USAGE𝜎
−−−−−−−−−−−−−−−

s𝜎 ∶ USAGE𝜎
−−−−−−−−−−−−−−−

TYPES 2017

1:6 Typing with Leftovers

𝛾 ∶ CONTEXT𝑛

USAGE𝛾 ∶ Set
================

[] ∶ USAGE[]
−−−−−−−−−−−−−−

Γ ∶ USAGE𝛾 𝑆 ∶ USAGE𝜎

Γ ∙ 𝑆 ∶ USAGE𝛾∙𝜎
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3.2 Typing as Consumption Annotation162

A Typing relation seen as a consumption annotation process describes what it means to analyze a163

term in a scope of size 𝑛: given a context of types for these 𝑛 variables, and a usage annotation for164

that context, it ascribes a type to the term whilst crafting another usage annotation containing all the165

leftover resources. Formally:166

▶ Definition 6. A Typing Relation for 𝑇 a NAT-indexed inductive family is an indexed relation
𝒯𝑛 such that:

𝑛 ∶ NAT 𝛾 ∶ CONTEXT𝑛 Γ, Δ ∶ USAGE𝛾 𝑡 ∶ 𝑇𝑛 𝜎 ∶ TYPE

𝒯𝑛(Γ, 𝑡, 𝜎, Δ) ∶ Set
===

This definition clarifies the notion but also leads to more generic statements later on: weakening,167

substitution, framing can all be expressed as properties a Typing Relation might have. We can already168

list the typing relations introduced later on in this article which fit this pattern. We have split their169

arguments into three columns depending on whether they should be understood as either inputs (the170

known things), scrutinees (the things being validated), or outputs (the things that we learn) and hint171

at what the flow of information in the typechecker will be.172

𝛾 ∶ CONTEXT𝑛
Γ ∶ USAGE𝛾 𝑘 ∶ VAR𝑛

𝜎 ∶ TYPE
Δ ∶ USAGE𝛾

Γ ⊢𝑣 𝑘 ∈ 𝜎 ⊠ Δ ∶ Set
==VAR

𝛾 ∶ CONTEXT𝑛
Γ ∶ USAGE𝛾 𝑡 ∶ INFER𝑛

𝜎 ∶ TYPE
Δ ∶ USAGE𝛾

Γ ⊢ 𝑡 ∈ 𝜎 ⊠ Δ ∶ Set
==INFER

𝛾 ∶ CONTEXT𝑛
Γ ∶ USAGE𝛾
𝜎 ∶ TYPE

𝑡 ∶ CHECK𝑛 Δ ∶ USAGE𝛾

Γ ⊢ 𝜎 ∋ 𝑡 ⊠ Δ ∶ Set

==CHECK

𝜎 ∶ TYPE 𝑝 ∶ PATTERN𝑛 𝛾 ∶ CONTEXT𝑛

𝜎 ∋ 𝑝⇝ 𝛾 ∶ Set
===PATTERN

Figure 4 Typing relations for VAR, INFER, CHECK and PATTERN

▶ Remark. The use of ⊠ is meant to suggest that the input Γ gets distributed between the type σ173

of the term and the leftovers Δ obtained as an output. Informally Γ ≃ 𝜎 ⊗ Δ, hence the use of a174

tensor-like symbol.175

G. Allais 1:7

3.2.1 Typing de Bruijn indices176

The simplest instance of a Typing Relation is the one for de Bruijn indices: given an index 𝑘 and a177

usage annotation, it successfully associates a type 𝜎 to that index if and only if the 𝑘th resource in178

context is of type 𝜎 and fresh (i.e. its USAGE𝜎 is f𝜎). In the resulting leftovers, this resource will179

have turned stale (s𝜎) because it has now been used:180

▶ Definition 7. The typing relation for VAR is presented in a sequent-style: Γ ⊢𝑣 𝑘 ∈ σ ⊠ Δmeans181

that starting from the usage annotation Γ, the de Bruijn index 𝑘 is ascribed type σ with leftovers Δ.182

It is defined inductively by two constructors (cf. Figure 5).183

Γ ∙ f𝜎 ⊢𝑣 z ∈ 𝜎 ⊠ Γ ∙ s𝜎

Γ ⊢𝑣 𝑘 ∈ 𝜎 ⊠ Δ
Γ ∙ 𝐴 ⊢𝑣 s 𝑘 ∈ 𝜎 ⊠ Δ ∙ 𝐴

Figure 5 Typing rules for VAR

▶ Remark. The careful reader will have noticed that there is precisely one typing rule for each VAR184

constructor. It is not a coincidence. And if these typing rules are not named it’s because in Agda, they185

can be given the same name as their VAR counterpart and the typechecker will perform type-directed186

disambiguation. The same will be true for INFER, CHECK and PATTERN which means that writing187

down a typable program could be seen as either writing a raw term or the typing derivation associated188

to it depending on the author’s intent.189

▶ Example 8. The de Bruijn index 1 has type τ in the context (γ ∙ τ ∙ σ) with usage annotation (Γ
∙ f𝜏 ∙ f𝜎), no matter what Γ actually is:

Γ ∙ f𝜏 ⊢ z ∈ 𝜏 ⊠ Γ ∙ s𝜏

Γ ∙ f𝜏 ∙ f𝜎 ⊢ sz ∈ 𝜏 ⊠ Γ ∙ s𝜏 ∙ f𝜎

Or, as it would be written in Agda, taking advantage of the fact that the language constructs and the190

typing rules about them have been given the same names:191

192
one : Γ ∙ f τ ∙ f σ ⊢ s z ∈ τ ⊠ Γ ∙ s τ ∙ f σ193

one = s z194195

3.2.2 Typing Terms196

We now face compound untyped terms such as app 𝑓 𝑡 whose subterms 𝑓 and 𝑡 have been defined in197

the same scope of size 𝑛. Therefore the typing relation for these terms needs to use the same context198

of size 𝑛 for both premises. Trying to cut up a CONTEXT𝑛 in two just like in Figure 3 would not only199

be cumbersome, it wouldn’t be type correct. This is where usage annotations shine.200

The key idea appearing in all the typing rules for compound expressions is to use the input USAGE201

to type one of the sub-expressions, collect the leftovers from that typing derivation and use them as202

the new input USAGE when typing the next sub-expression.203

Another common pattern can be seen across all the rules involving binders, be they λ-abstractions,204

let-bindings or branches of a case. Typechecking the body of a binder involves extending the input205

USAGE with fresh variables and observing that they have become stale in the output one. This guar-206

antees that these bound variables cannot escape their scope as well as that they have indeed been207

TYPES 2017

1:8 Typing with Leftovers

used. Although not the focus of this paper, it is worth noting that relaxing the staleness restriction208

would lead to an affine type system which would be interesting in its own right.209

▶ Definition 9. The Typing Relation for INFER is typeset in a fashion similar to the one for VAR:210

in both cases the type is inferred. Γ ⊢ 𝑡 ∈ 𝜎 ⊠ Δ means that given Γ a USAGE𝛾 , and 𝑡 an INFER, the211

type σ is inferred together with leftovers Δ, another USAGE𝛾 . The rules are listed in Figure 6.212

Γ ⊢𝑣 𝑘 ∈ 𝜎 ⊠ Δ
Γ ⊢ var 𝑘 ∈ 𝜎 ⊠ Δ

Γ ⊢ 𝑡 ∈ 𝜎 ⊸ 𝜏 ⊠ Δ Δ ⊢ 𝜎 ∋ 𝑢 ⊠ Θ
Γ ⊢ app 𝑡 𝑢 ∈ 𝜏 ⊠ Θ

Γ ⊢ 𝑡 ∈ 𝜎 ⊕ 𝜏 ⊠ Δ Δ ∙ f𝜎 ⊢ 𝜈 ∋ 𝑙 ⊠ Θ ∙ s𝜎
Δ ∙ f𝜏 ⊢ 𝜈 ∋ 𝑟 ⊠ Θ ∙ s𝜏

Γ ⊢ case 𝑡 return 𝜈 of 𝑙 %% 𝑟 ∈ 𝜈 ⊠ Θ
Γ ⊢ 𝑡 ∈ 𝜎&𝜏 ⊠ Δ

Γ ⊢ prj1 𝑡 ∈ 𝜎 ⊠ Δ

Γ ⊢ 𝑡 ∈ 𝜎&𝜏 ⊠ Δ
Γ ⊢ prj2 𝑡 ∈ 𝜏 ⊠ Δ

Γ ⊢ 𝑡 ∈ 𝟘 ⊠ Δ
Γ ⊢ exfalso 𝜎 𝑡 ∈ 𝜎 ⊠ Δ

Γ ⊢ 𝜎 ∋ 𝑡 ⊠ Δ
Γ ⊢ cut 𝑡 𝜎 ∈ 𝜎 ⊠ Δ

Figure 6 Typing rules for INFER

▶ Definition 10. For CHECK, the type σ comes first: Γ ⊢ σ ∋ t ⊠ Δmeans that given Γ a USAGE𝛾 ,213

a type σ, the CHECK 𝑡 can be checked to have type σ with leftovers Δ. The rules can be found in214

Figure 7.215

Γ ∙ f𝜎 ⊢ 𝜏 ∋ 𝑏 ⊠ Δ ∙ s𝜎

Γ ⊢ 𝜎 ⊸ 𝜏 ∋ lam 𝑏 ⊠ Δ
Γ ⊢ 𝜎 ∋ 𝑎 ⊠ Δ Δ ⊢ 𝜏 ∋ 𝑏 ⊠ Θ

Γ ⊢ 𝜎 ⊗ 𝜏 ∋ prd 𝑎 𝑏 ⊠ Θ

Γ ⊢ 𝜎 ∋ 𝑡 ⊠ Δ
Γ ⊢ 𝜎 ⊕ 𝜏 ∋ inl 𝑡 ⊠ Δ

Γ ⊢ 𝜏 ∋ 𝑡 ⊠ Δ
Γ ⊢ 𝜎 ⊕ 𝜏 ∋ inr 𝑡 ⊠ Δ

Γ ⊢ 𝜎 ∋ 𝑎 ⊠ Δ Γ ⊢ 𝜏 ∋ 𝑏 ⊠ Δ
Γ ⊢ 𝜎&𝜏 ∋ prd 𝑎 𝑏 ⊠ Δ

Γ ⊢ 𝟙 ∋ unit⊠ Γ

Γ ⊢ 𝑡 ∈ 𝜎 ⊠ Δ 𝜎 ∋ 𝑝⇝ 𝛿
Δ ++f𝛿 ⊢ 𝜏 ∋ 𝑢 ⊠ Θ ++s𝛿

Γ ⊢ 𝜏 ∋ let 𝑝:= 𝑡in 𝑢 ⊠ Θ
Γ ⊢ 𝑡 ∈ 𝜎 ⊠ Δ

Γ ⊢ 𝜎 ∋ neu 𝑡 ⊠ Δ

Figure 7 Typing rules for CHECK

We can see that both variants of a product type –tensor (⊗) and with (&)– use the same surface216

language constructor but are disambiguated in a type-directed manner in the checking relation. The217

premises are naturally widely different: With lets its user pick which of the two available types they218

want and as a consequence both components have to be proven using the same resources. Tensor on219

the other hand forces the user to use both so the leftovers are threaded from one premise to the other.220

▶ Definition 11. Finally, PATTERNs are checked against a type and a context of newly bound221

variables is generated. If the variable pattern always succeeds, the pair constructor pattern on the222

other hand only succeeds if the type it attempts to split is a tensor type. The context of newly-bound223

G. Allais 1:9

variables is then the collection of the contexts associated to the nested patterns. The rules are given224

in Figure 8.225

𝜎 ∋ v⇝ [] ∙ 𝜎 𝟙 ∋ ⟨⟩⇝ []
𝜎 ∋ 𝑝⇝ 𝛾 𝜏 ∋ 𝑞 ⇝ 𝛿
𝜎 ⊗ 𝜏 ∋ (𝑝,𝑞)⇝ 𝛿 ++𝛾

Figure 8 Typing rules for PATTERN

▶ Example 12. Given these rules, we see that the identity function can be checked at type (σ ⊸ σ)
in an empty context:

[] ∙ f𝜎 ⊢𝑣 z ∈ 𝜎 ⊠ [] ∙ s𝜎

[] ∙ f𝜎 ⊢ var z ∈ 𝜎 ⊠ [] ∙ s𝜎

[] ∙ f𝜎 ⊢ 𝜎 ∋ neu (var z) ⊠ [] ∙ s𝜎

[] ⊢ 𝜎 ⊸ 𝜎 ∋ lam (neu (var z)) ⊠ []

Or, as it would be written in Agda where the typing rules were given the same name as their term226

constructor counterparts:227

228
identity : [] ⊢ σ ⊸ σ ∋ lam (neu (var z)) ⊠ []229

identity = lam (neu (var z))230231

▶ Example 13. It is also possible to revisit Example 1 to prove that swap can be checked against232

type (σ ⊗ τ) ⊸ (τ ⊗ σ) in an empty context. This gives the lengthy derivation included in the233

appendix or the following one in Agda which is quite a lot more readable:234

235
swapTyped : [] ⊢ (σ ⊗ τ) ⊸ (τ ⊗ σ) ∋ swap ⊠ []236

swapTyped = lam (let (v , v) := var z237

in prd (neu (var (s z))) (neu (var z))238239

4 Framing240

The most basic property one can prove about this typing system is the fact that the state of the re-241

sources which are not used by a lambda term is irrelevant. We call this property the Framing Property242

because of the obvious analogy with the frame rule in separation logic. This can be reformulated as243

the fact that as long as two pairs of an input and an output USAGE exhibit the same consumption244

pattern then if a derivation uses one of these, it can use the other one instead. Formally (postponing245

the definition of Γ − Δ ≡ Θ − Ξ):246

▶ Definition 14. A Typing Relation 𝒯⋅ for a NAT-indexed family 𝑇 has the Framing Property247

if for all 𝑘 a NAT, γ a CONTEXT𝑘, Γ, Δ, Θ, Ξ four USAGE𝛾 , 𝑡 an element of 𝑇𝑘 and σ a Type, if248

Γ ─ Δ ≡ Θ ─ Ξ and 𝒯𝑘(Γ, t, σ, Δ) then 𝒯𝑘(Θ, t, σ, Ξ) also holds.249

▶ Remark. This is purely a property of the type system as witnessed by the fact that the term 𝑡 is250

left unchanged wich won’t be the case when defining stability under Weakening or Substitution for251

instance.252

TYPES 2017

1:10 Typing with Leftovers

▶ Definition 15. Consumption Equivalence for a given CONTEXT γ characterises the pairs of an
input and an output USAGE𝛾 which have the same consumption pattern. The usages annotations for
the empty context are trivially related. If the context is not empty, then there are two cases: if the
resource is left untouched on one side, then so should it on the other side but the two annotations
may be different (here denoted 𝐴 and 𝐵 respectively). On the other hand, if the resource has been
consumed on one side then it has to be on the other side too.

Γ, Δ, Θ, Ξ ∶ USAGE𝛾

Γ─Δ ≡ Θ─Ξ ∶ Set
=======================

[]─[] ≡ []─[]
−−−−−−−−−−−−−−

Γ─Δ ≡ Θ─Ξ
(Γ ∙ 𝐴)─(Δ ∙ 𝐴) ≡ (Θ ∙ 𝐵)─(Ξ ∙ 𝐵)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Γ─Δ ≡ Θ─Ξ
(Γ ∙ f𝜎)─(Δ ∙ s𝜎) ≡ (Θ ∙ f𝜎)─(Ξ ∙ s𝜎)
−−−

▶ Remark. Two pairs of usages which are consumption equivalent are defined over the same context253

(and thus scope). Stability of a typing rule with respect to consumption equivalence will not be254

sufficient to introduce new variables. This will be dealth with by defining weakening in Section 5.255

▶ Definition 16. The Consumption Partial Order Γ ⊆ Δ is defined as Γ ─ Δ ≡ Γ ─ Δ. It orders256

USAGE from least consumed to maximally consumed.257

▶ Lemma 17. The following properties on the Consumption relations hold:258

1. The consumption equivalence is a partial equivalence [30].259

2. The consumption partial order is a partial order.260

3. If there is a USAGE Χ “in between” two others Γ and Δ according to the consumption partial261

order (i.e. Γ ⊆ Χ and Χ ⊆ Δ), then any pair of USAGE Θ, Ξ consumption equal to Γ and Δ (i.e.262

Γ─Δ ≡ Θ─Ξ) can be split in a manner compatible with Χ. In other words: one can find Ζ such263

that Γ─Χ ≡ Θ─Ζ and Χ─Δ ≡ Ζ─Ξ.264

▶ Lemma 18 (Consumption). The Typing Relations for VAR, INFER and CHECK all imply that if a265

typing derivation exists with input USAGE annotation Γ and output USAGE annotation Δ then Γ ⊆ Δ.266

▶ Theorem 19. The Typing Relation for VAR has the Framing Property. So do the ones for INFER267

and CHECK.268

Proof. The proofs are by structural induction on the typing derivations. They rely on the previ-269

ous lemmas to, when faced with a rule with multiple premises and leftover threading, generate the270

inclusion evidence and use it to split up the witness of consumption equivalence and distribute it271

appropriately in the induction hypotheses. ◀272

▶ Example 20. Coming back to the typing derivation for the de Bruijn index 1 in Example 8,
we can use the Framing theorem to transport the proof that Γ ∙ f𝜏 ∙ f𝜎 ⊢ sz ∈ τ ⊠ Γ ∙ s𝜏 ∙ f𝜎 to a
proof that Δ ∙ f𝜏 ∙ s𝜎 ⊢ sz ∈ τ ⊠ Δ ∙ s𝜏 ∙ s𝜎 for any Δ. Indeed, we can see that these two pairs of
USAGE are consumption equivalent (Γ ─ Γ ≡ Δ ─ Δ holds by induction):

⋮
Γ─Γ ≡ Δ─Δ

Γ ∙ f𝜏─Γ ∙ s𝜏 ≡ Δ ∙ f𝜏─Δ ∙ s𝜏

Γ ∙ f𝜏 ∙ f𝜎─Γ ∙ s𝜏 ∙ f𝜎 ≡ Δ ∙ f𝜏 ∙ s𝜎─Δ ∙ s𝜏 ∙ s𝜎

G. Allais 1:11

5 Weakening273

It is perhaps surprising to find a notion of weakening for a linear calculus: the whole point of linearity274

is precisely to ensure that all the resources are used. However, when opting for a system based on275

consumption annotations it becomes necessary to be able to extend the context a term lives in. This276

will typically be used in the definition of parallel substitution to push the substitution under a binder.277

Linearity is guaranteed by ensuring that the inserted variables are left untouched by the term.278

Weakening arises from a notion of inclusion. The appropriate type theoretical structure to de-279

scribe these inclusions is well-known and called an Order Preserving Embeddding [15, 4]. Unlike a280

simple function witnessing the inclusion of its domain into its codomain, the restriction brought by281

order preserving embeddings guarantees that contraction is simply not possible which is crucial in a282

linear setting.283

▶ Definition 21. AnOrder Preserving Embedding (OPE) is an inductive family. Its constructors284

(dubbed “moves” in this paper) describe a strategy to realise the promise of an injective embedding285

which respects the order induced by the de Bruijn indices. We start with an example in Figure ??286

before giving, in Figure 9, the formal definition of OPEs for NAT, CONTEXT and USAGE.287

In the following example, we prove that the source context 𝛾 ∙ 𝜏 can be safely embedded into288

the target one 𝛾 ∙ 𝜎 ∙ 𝜏 ∙ 𝜈, written 𝛾 ∙ 𝜏 ≤ 𝛾 ∙ 𝜎 ∙ 𝜏 ∙ 𝜈. This example proof uses all three of the289

moves the inductive definition of OPEs offers: insert𝛼 which introduces a new variable of type290

𝛼, copy which embeds the source context’s top variable, and done which simply copies the source291

context. Because we read strategies left-to-right and it is easier to see how they act if contexts are292

also presented left-to-right, we temporarily switch to cons-style (i.e. 𝜎, 𝛾) instead of the snoc-style293

(i.e. 𝛾 ∙ 𝜎) used in the rest of this paper.294

▶ Example 22. An Order Preserving Embedding proving: 𝛾 ∙ 𝜏 ≤ 𝛾 ∙ 𝜎 ∙ 𝜏 ∙ 𝜈295

OPE insert𝜈 copy insert𝜎 done

source 𝜏 , 𝛾
target 𝜈 , 𝜏 , 𝜎 , 𝛾

Now that we have seen an example, we can focus on the formal definition. We give the definition296

of OPE for NAT, CONTEXT and USAGE all side by side in one table: the first column lists the names of297

the constructors associated to each move whilst the other ones give their corresponding types for each298

category. It is worth noting that OPEs for CONTEXT are indexed over the ones for NAT and the OPEs299

for USAGE are indexed by both. The latter definitions are effectively algebraic ornaments [16, 28]300

over the previous ones, that is to say they have the same structure only storing additional information.301

NAT CONTEXT USAGE
done

𝑘 ≤ 𝑘
−−−−−−

𝛾 ≤ 𝛾
−−−−−−

Γ ≤ Γ
−−−−−−

copy
𝑘 ≤ 𝑙

1+𝑘 ≤ 1+𝑙
−−−−−−−−−−−

𝛾 ≤ 𝛿
𝛾 ∙ 𝜎 ≤ 𝛿 ∙ 𝜎
−−−−−−−−−−−−−−

Γ ≤ Δ 𝑆 ∶ USAGE𝜎

Γ ∙ 𝑆 ≤ Δ ∙ 𝑆
−−−−−−−−−−−−−−−−−−−−−−−−−−−

insert
𝑘 ≤ 𝑙

𝑘 ≤ 1+𝑙
−−−−−−−−

𝛾 ≤ 𝛿
𝛾 ≤ 𝛿 ∙ 𝜎
−−−−−−−−−−

Γ ≤ Δ 𝑆 ∶ USAGE𝜎

Γ ≤ Δ ∙ 𝑆
−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 9 Order Preserving Embeddings for NAT, CONTEXT and USAGE

TYPES 2017

1:12 Typing with Leftovers

The first row defines the move done. It is the strategy corresponding to the trivial embedding of302

a set into itself by the identity function and serves as a base case.303

The second row corresponds to the copymove which extends an existing embedding by copying304

the current 0th variable from source to target. The corresponding cases for CONTEXTs and USAGE305

are purely structural: no additional content is required to be able to perform a copy move.306

The third row describes the move insert which introduces an extra variable in the target set.307

This is the move used to extend an existing context, i.e. to weaken it. In this case, it is paramount308

that the OPE for CONTEXTs should take a type σ as an extra argument (it will be the type of309

the newly introduced variable) whilst the OPE for USAGE takes a USAGE𝜎 (it will be the usage310

associated to that newly introduced variable of type σ).311

Now that the structure of these OPEs is clear, we have to introduce a caveat regarding this descrip-312

tion: the CONTEXT andUSAGE case are a bit special. They do not in fact mention the source and target313

sets in their indices. This is a feature: when weakening a typing relation, the OPE for USAGE will314

be applied simultaneously to the input and the output USAGE which, although of a similar structure315

because of their shared CONTEXT index, will be different.316

▶ Definition 23. The semantics of an OPE is defined by induction over the proof object. We317

use the overloaded function name ope(⋅) for it. They behave as the simplified view given in Figure 9318

where 𝛾 / Γ is seen as the input, 𝜎 / 𝑆 the additional information stored into the proof object and 𝛿 /319

Δ the output.320

We leave out the definition of weakening for raw terms which is the standard definition for the321

untyped λ-calculus. It proves that given 𝑘 ≤ 𝑙 we can turn an INFER𝑘 (respectively CHECK𝑘) into an322

INFER𝑙 (respectively CHECK𝑙). It is given by a simple structural induction on the terms themselves,323

using copy to go under binders.324

▶ Definition 24. A Typing Relation 𝒯⋅ for a NAT-indexed family 𝑇 such that we have a function325

weak𝑇 transporting proofs that 𝑘 ≤ 𝑙 to functions 𝑇𝑘 → 𝑇𝑙 is said to have theWeakening Property326

if for all 𝑘, 𝑙 in NAT, 𝑜 a proof that 𝑘 ≤ 𝑙, 𝑂 a proof that OPE(𝑜) and 𝓞 a proof that OPE(𝑂) then for327

all γ a CONTEXT𝑘, Γ and Δ two USAGE𝛾 , 𝑡 an element of 𝑇𝑘 and σ a TYPE, if 𝒯𝑘(Γ, 𝑡, 𝜎, Δ) holds true328

then we also have 𝒯𝑙(ope(𝓞, Γ),weak𝑇 (𝑜, 𝑡), 𝜎, ope(𝓞, Δ)).329

▶ Theorem 25. The Typing Relation for VAR has the Weakening Property. So do the Typing330

Relations for INFER and CHECK.331

Proof. The proof for VAR is by induction on the typing derivation. The statements for INFER and332

CHECK are proved by mutual structural inductions on the respective typing derivations. Using the333

copy constructor of OPEs is crucial to be able to go under binders. ◀334

Unlike the framing property, this theorem is not purely about the type system: the term is indeed335

modified between the premise and the conclusion. Now that we know that weakening is compatible336

with the typing relations, let us study substitution.337

6 Substituting338

Stability of the typing relations under substitution guarantees that the untyped evaluation of programs339

will yield results which have the same type as well as preserve the linearity constraints. The notion340

of leftovers naturally extends to substitutions: the terms meant to be substituted for the variables in341

context which are not used by a term will not be used when pushing the substitution onto this term.342

They will therefore have to be returned as leftovers.343

G. Allais 1:13

Because of this rather unusual behaviour for substitution, picking the right type-theoretical repre-344

sentation for the environment carrying the values to be substituted in is a bit subtle. Indeed, relying345

on the usual combination of weakening and crafting a fresh variable when going under a binder be-346

comes problematic. The leftovers returned by the induction hypothesis would then live in an extended347

context and quite a lot of effort would be needed to downcast them back to the smaller context they348

started in. The solution is to have an explicit constructor for “going under a binder” which can be349

simply peeled off on the way out of a binder. The values are still weakened to fit in the extended350

context they end up in but that happens at the point of use (i.e. when they are being looked up to351

replace a variable) instead of when pushing the substitution under a binder.352

▶ Definition 26. The environment ENV used to define substitution for raw terms is indexed by two
NATs 𝑘 and 𝑙 where 𝑘 is the source’s scope and 𝑙 is the target’s scope. There are three constructors: one
for the empty environment ([]), one for going under a binder (∙v) and one to extend an environment
with an INFER𝑙.

𝑘, 𝑙 ∶ NAT

ENV(𝑘, 𝑙) ∶ Set
================

[] ∶ ENV(0, 𝑙)
−−−−−−−−−−−−−−−

𝜌 ∶ ENV(𝑘, 𝑙)
𝜌∙v ∶ ENV(1+𝑘,1+𝑙)
−−−−−−−−−−−−−−−−−−−−−−−

𝜌 ∶ ENV(𝑘, 𝑙) 𝑡 ∶ INFER𝑙

𝜌 ∙ 𝑡 ∶ ENV(1+𝑘, 𝑙)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Environment are carrying INFER elements because, being in the same syntactical class as VARs,353

they can be substituted for them without any issue. We now state the substitution lemma on untyped354

terms because it is, unlike the one for weakening, non-standard by way of our definition of environ-355

ments.356

▶ Lemma 27. Given a VAR𝑘 𝑣 and an ENV(k, l) 𝜌, we can look up the INFER𝑙 associated to 𝑣 in 𝜌.357

Proof. The proof goes by induction on 𝑣 and case analysis on 𝜌. If the variable we look up has358

been introduced by a binder we went under using the constructor ∙v then we return it immediately.359

Otherwise we get our hands on a term which we may need to weaken. This corresponds to the360

following functional specification (the practical implementation can be distinct to avoid retraversing361

the term once for every single binder we went under):

var z [𝜌∙v] = z

var z [𝜌 ∙ 𝑡] = 𝑡
var (s 𝑣) [𝜌∙v] = lift(var 𝑣 [𝜌])
var (s 𝑣) [𝜌 ∙ 𝑡] = var 𝑣 [𝜌]

362

where lift is an instance of weakening defined in the previous section which takes a term in a363

scope of size 𝑘 and returns the same term in scope 1+𝑘. ◀364

▶ Lemma 28. Raw terms are stable under substitutions: for all 𝑘 and 𝑙, given 𝑡 a term INFER𝑘365

(resp. CHECK𝑘) and 𝜌 an environment ENV(𝑘, 𝑙), we can apply the substitution 𝜌 to 𝑡 and obtain an366

INFER𝑙 (resp. CHECK𝑙).367

Proof. Bymutual induction on the raw terms. The traversals are purely structural except when going368

under binders where the constructor ∙v is used to extend the ENV appropriately. The prototypical case369

of a binder is the lam one, and its functional specification is: (lam 𝑡) [𝜌] = lam (𝑡 [𝜌∙v]). ◀370

▶ Definition 29. The environments used when proving that Typing Relations are stable under
substitution follow closely the ones for raw terms. Θ1 ⊢𝑒 Γ ∋ 𝜌 ⊠ Θ2 is a typing relation with input

TYPES 2017

1:14 Typing with Leftovers

usages Θ1 and output Θ2 for the raw substitution 𝜌 targeting the fresh variables in Γ. The typing for
the empty environment has the same input and output usages annotation. Formally:

𝜃 ∶ CONTEXT𝑙
Θ1 ∶ USAGE𝜃
𝛾 ∶ CONTEXT𝑘
Γ ∶ USAGE𝛾

𝜌 ∶ ENV(𝑘, 𝑙) Θ2 ∶ USAGE𝜃

Θ1 ⊢𝑒 Γ ∋ 𝜌 ⊠ Θ2 ∶ Set

===
Θ1 ⊢𝑒 [] ∋ [] ⊠ Θ1
−−−−−−−−−−−−−−−−−−−−

For fresh variables in Γ, there are two cases depending on whether they have been introduced by
going under a binder or not. If it is not the case then the typing environment carries around a typing
derivation for the term 𝑡meant to be substituted for this variable. Otherwise, it does not carry anything
extra but tracks in its input / output usages annotation the fact that the variable has been consumed.

Θ1 ⊢ 𝑡 ∈ 𝜎 ⊠ Θ2 Θ2 ⊢𝑒 Γ ∋ 𝜌 ⊠ Θ3

Θ1 ⊢𝑒 Γ ∙ f𝜎 ∋ 𝜌 ∙ 𝑡 ⊠ Θ3
−−

Θ1 ⊢𝑒 Γ ∋ 𝜌 ⊠ Θ2

Θ1 ∙ f𝜎 ⊢𝑒 Γ ∙ f𝜎 ∋ 𝜌∙v⊠ Θ2 ∙ s𝜎
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

For stale variables, there are two cases too. They are however a bit more similar: none of them carry
around an extra typing derivation. The main difference is in the shape of the input and output context:
in the case for the “going under a binder” constructor, they are clearly enriched with an extra (now
consumed) variable whereas it is not the case for the normal environment extension.

Θ1 ⊢𝑒 Γ ∋ 𝜌 ⊠ Θ2

Θ1 ⊢𝑒 Γ ∙ s𝜎 ∋ 𝜌 ∙ 𝑡 ⊠ Θ2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Θ1 ⊢𝑒 Γ ∋ 𝜌 ⊠ Θ2

Θ1 ∙ s𝜎 ⊢𝑒 Γ ∙ s𝜎 ∋ 𝜌∙v⊠ Θ2 ∙ s𝜎
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

▶ Definition 30. A Typing Relation 𝒯⋅ for a NAT-indexed family 𝑇 equipped with a function371

subst𝑇 which for all NATs 𝑘, 𝑙, given an element 𝑇𝑘 and an ENV(𝑘, 𝑙) returns an element 𝑇𝑙 is said to372

be stable under substitution if for allNATs 𝑘 and 𝑙, γ a CONTEXT𝑘, Γ andΔ twoUSAGE𝛾 , 𝑡 an element373

of 𝑇𝑘, σ a Type, ρ an ENV(𝑘, 𝑙), 𝜃 a CONTEXT𝑙 and Θ1 and Θ3 two USAGE𝜃 such that 𝒯𝑘(Γ, 𝑡, 𝜎, Δ) and374

Θ1 ⊢𝑒 Γ ∋ 𝜌 ⊠ Θ3 holds then there exists a Θ2 of type USAGE𝜃 such that 𝒯𝑙(Θ1,subst𝑇 (𝑡, 𝜌), 𝜎, Θ2)375

and Θ2 ⊢𝑒 Δ ∋ 𝜌 ⊠ Θ3.376

▶ Theorem 31. The Typing Relations for INFER and CHECK are stable under substitution.377

Proof. The proof by mutual structural induction on the typing derivations relies heavily on the fact378

that these Typing Relations enjoy the framing property in order to adjust the USAGE annotations. ◀379

7 Functionality380

In the next section we will prove that type-checking and type-inference are decidable. In the cases381

where the check fails, we have to prove that any purported typing derivation would leave to a contra-382

diction. Thse arguments all follow a similar pattern: assuming that a typing derivation exist, we use383

inversion lemmas to obtain results in direct contradiction to the observations we have made. These384

inversion lemmas often rely on the fact that the typing relations are functional.385

Although we did highlight that some of our relations’ indices are meant to be seen as inputs whilst386

others are supposed to be outputs, we have not yet made this relationship formal because this fact was387

seldom used in the proofs so far. Functionality can be expressed by saying that given a typing relation,388

if two typing derivations exist for some fixed arguments (seen as inputs) then the other arguments389

(seen as outputs) are equal to each other.390

G. Allais 1:15

▶ Definition 32. We say that a relation 𝑅 of type Π(ri ∶ RI).II → 𝑂(𝑟𝑖) → Set is functional if391

for all relevant inputs ri , all pairs of irrelevant inputs ii1 and ii2 and for all pairs of outputs 𝑜1 and392

𝑜2, if both 𝑅(ri , ii1 , 𝑜1) and 𝑅(ri , ii2 , 𝑜2) hold then 𝑜1 ≡ 𝑜2.393

▶ Lemma 33. The Typing Relations for VAR and INFER are functional when seen as relations with394

relevant inputs the context and the scrutinee (either a VAR or an INFER), irrelevant inputs their USAGE395

annotation and outputs the inferred TYPEs.396

▶ Lemma 34. The Typing Relations for VAR, INFER, CHECK and ENV are functional when seen as397

relations with relevant inputs all of their arguments except for one of the USAGE annotation or the398

other. This means that given a USAGE annotation (whether the input one or the output one) and the399

rest of the arguments, the other USAGE annotation is uniquely determined.400

8 Typechecking401

▶ Theorem 35 (Decidability of Typechecking). Type-inference for INFER and Type-checking for402

CHECK are decidable. In other words, given a NAT 𝑘, γ a CONTEXT𝑘 and Γ a USAGE𝛾 ,403

1. for all INFER𝑘 𝑡, we can decide if there is a TYPE 𝜎 and Δ a USAGE𝛾 such that Γ ⊢ 𝑡 ∈ 𝜎 ⊠ Δ404

2. for all TYPE σ and CHECK𝑘 t, we can decide if there is Δ a USAGE𝛾 such that Γ ⊢ 𝜎 ∋ 𝑡 ⊠ Δ.405

Proof. The proof proceeds by mutual induction on the raw terms, using inversion lemmas to dismiss406

the impossible cases, using auxiliary lemmas showing that typechecking of VARs and PATTERNs also407

is decidable and relies heavily on the functionality of the various relations involved. ◀408

One of the benefits of having a formal proof of a theorem in Agda is that the theorem actually409

has computational content and may be run: the proof is a decision procedure.410

▶ Example 36. We can for instance check that the search procedure succeeds in finding the swap-411

Typed derivation we had written down as Example 13. Because σ and τ are abstract in the following412

snippet, the equality test checking that σ is equal to itself and so is τ does not reduce and we need to413

rewrite by the proof eq-diag that the equality test always succeeds in this kind of situation:414

415
swapChecked : ∀ σ τ → check [] ((σ ⊗ τ) ⊸ (τ ⊗ σ)) swap416

≡ yes ([] , swapTyped)417

swapChecked σ τ rewrite eq-diag τ | eq-diag σ = refl418419

9 Equivalence to ILL420

We have now demonstrated that the USAGE-based formulation of linear logic as a type system is421

amenable to mechanisation without putting an unreasonable burden on the user. Indeed, the system’s422

important properties can all be dealt with by structural induction and the user still retains the ability423

to write simple 𝜆-terms which are not cluttered with structural rules.424

However this presentation departs quite a lot from more traditional formulations of intuitionistic425

linear logic. This naturally raises the question of its correctness. In this section we recall a typical426

presentation of Intuitionistic Linear Logic using a Sequent Calculus, representing the multiset of427

assumptions as a list.428

TYPES 2017

1:16 Typing with Leftovers

9.1 A Sequent Calculus for Intuitionistic Linear Logic429

The definition of this calculus is directly taken from the Linear Logic Wiki [26] whose notations we430

follow to the letter. The interested reader will findmore details in for instance Troelstra’s lectures [35].431

In the following figure, γ, δ, and θ are context variables while σ, τ , and ν range over types. We432

overload the comma to mean both consing a single type to the front of a list and appending two lists,433

as is customary.434

𝜎 ⊢ 𝜎
𝑎𝑥

𝛾 ⊢ 𝜎 𝜎, 𝛿 ⊢ 𝜏
𝛾, 𝛿 ⊢ 𝜏

𝑐𝑢𝑡
𝛾 ⊢ 𝜎 𝛿 ⊢ 𝜏

𝛾, 𝛿 ⊢ 𝜎 ⊗ 𝜏
⊗𝑅 𝜏, 𝜎, 𝛾 ⊢ 𝜈

𝜎 ⊗ 𝜏, 𝛾 ⊢
⊗𝐿

⊢ 𝟙
1𝑅

𝛾 ⊢ 𝜎
𝟙, 𝛾 ⊢ 𝜎

1𝐿
𝟘, 𝛾 ⊢ 𝜎

0𝐿 𝜎, 𝛾 ⊢ 𝜏
𝛾 ⊢ 𝜎 ⊸ 𝜏

⊸𝑅 𝛾 ⊢ 𝜎 𝜏, 𝛿 ⊢ 𝜈
(𝜎 ⊸ 𝜏), 𝛾, 𝛿 ⊢ 𝜈

⊸𝐿

𝛾 ⊢ 𝜎 𝛾 ⊢ 𝜏
𝛾 ⊢ 𝜎&𝜏

&𝑅 𝜎, 𝛾 ⊢ 𝜈
𝜎&𝜏, 𝛾 ⊢ 𝜈

&𝐿
1

𝜏, 𝛾 ⊢ 𝜈
𝜎&𝜏, 𝛾 ⊢ 𝜈

&𝐿
2

𝛾 ⊢ 𝜎
𝛾 ⊢ 𝜎 ⊕ 𝜏

⊕𝑅
1

𝛾 ⊢ 𝜏
𝛾 ⊢ 𝜎 ⊕ 𝜏

⊕𝑅
2

𝜎, 𝛾 ⊢ 𝜈 𝜏, 𝛾 ⊢ 𝜈
𝜎 ⊕ 𝜏, 𝛾 ⊢ 𝜈

⊕𝐿 𝛾, 𝛿 ⊢ 𝜎 𝛾, 𝛿 ≅ 𝜃
𝜃 ⊢ 𝜎

𝑚𝑖𝑥

Figure 10 Sequent Calculus for Intuitionistic Linear Logic

Our only departure from the traditional presentation is the mix rule which is an artefact of our435

encoding multisets as lists. It allows the user to pick any interleaving θ of two lists γ and δ. This436

notion of interleaving is formalised by the following three-place relation.437

▶ Definition 37. The interleaving relation is defined by three constructors: [] declares that in-438

terleaving two empty lists yields the empty-list whilst ⋅,𝑙 ⋅ (and ⋅,𝑟 ⋅ respectively) picks the head of439

the list on the left (the right respectively) as the head of the interleaving and the tail as the result of440

interleaving the rest.441

𝛾, 𝛿, 𝜃 ∶ LIST 𝑎
𝛾, 𝛿 ≅ 𝜃 ∶ Set

================
[] ∶ [], [] ≅ []
−−−−−−−−−−−−−−−

𝑝 ∶ 𝛾, 𝛿 ≅ 𝜃
𝜎,𝑙 𝑝 ∶ (𝜎, 𝛾), 𝛿 ≅ (𝜎, 𝜃)
−−−−−−−−−−−−−−−−−−−−−−−−−−

𝑝 ∶ 𝛾, 𝛿 ≅ 𝜃
𝜎,𝑟 𝑝 ∶ 𝛾, (𝜎, 𝛿) ≅ (𝜎, 𝜃)
−−−−−−−−−−−−−−−−−−−−−−−−−−

Now that we have our definition of the usual representation of Intuitionistic Linear Logic (ILL),442

we are left with proving that the linear typing relation we have defined is both sound and complete443

with respect to that logic.444

9.2 Soundness445

We start with the easiest part of the proof: soundness. This means that from a typing derivation, we446

can derive a proof in ILL of what is essentially the same statement. That is to say that if a term is said447

to have type σ in a fully fresh context γ and proceeds to consume all of the resources in that context448

during the typing derivation then it corresponds to a proof of γ ⊢ σ in ILL.449

This statement needs to be generalised to be proven. Indeed, even if we start with a context full of450

available resources, at the first split we encounter (e.g. a tensor introduction or a function application),451

it won’t be the case anymore in one of the sub-terms. To state this more general formulation, we need452

to introduce a new notion: used assumptions.453

G. Allais 1:17

▶ Definition 38. The list of used assumptions in a proof Γ ⊆ Δ in the consumption partial order454

is the list of types which have turned from fresh in Γ to stale in Δ. The used(⋅) function is defined by455

recursion over the proof that Γ ⊆ Δ.456

▶ Definition 39. A Typing Relation 𝒯 for terms 𝑇 is said to be sound with respect to ILL if, for457

𝑘 a NAT, γ a CONTEXT𝑘, Γ and Δ two USAGE𝛾 , t a term 𝑇𝑘 and σ a type, from the typing derivation458

𝒯(Γ, t, σ, Δ) and p a proof that Γ ⊆ Δ we can derive used(𝑝) ⊢ 𝜎.459

▶ Remark. The consumption lemma 18 guarantees that such a proof Γ ⊆ Δ always exists whenever460

the typing relation is either the one for VAR, INFER or CHECK.461

Before we can prove the soudness theorem, we need two auxiliary lemmas allowing us to handle462

the mismatch we may have between the way the used assumptions of a derivation are computed and463

the way the ones for its subderivations are obtained.464

▶ Lemma 40. Given k a NAT, γ a CONTEXT𝑘 and Γ, Δ, and θ three USAGE𝛾 , we have:465

1. if p and q are proofs that Γ ⊆ Δ then used(𝑝) = used(𝑞).466

2. if p is a proof that Γ ⊆ Δ, q that Δ ⊆ 𝜃 and pq that Γ ⊆ 𝜃 then used(𝑝𝑞) is an interleaving of467

used(𝑝) and used(𝑞).468

The relation validating patterns is not a typing relation and as such it needs to be handled sepa-469

rately. This can be done by defining a procedure elaborating patterns away by showing that whenever470

𝜎 ∋ 𝑝⇝ 𝛾 , it is morally acceptable to replace σ on the left by γ. Which gives us the following cut-like471

admissible rule:472

▶ Lemma 41 (Elaboration of Let-bindings). Provided k a NAT, p a PATTERN𝑘, σ a TYPE and γ a473

CONTEXT𝑘 such that 𝜎 ∋ 𝑝 ⇝ 𝛾 , we have that for all δ and θ two LIST TYPE and τ a TYPE, if 𝛿 ⊢ 𝜎474

and 𝛾, 𝜃 ⊢ 𝜏 then 𝛿, 𝜃 ⊢ 𝜏.475

We now have all the pieces to prove the soundness of our typing relations.476

▶ Theorem 42 (Soundness). The typing relations for VAR, INFER and CHECK are all sound.477

Proof. The proof is by mutual induction on the typing derivations. ILL’s right rules are in direct478

correspondence with our introduction rules. The eliminators in our languages are translated by using479

ILL’s cut together with left rules. The mix rule is crucial to rewrite the derivations’ contexts on the480

fly. ◀481

9.3 Completeness482

Completeness is a trickier thing to prove: given a derivation in the traditional sequent calculus, we483

need to build a corresponding term and its typing derivation. However, unlike the soundness one it484

does not give us any insight as to what the meaning of USAGE and typing derivations is. So we only485

state the result and give an idea of the proof.486

▶ Theorem 43 (Completeness). Given γ a LIST TYPE and σ a type, from a proof 𝛾 ⊢ 𝜎 we can487

derive an INFER t and a proof that f𝛾 ⊢ 𝑡 ∈ 𝜎 ⊠s𝛾 .488

Proof. The proof is by induction over the derivation in ILL. The right rules match our introduction489

rules well enough that they do not pose any issue. Weakening lets us extend theUSAGE of the sequents490

obtained by induction hypothesis in the case of multi-premises rules. Left rules are systematically491

translated as cut 𝑠.492

Finally, the hardest rule to handle is the mix rule which reorganises the context. It is handled493

by a technical lemma which we have left out of this paper. Informally: it states that if the input and494

output USAGE of a typing derivation are obtained by the same interleaving of two distinct pairs of495

USAGE, then for any other interleaving we can find a term and a typing derivation for that term. ◀496

TYPES 2017

1:18 Typing with Leftovers

10 Related Work497

Benton, Bierman, de Paiva, and Hyland [8] did devise a term assignment system for Intuitionistic498

Linear Logic which was stable under substitution. Their system focuses on multiplicative linear499

logic only when ours also encompasses additive connectives but it gives a thorough treatment of the500

! modality. This is still an open problem for us because we do not want to have the explicit handling501

of !’s weakening, contraction, dereliction, and promotion rules pollute the raw terms.502

Rand, Paykin and Zdancewic’s work on modelling quantum circuits in Coq [34] necessarily in-503

cludes a treatment of linearity as qbits cannot be duplicated. And because it is mechanised, they have504

to deal with the representation of contexts. Their focus is mostly on the quantum aspect and they are505

happy relying on Coq’s scripting capabilities to cope with the extensional presentation.506

Bob Atkey and JamesWood [6] have been experimenting with using a deep embedding of a linear507

lambda calculus in Agda as a way to certify common algorithms. Being able to encode insertion sort508

as a term in this deep embedding is indeed sufficient to conclude that the output of the algorithm is a509

permutation of its input. They use on-the-fly re-ordering of contexts via explicit permutation proofs.510

Polakow faced with the task of embedding a linear λ-calculus in Haskell [33] used a typed-tagless511

approach [23] and tried to get as much automation from typeclass resolution as possible. Seeing512

Haskell’s typeclass resolution mechanism as a Prolog-style proof search engine, he opted for a re-513

lational description and thus an input-output presentation. This system can handle multiplicatives,514

additives and is even extended to a Dual Intuitionistic Linear Logic [7] to accomodate for values515

which can be duplicated. Focusing on the applications, it is not proven to be stable under substitution516

or that the typechecking process will always succeed.517

The proof search community has been confronted with the inefficiency of randomly splitting up518

the multiset of assumption when applying a tensor-introduction rule. In an effort to combat this non-519

determinism, they have introduced alternative sequent calculi returning leftovers [14, 37]. However520

because they do not have to type a term living in a given context, they do not care about the structure521

of the context of assumptions: it is still modelled as a multiset.522

Wehave alreadymentionedMcBride’s work [29] on (as a first approximation: the setup is actually523

more general) a type theory with a dependent linear function space as a very important source of524

inspiration. In that context it is indeed crucial to retain the ability to talk about a resource even if525

it has already been consumed. E.g. a function taking a boolean and deciding whether it is equal526

to tt or ff will have a type mentioning the function’s argument twice. But in a lawful manner:527

(𝑥 ∶ BOOL) ⊸ (𝑥 ≡ tt) ∨ (𝑥 ≡ ff). This leads to the need for a context shared across all subterms528

and consumption annotations ensuring that the linear resources are never used more than once.529

Finally, we can find a very concrete motivation for a predicate similar to our USAGE in Rob-530

bert Krebbers’ thesis [24]. In section 2.5.9, he describes one source of undefined behaviours in the531

C standard: the execution order of expressions is unspecified thus leaving the implementers with532

absolute freedom to pick any order they like if that yields better performances. To make their life533

simpler, the standard specifies that no object should be modified more than once during the execution534

of an expression. In order to enforce this invariant, Krebbers’ memory model is enriched with extra535

information:536

[E]ach bit in memory carries a permission that is set to a special locked permission when a537

store has been performed. The memory model prohibits any access (read or store) to objects538

with locked permissions. At the next sequence point, the permissions of locked objects are539

changed back into their original permission, making future accesses possible again.540

G. Allais 1:19

11 Conclusion541

We have shown that taking seriously the view of linear logic as a logic of resource consumption542

leads, in type theory, to a well-behaved presentation of the corresponding type system for the lambda-543

calculus. The framing property claims that the state of irrelevant resources does not matter, stability544

under weakening shows that one may even add extra irrelevant assumptions to the context and they545

will be ignored whilst stability under substitution guarantees subject reduction with respect to the546

usual small step semantics of the lambda calculus. Finally, the decidability of type checking makes it547

possible to envision a user-facing language based on raw terms and top-level type annotations where548

the machine does the heavy lifting of checking that all the invariants are met whilst producing a549

certified-correct witness of typability.550

Avenues for future work include a treatment of an affine logic where the type of substitution will551

have to be be different because of the ability to throw away resources without using them. Our long552

term goal is to have a formal specification of a calculus for Probabilistic and Bayesian Reasoning553

similar to the affine one described by Adams and Jacobs [2]. Another interesting question is whether554

these resource annotations can be used to develop a fully formalised proof search procedure for in-555

tuitionistic linear logic. The author and McBride have made an effort in such a direction [3] by556

designing a sound and complete search procedure for a fragment of intuitionistic linear logic with557

type constructors tensor and with. Its extension to lolipop is currently an open question.558

References559

1 Peter Achten, John Van Groningen, and Rinus Plasmeijer. High level specification of I/O in func-560

tional languages. In Functional Programming, Glasgow 1992, pages 1–17. Springer, 1993.561

2 Robin Adams and Bart Jacobs. A type theory for probabilistic and bayesian reasoning. November562

2015. URL: http://arxiv.org/abs/1511.09230.563

3 Guillaume Allais and Conor McBride. Certified proof search for intuitionistic linear logic. 2015.564

URL: http://gallais.github.io/proof-search-ILLWiL/.565

4 Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. Categorical reconstruction of a reduc-566

tion free normalization proof. In Category Theory and Computer Science, pages 182–199. Springer,567

1995.568

5 Thorsten Altenkirch and Bernhard Reus. Monadic presentations of lambda terms using generalized569

inductive types. In Computer Science Logic, pages 453–468. Springer, 1999.570

6 Robert Atkey and James Wood. Sorting types – permutation via linearity. https://github.571

com/bobatkey/sorting-types, 2013. Retrieved on 2017-11-06.572

7 Andrew Barber and Gordon Plotkin. Dual intuitionistic linear logic. University of Edinburgh,573

Department of Computer Science, Laboratory for Foundations of Computer Science, 1996.574

8 Nick Benton, Gavin Bierman, Valeria De Paiva, and Martin Hyland. A term calculus for intuition-575

istic linear logic. Typed Lambda Calculi and Applications, pages 75–90, 1993.576

9 Richard S. Bird and Ross Paterson. de Bruijn notation as a nested datatype. Journal of Functional577

Programming, 9(1):77–91, 1999.578

10 Samuel Boutin. Using reflection to build efficient and certified decision procedures. In Theoretical579

Aspects of Computer Software, pages 515–529. Springer, 1997.580

11 Edwin Brady. Idris, a general-purpose dependently typed programming language: Design and im-581

plementation. Journal of Functional Programming, 23(05):552–593, 2013.582

12 Edwin Brady, Conor McBride, and James McKinna. Inductive families need not store their indices.583

In Types for proofs and programs, pages 115–129. Springer, 2003.584

13 Edwin Brady and Matúš Tejišcák. Practical erasure in dependently typed languages.585

TYPES 2017

http://arxiv.org/abs/1511.09230
http://gallais.github.io/proof-search-ILLWiL/
https://github.com/bobatkey/sorting-types
https://github.com/bobatkey/sorting-types
https://github.com/bobatkey/sorting-types

1:20 Typing with Leftovers

14 Iliano Cervesato, Joshua S Hodas, and Frank Pfenning. Efficient resource management for linear586

logic proof search. In International Workshop on Extensions of Logic Programming, pages 67–81.587

Springer, 1996.588

15 JamesMaitland Chapman. Type checking and normalisation. PhD thesis, University of Nottingham,589

2009.590

16 Pierre-Evariste Dagand and Conor McBride. Transporting functions across ornaments. Journal of591

Functional Programming, 24(2-3):316–383, 2014.592

17 Nils Danielsson. Bag equivalence via a proof-relevant membership relation. Interactive Theorem593

Proving, pages 149–165, 2012.594

18 Olivier Danvy. Type-Directed Partial Evaluation. Springer, 1999.595

19 Nicolaas Govert De Bruijn. Lambda calculus notation with nameless dummies. In Indagationes596

Mathematicae (Proceedings), volume 75, pages 381–392. Elsevier, 1972.597

20 The Rust Project Developers. The Rust Programming Language – Ownership. https://doc.598

rust-lang.org/book/first-edition/ownership.html, 2017. Retrieved on 2017-599

11-06.600

21 Peter Dybjer. Inductive families. Formal aspects of computing, 6(4):440–465, 1994.601

22 Jean-Yves Girard. Linear logic. Theoretical computer science, 50(1):1–101, 1987.602

23 Oleg Kiselyov. Typed tagless final interpreters. In Generic and Indexed Programming, pages 130–603

174. Springer, 2012.604

24 Robbert Krebbers. The C standard formalized in Coq. PhD thesis, Radboud University Nijmegen,605

2015.606

25 John Launchbury and Simon L Peyton Jones. Lazy functional state threads. In ACM SIGPLAN607

Notices, volume 29, pages 24–35. ACM, 1994.608

26 Olivier Laurent and Laurent Regnier. Linear Logic Wiki – Intuitionistic Linear Logic.609

http://llwiki.ens-lyon.fr/mediawiki/index.php/Intuitionistic_610

linear_logic, 2009. Retrieved on 2017-11-06.611

27 Pierre Letouzey. A new extraction for coq. In Types for proofs and programs, pages 200–219.612

Springer, 2002.613

28 Conor McBride. Ornamental algebras, algebraic ornaments. Journal of functional programming,614

2010.615

29 Conor McBride. I got plenty o’nuttin’. In A List of Successes That Can Change the World, pages616

207–233. Springer, 2016.617

30 John C Mitchell. Foundations for programming languages, volume 1. MIT press, 1996.618

31 Ulf Norell. Dependently typed programming in Agda. In Advanced Functional Programming, pages619

230–266. Springer, 2009.620

32 Benjamin C Pierce and David N Turner. Local type inference. ACM Transactions on Programming621

Languages and Systems (TOPLAS), 22(1):1–44, 2000.622

33 Jeff Polakow. Embedding a full linear lambda calculus in haskell. ACM SIGPLAN Notices,623

50(12):177–188, 2016.624

34 Robert Rand, Jennifer Paykin, and Steve Zdancewic. Qwire practice: Formal verification of quan-625

tum circuits in coq. In Quantum Physics and Logic, 2017.626

35 Anne Sjerp Troelstra. Lectures on linear logic. 1991.627

36 Stephanie Weirich, Justin Hsu, and Richard A Eisenberg. Towards dependently typed haskell: Sys-628

tem FC with kind equality. Citeseer, 2013.629

37 Michael Winiko and James Harland. Deterministic resource management for the linear logic pro-630

gramming language lygon. Technical report, Technical Report 94/23, Melbourne University, 1994.631

https://doc.rust-lang.org/book/first-edition/ownership.html
https://doc.rust-lang.org/book/first-edition/ownership.html
https://doc.rust-lang.org/book/first-edition/ownership.html
http://llwiki.ens-lyon.fr/mediawiki/index.php/Intuitionistic_linear_logic
http://llwiki.ens-lyon.fr/mediawiki/index.php/Intuitionistic_linear_logic
http://llwiki.ens-lyon.fr/mediawiki/index.php/Intuitionistic_linear_logic

G. Allais 1:21

A Fully-expanded Typing Derivation for swap632

[] ∙ f𝜎⊗𝜏 ⊢𝑣 0 ∈ 𝜎 ⊗ 𝜏 ⊠ [] ∙ s𝜎⊗𝜏

[] ∙ f𝜎⊗𝜏 ⊢ var(0) ∈ 𝜎 ⊗ 𝜏 ⊠ [] ∙ s𝜎⊗𝜏

𝜎 ∋ v⇝ [] ∙ 𝜎 𝜏 ∋ v⇝ [] ∙ 𝜏
𝜎 ⊗ 𝜏 ∋ (v, v)⇝ [] ∙ 𝜏 ∙ 𝜎

Π

[] ∙ f𝜎⊗𝜏 ⊢ 𝜏 ⊗ 𝜎 ∋ let (v, v) ∷= var 0 in

prd(neu(var(1)), neu(var(0))) ⊠ [] ∙ s𝜎⊗𝜏

[] ⊢ (𝜎 ⊗ 𝜏) ⊸ (𝜏 ⊗ 𝜎) ∋ swap⊠ []

Π =

[] ∙ s𝜎⊗𝜏 ∙ f𝜏 ⊢𝑣 0 ∈ 𝜏 ⊠ [] ∙ s𝜎⊗𝜏 ∙ s𝜏

[] ∙ s𝜎⊗𝜏 ∙ f𝜏 ∙ f𝜎 ⊢𝑣 1 ∈ 𝜏 ⊠ [] ∙ s𝜎⊗𝜏 ∙ s𝜏 ∙ f𝜎

[] ∙ s𝜎⊗𝜏 ∙ f𝜏 ∙ f𝜎 ⊢ var(1) ∈ 𝜏 ⊠ [] ∙ s𝜎⊗𝜏 ∙ s𝜏 ∙ f𝜎

[] ∙ s𝜎⊗𝜏 ∙ f𝜏 ∙ f𝜎 ⊢ 𝜏 ∋ neu(var(1)) ⊠ [] ∙ s𝜎⊗𝜏 ∙ s𝜏 ∙ f𝜎
Π′

[] ∙ s𝜎⊗𝜏 ∙ f𝜏 ∙ f𝜎 ⊢ 𝜏 ⊗ 𝜎 ∋ prd(neu(var(1)), neu(var(0)) ⊠ [] ∙ s𝜎⊗𝜏 ∙ s𝜏 ∙ s𝜎

Π′ =

[] ∙ s𝜎⊗𝜏 ∙ s𝜏 ∙ f𝜎 ⊢𝑣 0 ∈ 𝜎 ⊠ [] ∙ s𝜎⊗𝜏 ∙ s𝜏 ∙ s𝜎

[] ∙ s𝜎⊗𝜏 ∙ s𝜏 ∙ f𝜎 ⊢ var(0) ∈ 𝜎 ⊠ [] ∙ s𝜎⊗𝜏 ∙ s𝜏 ∙ s𝜎

[] ∙ s𝜎⊗𝜏 ∙ s𝜏 ∙ f𝜎 ⊢ 𝜎 ∋ neu(var(0)) ⊠ [] ∙ s𝜎⊗𝜏 ∙ s𝜏 ∙ s𝜎

TYPES 2017

	Introduction
	The Calculus of Raw Terms
	Linear Typing Rules
	Usage Annotations
	Typing as Consumption Annotation
	Typing de Bruijn indices
	Typing Terms

	Framing
	Weakening
	Substituting
	Functionality
	Typechecking
	Equivalence to ILL
	A Sequent Calculus for Intuitionistic Linear Logic
	Soundness
	Completeness

	Related Work
	Conclusion
	Fully-expanded Typing Derivation for swap

