
Certified Proof Search for Intuitionistic Linear
Logic
Guillaume Allais1 and Conor McBride1

1 University of Strathclyde
Glasgow, Scotland
{guillaume.allais, conor.mcbride}@strath.ac.uk

Abstract
In this article we show the difficulties a type-theorist may face when attempting to formalise a decidability
result described informally. We then demonstrate how generalising the problem and switching to a more
structured presentation can alleviate her suffering.

The calculus we target is a fragment of Intuitionistic Linear Logic and the tool we use to construct
the search procedure is Agda (but any reasonable type theory equipped with inductive families would do).
The example is simple but already powerful enough to derive a solver for equations over a commutative
monoid from a restriction of it.

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Agda, Proof Search, Linear Logic, Certified programming

1 Introduction

Type theory [16] equipped with inductive families [9] is expressive enough that one can implement
certified proof search algorithms which are not merely oracles outputting a one bit answer but full-
blown automated provers producing derivations which are statically known to be correct [5, 19]. It is
only natural to delve into the literature to try and find decidability proofs which, through the Curry-
Howard correspondence, could make good candidates for mechanisation (see e.g. Pierre Crégut’s
work on Presburger arithmetic [6]). Reality is however not as welcoming as one would hope: most
of these proofs have not been formulated with mechanisation in mind and would require a huge effort
to be ported as is in your favourite theorem prover.

In this article, we argue that it would indeed be a grave mistake to implement them as is and that
type-theorists should aim to develop better-structured algorithms. We show, working on a fragment
of Intuitionistic Linear Logic [11] (ILL onwards), the sort of pitfalls to avoid and the generic ideas
leading to better-behaved formulations.

In section 2 we describe the fragment of ILL we are studying; section 3 defines a more general
calculus internalising the notion of leftovers thus making the informal description of the proof search
mechanism formal; and section 4 introduces resource-aware contexts therefore giving us a powerful
language to target with our proof search algorithm implemented in section 7. The soundness and
completeness results proved respectively in section 6 and section 5 are what let us recover a proof of
the decidability of the ILL fragment considered from the one of the more general system. Finally,
section 8 presents an application of this proof search procedure to automatically discharge equations
over a commutative monoid. This solver is then further specialised to proving that two lists are bag
equivalent thus integrating really well with Danielsson’s previous work [7].

The interested reader can find the source code for this work (and the libraries it relies on) on our
github repository: https://github.com/gallais/proof-search-ILLWiL.

© Guillaume Allais, Conor McBride;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://github.com/gallais/proof-search-ILLWiL
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Certified Proof Search for Intuitionistic Linear Logic

2 The Calculus, Informally

Our whole development is parametrised by a type of atomic propositions 𝑃𝑟 on which we do not put
any constraint except that equality of its inhabitants should be decidable. We name _≟_ the function
of type (𝑝 𝑞 ∶ 𝑃𝑟) → 𝖣𝖾𝖼 (𝑝 ≡ 𝑞) witnessing this property.

The calculus we are considering is a fragment of Intuitionistic Linear Logic composed of atomic
types (lifting 𝑃𝑟), tensor and with products. This is summed up by the following grammar for types:

𝗍𝗒 ∷= 𝜅 𝑃𝑟 | 𝗍𝗒 ⊗ 𝗍𝗒 | 𝗍𝗒 & 𝗍𝗒
The calculus’ sequents (𝛤 ⊢ 𝜎) are composed of a multiset of types (𝛤) describing the resources

available in the context and a type (𝜎) corresponding to the proposition one is trying to prove. Each
type constructor comes with both introduction and elimination rules (also known as, respectively,
right and left rules because of the side of the sequent they affect) described in Figure 1. Multisets are
intrinsically extensional hence the lack of a permutation rule one may be used to seeing in various
list-based presentations.

{{ 𝜎 }} ⊢ 𝜎
𝑎𝑥

𝛤 ⊢ 𝜎 𝛥 ⊢ 𝜏
𝛤 ⊎ 𝛥 ⊢ 𝜎 ⊗ 𝜏

⊗𝑟 𝛤 ⊎ {{ 𝜎, 𝜏 }} ⊢ 𝜐
𝛤 ⊎ {{ 𝜎 ⊗ 𝜏 }} ⊢ 𝜐

⊗𝑙

𝛤 ⊢ 𝜎 𝛤 ⊢ 𝜏
𝛤 ⊢ 𝜎 & 𝜏

&𝑟 𝛤 ⊎ {{ 𝜎 }} ⊢ 𝜐
𝛤 ⊎ {{ 𝜎 & 𝜏 }} ⊢ 𝜐

&𝑙
1

𝛤 ⊎ {{ 𝜏 }} ⊢ 𝜐
𝛤 ⊎ {{ 𝜎 & 𝜏 }} ⊢ 𝜐

&𝑙
2

Figure 1 Introduction and Elimination rules for ILL

However these rules are far from algorithmic: the logician needs to guesswhen to apply an elimi-
nation rule or which partition of the current context to pickwhen introducing a tensor. This makes this
calculus really ill-designed for her to perform a proof search in a sensible manner. So, rather than
sticking to the original presentation and trying to work around the inconvenience of dealing with
rules which are not algorithmic and intrinsically extensional notions such as the one of multisets, it
is possible to generalise the calculus in order to have a more palatable formal treatment.

The principal insight in this development is that proof search in Linear Logic is not just about fully
using the context provided to us as an input in order to discharge a goal. The bulk of the work is rather
to use parts of some of the assumptions in a context to discharge a first subgoal; collect the leftovers
and invest them into trying to discharge another subproblem. Only in the end should the leftovers be
down to nothing. This observation leads to the definition of two new notions: first, the calculus is
generalised to one internalising the notion of leftovers; second, the contexts are made resource-aware
meaning that they keep the same structure whilst tracking whether (parts of) an assumption has been
used already. Proof search becomes consumption annotation.

3 Generalising the Problem

In this section, we will start by studying a simple example showcasing the role the idea of leftovers
plays during proof search before diving into the implementation details of such concepts.

3.1 Example
Let us study how one would describe the process of running a proof search algorithm for our fragment
of ILL. The intermediate data structures, despite looking similar to usual ILL sequents, are not quite

G. Allais and C. McBride 3

valid proof trees as we purposefully ignore left rules. We write

Δ ⇒
𝜋

𝛤 ⊢ 𝜎

to mean that the current proof search state is 𝛥 and we managed to build a pseudo-derivation 𝜋 of
type 𝛤 ⊢ 𝜎. The derivation 𝜋 and the context 𝛤 may be replaced by question marks when we haven’t
yet reached a point where we have found a proof and thus instantiated them.

In order to materialise the idea that some resources in 𝛥 are available whereas others have already
been consumed, we are going to mark with a box (the parts of) the assumptions which are currently
available. During the proof search, the state 𝛥 will keep its structure but we will update destructively
its resource annotations. For instance, consuming 𝜎 out of 𝛥 = (𝜎 & 𝜏) ⊗ 𝜐 will turn 𝛥 into (𝜎 &
𝜏) ⊗ 𝜐.

Let us now go ahead and observe how one looks for a proof of the following formula (where 𝜎
and 𝜏 are assumed to be atomic): (𝜎 ⊗ 𝜏) & 𝜎 ⊢ 𝜏 ⊗ 𝜎. The proof search problem we are facing is
therefore:

(𝜎 ⊗ 𝜏) & 𝜎 ⇒
?

? ⊢ 𝜏 ⊗ 𝜎

The goal’s head symbol is a ⊗; as we have no interest in guessing whether to apply left rules─if at
all necessary─, or how to partition the current context, we are simply going to start by looking for
a proof of its left sub-component using the full context. Given that 𝜏 is an atomic formula, the only
way for us to discharge this goal is to use an assumption available in the context. Fortunately, there
is a 𝜏 in the context; we are therefore able to produce a derivation where 𝜏 has now been consumed.
In terms of our proof search, this is expressed by using an axiom rule and destructively updating the
context:

(𝜎 ⊗ 𝜏) & 𝜎 ⇒
?

? ⊢ 𝜏
⇝ (𝜎 ⊗ 𝜏) & 𝜎 ⇒

𝜏 ⊢ 𝜏
𝑎𝑥

Now that we are done with the left subgoal, we can deal with the right one using the leftovers (𝜎
⊗ 𝜏) & 𝜎 . We are once more facing an atomic formula which we can only discharge by using an
assumption. This time there are two candidates in the context except that one of them is inaccessible:
solving the previous goal has had the side-effect of picking one side of the & thus rejecting the other
entirely. In other words: a left rule has been applied implicitly! The only meaningful step in the
proof search is therefore:

(𝜎 ⊗ 𝜏) & 𝜎 ⇒
?

? ⊢ 𝜎
⇝ (𝜎 ⊗ 𝜏) & 𝜎 ⇒

𝜎 ⊢ 𝜎
𝑎𝑥

We can then come back to our ⊗-headed goal and combine these two derivations by using a right
introduction rule for ⊗. (𝜎 ⊗ 𝜏) & 𝜎 being a fully used context (𝜎 is inaccessible), we can conclude
that our search has ended successfully:

(𝜎 ⊗ 𝜏) & 𝜎 ⇒
𝜏 ⊢ 𝜏

𝑎𝑥
𝜎 ⊢ 𝜎

𝑎𝑥

(𝜎 ⊗ 𝜏) & 𝜎 ⊢ 𝜏 ⊗ 𝜎
⊗𝑟

The fact that the whole context is used by the end of the search tells us that this should translate
into a valid ILL proof tree. And it is indeed the case: by following the structure of the pseudo-proof

4 Certified Proof Search for Intuitionistic Linear Logic

we just generated above and adding the required left rules1, we get the following derivation.

𝜏 ⊢ 𝜏
𝑎𝑥

𝜎 ⊢ 𝜎
𝑎𝑥

𝜎, 𝜏 ⊢ 𝜏 ⊗ 𝜎
⊗𝑟

𝜎 ⊗ 𝜏 ⊢ 𝜏 ⊗ 𝜎
⊗𝑙

(𝜎 ⊗ 𝜏) & 𝜎 ⊢ 𝜏 ⊗ 𝜎
&𝑙

1

3.2 A Calculus with Leftovers
This observation of a proof search algorithm in action leads us to the definition of a three place relation
⊢⊠_ describing the new calculus where the notion of leftovers from a subproof is internalised.
When we write down the sequent 𝛤 ⊢ 𝜎 ⊠ 𝛥, we mean that from the input 𝛤 , we can prove 𝜎 with
leftovers 𝛥. Let us see what a linear calculus would look like in this setting.

If we assume that we already have in our possession a similar relation 𝛤 ∋ 𝑘 ⊠ 𝛥 describing the
act of consuming a resource 𝜅 𝑘 from a context 𝛤 with leftovers 𝛥, then the axiom rule2 translates
to:

𝛤 ∋ 𝑘 ⊠ 𝛥
𝛤 ⊢ 𝜅 𝑘 ⊠ 𝛥

𝑎𝑥

The introduction rule for tensor in the systemwith leftovers does not involve partitioning a multiset (a
list in our implementation) anymore: one starts by discharging the first subgoal, collects the leftovers
from this computation, and then feeds them to the procedure now working on the second subgoal.

𝛤 ⊢ 𝜎 ⊠ 𝛥 𝛥 ⊢ 𝜏 ⊠ 𝐸
𝛤 ⊢ 𝜎 ⊗ 𝜏 ⊠ 𝐸

This is a left-skewed presentation but could just as well be a right-skewed one. We also discuss (in
subsection 9.2) the opportunity for parallelisation of the proof search a symmetric version could offer
as well as the additional costs it would entail.

The with type constructor on the other hand expects both subgoals to be proven using the same
resources. We formalise this as the fact that both sides are proved using the input context and that
both leftovers are then synchronised (for a sensible, yet to be defined, definition of synchronisation).
Obviously, not all leftovers will be synchronisable: checking whether they are may reject proof can-
didates which are not compatible.

𝛤 ⊢ 𝜎 ⊠ 𝛥1 𝛤 ⊢ 𝜏 ⊠ 𝛥2 𝛥 ≡ 𝛥1 ⊙ 𝛥2

𝛤 ⊢ 𝜎 & 𝜏 ⊠ 𝛥

We can now rewrite (see Figure 2) the proof described earlier in a fashion which distinguishes be-
tween the state of the context before one starts proving a goal and after it has been discharged entirely.

It should not come as a surprise that this calculus does not have any elimination rule for the various
type constructors: elimination rules do not consume anything, they merely shuffle around (parts of)

1 We will explain in section 6 how deciding where these left rules should go can be done automatically.
2 In this presentation, we limit the axiom rule to atomic formulas only but it is not an issue: it is a well-known fact

that an axiom rule for any formula is admissible by a simple induction on the formula’s structure.

G. Allais and C. McBride 5

(𝜎 ⊗ 𝜏) & 𝜎 ⊢ 𝜏 ⊠ (𝜎 ⊗ 𝜏) & 𝜎
𝑎𝑥

(𝜎 ⊗ 𝜏) & 𝜎 ⊢ 𝜎 ⊠ (𝜎 ⊗ 𝜏) & 𝜎
𝑎𝑥

(𝜎 ⊗ 𝜏) & 𝜎 ⊢ 𝜏 ⊗ 𝜎 ⊠ (𝜎 ⊗ 𝜏) & 𝜎
⊗𝑟

Figure 2 A proof with input / output contexts and usage annotations

𝜅 𝑘 ∶ 𝖢𝗈𝗏𝖾𝗋 𝜅 𝑘
𝑆 ∶ 𝖢𝗈𝗏𝖾𝗋 𝜎 𝑇 ∶ 𝖢𝗈𝗏𝖾𝗋 𝜏

𝑆 ⊗ 𝑇 ∶ 𝖢𝗈𝗏𝖾𝗋 𝜎 ⊗ 𝜏
𝑆 ∶ 𝖢𝗈𝗏𝖾𝗋 𝜎

𝑆 ⊗[τ] ∶ 𝖢𝗈𝗏𝖾𝗋 𝜎 ⊗ 𝜏

𝑇 ∶ 𝖢𝗈𝗏𝖾𝗋 𝜏
[σ]⊗ 𝑇 ∶ 𝖢𝗈𝗏𝖾𝗋 𝜎 ⊗ 𝜏

𝜎 & 𝜏 ∶ 𝖢𝗈𝗏𝖾𝗋 𝜎 & 𝜏
S ∶ 𝖢𝗈𝗏𝖾𝗋 𝜎

𝑆 &[τ] ∶ 𝖢𝗈𝗏𝖾𝗋 𝜎 & 𝜏
T ∶ 𝖢𝗈𝗏𝖾𝗋 𝜏

[σ]& 𝑇 ∶ 𝖢𝗈𝗏𝖾𝗋 𝜎 & 𝜏

Figure 3 The 𝖢𝗈𝗏𝖾𝗋 datatype

assumptions in the context and are, as a consequence, not interesting proof steps. These are therefore
implicit in the process. This remark resonates a lot with Andreoli’s definition of focusing [2] whose
goal was to prune the search space by declaring that the logician does not care about the order in
which some commuting rules are applied.

Ultimately, these rules being implicit is not an issue as witnessed by the fact that the soundness
result we give in section 6 is constructive: we can mechanically decide where to optimally insert the
appropriate left rules for the ILL derivation to be correct.

4 Keeping the Structure

We now have a calculus with input and output contexts; but there is nomaterial artefact describing the
relationship between these two. Sure, we could prove a lemma stating that the leftovers are precisely
the subset of the input context which has not been used to discharge the goal but the proof would be
quite involved because, among other things, of the merge operation hidden in the tensor rule.

But this is only difficult becausewe have forgotten the structure of the problem and are still dealing
with rather extensional notions. Indeed, all of these intermediate contexts are just the one handed
over to us when starting the proof search procedure except that they come with an usage annotation
describing whether the various assumptions are still available or have already been consumed. This
is the intuition we used in our example in subsection 3.1 when marking available resources with a
box and keeping used ones rather than simply dropping them from the context and that is made
fully explicit in Figure 2.

4.1 Resource-Aware Contexts
Let us make this all more formal. The set of covers of a type 𝜎 is represented by an inductive family
𝖢𝗈𝗏𝖾𝗋 𝜎 listing all the different ways in which 𝜎 may be partially used. The introduction rules, which
are listed in Figure 3, can be justified in the following manner: The cover for an atomic proposition
can only be one thing: the atom itself;

6 Certified Proof Search for Intuitionistic Linear Logic

In the case of a tensor, both subparts can be partially used (cf. 𝑆 ⊗ 𝑇) or it may be the case that
only one side has been dug into so far (cf. 𝑆 ⊗[τ] and [σ]⊗ 𝑇);

Similarly, a cover for a with-headed assumption can be a choice of a side (cf. 𝑆 &[τ] and [σ
]& 𝑇). Or, more surprisingly, it can be a full cover (cf. 𝜎 & 𝜏) which is saying that both sides will
be entirely used in different subtrees. This sort of full cover is only ever created when synchronising
two output contexts by using a with introduction rule as in the following example:

𝜎 & 𝜏 ⊢ 𝜏 ⊠ 𝜎 & 𝜏
𝑎𝑥

𝜎 & 𝜏 ⊢ 𝜎 ⊠ 𝜎 & 𝜏
𝑎𝑥

𝜎 & 𝜏 ⊢ 𝜏 & 𝜎 ⊠ 𝜎 & 𝜏
&𝑟

The 𝖴𝗌𝖺𝗀𝖾 of a type 𝜎 is directly based on the idea of a cover; it describes two different situations:
either the assumption has not been touched yet or it has been (partially) used. Hence 𝖴𝗌𝖺𝗀𝖾 is the
following datatype with two infix constructors3:

[𝜎] ∶ 𝖴𝗌𝖺𝗀𝖾 𝜎
𝑆 ∶ 𝖢𝗈𝗏𝖾𝗋 𝜎

] 𝑆 [∶ 𝖴𝗌𝖺𝗀𝖾 𝜎

Finally, we can extend the definition of 𝖴𝗌𝖺𝗀𝖾 to contexts by a simple pointwise lifting. We call this
lifting 𝖴𝗌𝖺𝗀𝖾𝗌 to retain the connection between the two whilst avoiding any ambiguities.

𝜀 ∶ 𝖴𝗌𝖺𝗀𝖾𝗌 𝜀
𝛤 ∶ 𝖴𝗌𝖺𝗀𝖾𝗌 𝛾 𝑆 ∶ 𝖴𝗌𝖺𝗀𝖾 𝜎

𝛤 ∙ 𝑆 ∶ 𝖴𝗌𝖺𝗀𝖾𝗌 𝛾 ∙ 𝜎

4.1.0.1 Erasures

From an 𝖴𝗌𝖺𝗀𝖾(𝗌), one can always define an erasure function building a context listing the hypotheses
marked as used. We write ⌈ _ ⌋ for such functions and define them by induction on the structure of
the 𝖴𝗌𝖺𝗀𝖾(𝗌).

4.1.0.2 Injection

We call 𝗂𝗇𝗃 the function taking a context 𝛾 as argument and describing the 𝖴𝗌𝖺𝗀𝖾𝗌 𝛾 corresponding to
a completely mint context.

4.2 Being Synchronised, Formally
Now that 𝖴𝗌𝖺𝗀𝖾𝗌 have been introduced, we can give a formal treatment of the notion of synchroni-
sation we evoked when giving the with introduction rule for the calculus with leftovers. Synchroni-
sation is meant to say that the two 𝖴𝗌𝖺𝗀𝖾𝗌 are equal modulo some inconsequential variations. These
inconsequential variations partly correspond to the fact that left rules may be inserted at different
places in different subtrees.

Synchronisation is a three place relation 𝛥 ≡ 𝛥1 ⊙ 𝛥2 defined as the pointwise lifting of an
analogous one working on 𝖢𝗈𝗏𝖾𝗋s. Let us study the latter one which is defined in an inductivemanner.

It is reflexive which means that its diagonal 𝑆 ≡ 𝑆 ⊙ 𝑆 is always inhabited. For the sake of
simplicity, we do not add a constructor for reflexivity: this rule is admissible by induction on 𝑆 based
on the fact that synchronisation for covers comes with all the structural rules one would expect: if

3 The way the brackets are used is meant to convey the idea that [𝜎] is in mint condition whilst] 𝑆 [is dented. The
box describing an hypothesis in mint conditions is naturally mimicking the we have written earlier on.

G. Allais and C. McBride 7

𝜎 & 𝜏 ⊢ 𝜎 ⊠ 𝜎 & 𝜏
ax

𝜎 & 𝜏 ⊢ 𝜎 ⊠ 𝜎 & 𝜏
ax

𝜎 & 𝜏 ⊢ 𝜏 ⊠ 𝜎 & 𝜏
ax

𝗂𝗌𝖴𝗌𝖾𝖽𝜎𝜎 𝗂𝗌𝖴𝗌𝖾𝖽𝜏𝜏
𝜎 & 𝜏 ≡ 𝜎 & 𝜏 ⊙ 𝜎 & 𝜏

𝜎 & 𝜏 ⊢ 𝜎 & 𝜏 ⊠ 𝜎 & 𝜏
&𝑟

𝗂𝗌𝖴𝗌𝖾𝖽𝜎𝜎
𝜎 & 𝜏 ≡ 𝜎 & 𝜏 ⊙ 𝜎 & 𝜏

𝜎 & 𝜏 ⊢ 𝜎 & (𝜎 & 𝜏) ⊠ 𝜎 & 𝜏
&𝑟

Figure 4 A derivation with a synchronisation combining a left cover of a with together with a full one.

two covers’ root constructors are equal and their subcovers are synchronised then it is only fair to say
that both of them are synchronised.

It is also symmetric in its two last arguments which means that for any 𝛥, 𝛥1, and 𝛥2, if 𝛥 ≡ 𝛥1
⊙ 𝛥2 holds then so does 𝛥 ≡ 𝛥2 ⊙ 𝛥1.

Synchronisation is not quite equality: subderivations may very-well use different parts of a with-
headed assumption without it being problematic. Indeed: if both of these parts are entirely consumed
then it simply means that we will have to introduce a different left rule at some point in each one of
the subderivations. This is the only point in the process where we may introduce the cover 𝜎 & 𝜏. It
can take place in different situations:

The two subderivations may be fully using completely different parts of the assumption4:

𝗂𝗌𝖴𝗌𝖾𝖽𝜎𝑆 𝗂𝗌𝖴𝗌𝖾𝖽𝜏𝑇
𝜎 & 𝜏 ≡ 𝑆 &[𝜏] ⊙ [𝜎]& 𝑇

But it may also be the case that only one of them is using only one side of the & whilst the other one
is a full cover (see Figure 4 for an example of such a case):

𝗂𝗌𝖴𝗌𝖾𝖽𝜎𝑆
𝜎 & 𝜏 ≡ 𝑆 &[𝜏] ⊙ 𝜎 & 𝜏

𝗂𝗌𝖴𝗌𝖾𝖽𝜏𝑇
𝜎 & 𝜏 ≡ [𝜎]& 𝑇 ⊙ 𝜎 & 𝜏

4.3 Resource-Aware Primitives
Now that 𝖴𝗌𝖺𝗀𝖾𝗌 are properly defined, we can give a precise type to our three place relations evoked
before:

𝛤 ∶ 𝖴𝗌𝖺𝗀𝖾𝗌 𝛾 𝑘 ∶ ℕ 𝛥 ∶ 𝖴𝗌𝖺𝗀𝖾𝗌 𝛾
𝛤 ∋ 𝑘 ⊠ 𝛥 ∶ 𝖲𝖾𝗍

𝛤 ∶ 𝖴𝗌𝖺𝗀𝖾𝗌 𝛾 𝜎 ∶ 𝗍𝗒 𝛥 ∶ 𝖴𝗌𝖺𝗀𝖾𝗌 𝛾
𝛤 ⊢ 𝜎 ⊠ 𝛥 ∶ 𝖲𝖾𝗍

The definition of the calculus has already been given before and will not be changed. However
we can at once define what it means for a resource to be consumed in an axiom rule. _∋_⊠_ for
𝖴𝗌𝖺𝗀𝖾𝗌 is basically a proof-carrying de Bruijn index [8]. The proof is stored in the 𝗓𝗋𝗈 constructor
and simply leverages the definition of an analogous _∋_⊠_ for 𝖴𝗌𝖺𝗀𝖾.

𝑝𝑟 ∶ 𝑆 ∋ 𝑘 ⊠ 𝑆༚

𝗓𝗋𝗈 𝑝𝑟 ∶ 𝛤 ∙ 𝑆 ∋ 𝑘 ⊠ 𝛤 ∙ 𝑆༚
𝑝𝑟 ∶ 𝛤 ∋ 𝑘 ⊠ 𝛥

𝗌𝗎𝖼 𝑝𝑟 ∶ 𝛤 ∙ 𝑆 ∋ 𝑘 ⊠ 𝛥 ∙ 𝑆

4 The definition of the predicate 𝗂𝗌𝖴𝗌𝖾𝖽 is basically mimicking the one of 𝖢𝗈𝗏𝖾𝗋 except that the tensor constructors
leaving one side untouched are disallowed.

8 Certified Proof Search for Intuitionistic Linear Logic

The definition of _∋_⊠_ for 𝖴𝗌𝖺𝗀𝖾 is based on two inductive types respectively describing what
it means for a resource to be consumed out of a mint assumption or out of an existing cover.

4.3.1 Consumption from a Mint Assumption
We write [𝜎]∋ 𝑘 ⊠ 𝑆 to mean that by starting with a completely mint assumption of type 𝜎, we
consume 𝑘 and end up with the cover 𝑆 describing the leftovers.

In the case of an atomic formula there is only one solution: to use it and end up with a total cover:

[𝜅 𝑘]∋ 𝑘 ⊠ 𝜅 𝑘

In the case of with and tensor, one can decide to dig either in the left or the right hand side of the
assumption to find the right resource. This gives rise to four similarly built rules; we will only give
one example: going left on a tensor:

[𝜎]∋ 𝑘 ⊠ 𝑆
[𝜎 ⊗ 𝜏]∋ 𝑘 ⊠ 𝑆 ⊗[𝜏]

4.3.2 Consumption from an Existing Cover
When we have an existing cover, the situation is slightly more complicated. First, we can dig into an
already partially used sub-assumption using what we could call structural rules. All of these are pretty
similar so we will only present the one harvesting the content on the left of a with type constructor:

S ∋ 𝑘 ⊠ 𝑆༚

S &[𝜏] ∋ 𝑘 ⊠ 𝑆༚ &[𝜏]

Second, we could invoke the rules defined in the previous paragraphs to extract a resource from a
sub-assumption that had been spared so far. This can only affect tensor-headed assumption as covers
for with-headed ones imply that we have already picked a side and may not use anything from the
other one. Here is a such rule:

[𝜏]∋ 𝑘 ⊠ 𝑇
S ⊗[𝜏] ∋ 𝑘 ⊠ 𝑆 ⊗ 𝑇

We now have a fully formal definition of the more general system we hinted at when observing
the execution of the search procedure in subsection 3.1. We call this alternative formulation of the
fragment of ILL we have decided to study ILLWiLwhich stands for IntuitionisticLinearLogicWith
Leftovers. It will only be useful if it is equivalent to ILL. The following two sections are dedicated to
proving that the formulation is both sound (all the derivations in the generalised calculus give rise to
corresponding ones in ILL) and complete (if a statement can be proven in ILL then a corresponding
one is derivable in the generalised calculus).

5 Completeness

The purpose of this section is to prove the completeness of our generalised calculus: to every deriva-
tion in ILL we can associate a corresponding one in the consumption-based calculus.

One of the major differences between the two calculi is that in the one with leftovers, the context
decorated with consumption annotations is the same throughout the whole derivation whereas we
constantly chop up the multiset of resources in ILL. To go from ILL to ILLWiL, we need to introduce
a notion of weakening which give us the ability to talk about working in a larger context.

G. Allais and C. McBride 9

5.1 A Notion of Weakening for ILLWiL
One of the particularities of Linear Logic is precisely that there is no notion of weakening allowing to
discard resources without using them. In the calculus with leftovers however, it is perfectly sensible
to talk about resources which are not impacted by the proof process: they are merely passed around
and returned untouched at the end of the computation. Given, for instance, a derivation 𝑆 ⊢ 𝐺 ⊠T 5

in our calculus with leftovers, it makes sense to apply the same extension of the context to both the
input and output context:

..[𝛼].

&

.

⊗

. 𝑆. 𝛽. ⊢. 𝐺. ⊠. [𝛼].

&

.

⊗

. 𝑇. 𝛽

These considerations lead us to examine the notion of 𝖴𝗌𝖺𝗀𝖾(𝗌) extensions describing systemati-
cally how one may enrich a context and to prove their innocuousness when it comes to derivability.

5.1.1 𝖴𝗌𝖺𝗀𝖾 extensions
We call ℎ-𝖴𝗌𝖺𝗀𝖾 extension of type 𝜎 (written ⟨ ℎ ⟩𝖴𝗌𝖺𝗀𝖾 𝜎) the description of a structure containing
exactly one hole denoted ⟨⟩ intowhich, using _>>𝖴_, onemay plug an𝖴𝗌𝖺𝗀𝖾 ℎ in order to get an𝖴𝗌𝖺𝗀𝖾
𝜎. We give side by side the constructors for the inductive type ⟨ _ ⟩𝖴𝗌𝖺𝗀𝖾 _ and the corresponding
case for _>>𝖴_. The most basic constructor says that we may have nothing but a hole:

⟨ ⟩ ∶ ⟨ ℎ ⟩𝖴𝗌𝖺𝗀𝖾 ℎ
𝐻 >>𝖴 ⟨ ⟩ = 𝐻

Alternatively, one may either have a hole on the left or right hand side of a tensor product (where
⊗𝖴 is the intuitive lifting of tensor to 𝖴𝗌𝖺𝗀𝖾 unpacking both sides and outputting the appropriate
annotation):

𝐿 ∶ ⟨ ℎ ⟩𝖴𝗌𝖺𝗀𝖾 𝜎 𝑅 ∶ 𝖴𝗌𝖺𝗀𝖾 𝜏
⟨ 𝐿 ⟩ ⊗ 𝑅 ∶ ⟨ ℎ ⟩𝖴𝗌𝖺𝗀𝖾 𝜎 ⊗ 𝜏

𝐻 >>𝖴 ⟨ 𝐿 ⟩ ⊗ 𝑅 = (𝐻 >>𝖴 𝐿) ⊗𝖴 𝑅

𝐿 ∶ 𝖴𝗌𝖺𝗀𝖾 𝜎 𝑅 ∶ ⟨ ℎ ⟩𝖴𝗌𝖺𝗀𝖾 𝜏
𝐿 ⊗⟨ 𝑅 ⟩ ∶ ⟨ ℎ ⟩𝖴𝗌𝖺𝗀𝖾 𝜎 ⊗ 𝜏

𝐻 >>𝖴 𝐿 ⊗⟨ 𝑅 ⟩ = 𝐿 ⊗𝖴 (𝐻 >>𝖴 𝑅)

Or one may have a hole on either side of a with constructor as long as the other side is kept mint
(_&𝖴[_] and [_]&𝖴_ are, once more, operators lifting the 𝖢𝗈𝗏𝖾𝗋 constructors to 𝖴𝗌𝖺𝗀𝖾):

𝐿 ∶ ⟨ ℎ ⟩𝖴𝗌𝖺𝗀𝖾 𝜎
⟨ 𝐿 ⟩ &[𝜏] ∶ ⟨ ℎ ⟩𝖴𝗌𝖺𝗀𝖾 𝜎 & 𝜏

𝐻 >>𝖴 ⟨ 𝐿 ⟩ &[𝜏] = (𝐻 >>𝖴 𝐿) &𝖴[𝜏]

𝑅 ∶ ⟨ ℎ ⟩𝖴𝗌𝖺𝗀𝖾 𝜏
[𝜎]&⟨ 𝑅 ⟩ ∶ ⟨ ℎ ⟩𝖴𝗌𝖺𝗀𝖾 𝜎 ⊗ 𝜏

𝐻 >>𝖴 [𝜎]&⟨ 𝑅 ⟩ = [𝜎]&𝖴 (𝐻 >>𝖴 𝑅)

5 We write 𝑆 for 𝜀 ∙] 𝑆 [in order to lighten the presentation

10 Certified Proof Search for Intuitionistic Linear Logic

5.1.2 𝖴𝗌𝖺𝗀𝖾𝗌 extensions
𝖴𝗌𝖺𝗀𝖾𝗌 extensions are akin to Altenkirch et al.’s Order Preserving Embeddings [1] except that they
allow the modification of the individual elements which are embedded in the larger context using a
𝖴𝗌𝖺𝗀𝖾 extension. We list below the three OPE constructors together with the corresponding cases of
>>𝖴𝗌 describing how to transport a 𝖴𝗌𝖺𝗀𝖾𝗌 along an extension. One can embed the empty context
into any other context:

𝛥 ∶ 𝖴𝗌𝖺𝗀𝖾𝗌 𝛿
𝜀 𝛥 ∶ ⟨ 𝜀 ⟩𝖴𝗌𝖺𝗀𝖾𝗌 𝛿

𝜀 >>𝖴𝗌 𝜀 𝛥 = 𝛥

Or one may extend the head 𝖴𝗌𝖺𝗀𝖾 using the tools defined in the previous subsection:

ℎ𝑠 ∶ ⟨ 𝛾 ⟩𝖴𝗌𝖺𝗀𝖾𝗌 𝛿 ℎ ∶ ⟨ 𝜎 ⟩𝖴𝗌𝖺𝗀𝖾 𝜏
ℎ𝑠 ∙ ℎ ∶ ⟨ 𝛾 ∙ 𝜎 ⟩𝖴𝗌𝖺𝗀𝖾𝗌 𝛿 ∙ 𝜏

𝛤 ∙ 𝑆 >>𝖴𝗌 ℎ𝑠 ∙ ℎ = (𝛤 >>𝖴𝗌 ℎ𝑠) ∙ (𝑆 >>𝖴 ℎ)

Finally, one may simply throw in an entirely new 𝖴𝗌𝖺𝗀𝖾:

ℎ𝑠 ∶ ⟨ 𝛾 ⟩𝖴𝗌𝖺𝗀𝖾𝗌 𝛿 𝑆 ∶ 𝖴𝗌𝖺𝗀𝖾 𝜎
ℎ𝑠 ∙༚ 𝑆 ∶ ⟨ 𝛾 ⟩𝖴𝗌𝖺𝗀𝖾𝗌 𝛿 ∙ 𝜎

𝛤 >>𝖴𝗌 ℎ𝑠 ∙༚ 𝑆 = (𝛤 >>𝖴𝗌 ℎ𝑠) ∙ 𝑆

Now that this machinery is defined, we can easily state and prove the following simple weakening
lemma:

▶ Lemma 1 (Weakening for ILLWiL). Given 𝛤 and 𝛥 two 𝖴𝗌𝖺𝗀𝖾𝗌 𝛾 and a goal 𝜎 such that 𝛤 ⊢
𝜎 ⊠ 𝛥 holds true, for any ℎ𝑠 of type ⟨ 𝛾 ⟩𝖴𝗌𝖺𝗀𝖾𝗌 𝛿, it holds that: 𝛤 >>𝖴𝗌 ℎ𝑠 ⊢ 𝜎 ⊠ 𝛥 >>𝖴𝗌 ℎ𝑠.

Proof. The proof is by induction on the derivation 𝛤 ⊢ 𝜎 ⊠ 𝛥 and relies on intermediate lemmas
corresponding to the definition of weakening for _∋_⊠_ and _≡_⊙_. ◀

5.2 Proof of completeness
The first thing to do is to prove that the generalised axiom rule given in ILL is admissible in ILLWiL.

▶ Lemma 2 (Admissibility of the Axiom Rule). Given a type 𝜎, one can find 𝑆, a full 𝖴𝗌𝖺𝗀𝖾 𝜎,
such that 𝗂𝗇𝗃𝗌 (𝜀 ∙ 𝜎) ⊢ 𝜎 ⊠ 𝜀 ∙ 𝑆.

Proof. By induction on 𝜎, using weakening to be able to combine the induction hypotheses. ◀

The admissibility of the axiom rule allows us to prove completeness by a structural induction on
the derivation:

▶ Theorem 3 (Completeness). Given a context 𝛾 and a type 𝜎 such that 𝛾 ⊢ 𝜎, we can prove that
there exists 𝛤 a full 𝖴𝗌𝖺𝗀𝖾𝗌 𝛾 such that 𝗂𝗇𝗃 𝛾 ⊢ 𝜎 ⊠ 𝛤 .

Proof. The proof is by induction on the derivation 𝛾 ⊢ 𝜎.
Axiom The previous lemma is precisely dealing with this case.
With Introduction is combining the induction hypotheses by using the fact that two full 𝖴𝗌𝖺𝗀𝖾𝗌

are always synchronisable and their synchronisation is a full 𝖴𝗌𝖺𝗀𝖾𝗌.
Tensor Introduction relies on the fact that the (proof relevant) way in which the two premises’

contexts are merged gives us enough information to generate the appropriate 𝖴𝗌𝖺𝗀𝖾𝗌 extensions along

G. Allais and C. McBride 11

which to weaken the induction hypotheses. The two weakened derivations are then proven to be
compatible (the weakened output context of the first one is equal to the weakened input of the second
one) and combined using a tensor introduction rule whose output context is indeed fully used.

Left rules The left rules are dealt with by defining ad-hoc functions mimicking the action of
splitting a variable in the context (for tensor) or picking a side (for with) at the 𝖴𝗌𝖺𝗀𝖾𝗌 level and
proving that these actions do not affect derivability in ILLWiL negatively. ◀

This is overall a reasonably simple proof but it had to be expected: ILL is a more explicit system
listing precisely when every single left rule is applied whereas ILLWiL is more on the elliptic side.
Let us now deal with soundness:

6 Soundness

The soundness result tells us that from a derivation in themore general calculus, one can create a valid
derivation in ILL. To be able to formulate such a statement, we need a way of listing the assumptions
which have been used in a proof 𝛤 ⊢ 𝜎 ⊠ 𝛥; informally, we should be able to describe a 𝖴𝗌𝖺𝗀𝖾𝗌 𝐸
such that ⌈ E ⌋ ⊢ 𝜎. To that effect, we introduce the notion of difference between two usages.

6.1 Usages Difference
A 𝖴𝗌𝖺𝗀𝖾𝗌 difference 𝐸 between 𝛤 and 𝛥 (two elements of type 𝖴𝗌𝖺𝗀𝖾𝗌 𝛾) is a 𝖴𝗌𝖺𝗀𝖾𝗌 𝛾 such that
𝛥 ≡ 𝛤 ─ 𝐸 holds where the three place relation _≡_─_ is defined as the pointwise lifting of a
relation on 𝖴𝗌𝖺𝗀𝖾s described in Figure 5. This inductive datatype, itself based on a definition of
cover differences, distinguishes three cases: if the input and the output are equal then the difference
is a mint assumption, if the input was a mint assumption then the difference is precisely the output
𝖴𝗌𝖺𝗀𝖾 and, finally, we may also be simply lifting the notion of 𝖢𝗈𝗏𝖾𝗋 difference when both the input
and the output are dented.

𝑆 ≡ 𝑆 ─ [𝜎] 𝑆 ≡ [𝜎] ─ 𝑆
𝑆 ≡ 𝑆1 ─ 𝑆2

] 𝑆 [≡] 𝑆1 [─] 𝑆2 [

Figure 5 𝖴𝗌𝖺𝗀𝖾 differences

Cover differences (_≡_─_) are defined by an inductive type described (minus the expected struc-
tural laws which we let the reader infer) in Figure 6.

𝑆 ≡ 𝑆1 ─ 𝑆2

𝑆 ⊗ 𝑇 ≡ 𝑆1 ⊗ 𝑇 ─ 𝑆2 ⊗[𝜏]
𝑆 ≡ 𝑆1 ─ 𝑆2

𝑆 ⊗ 𝑇 ≡ 𝑆1 ⊗[𝜏] ─ 𝑆2 ⊗ 𝑇

𝑇 ≡ 𝑇1 ─ 𝑇2

𝑆 ⊗ 𝑇 ≡ 𝑆 ⊗ 𝑇1 ─ [𝜎]⊗ 𝑇2

𝑇 ≡ 𝑇1 ─ 𝑇2

𝑆 ⊗ 𝑇 ≡ [𝜎]⊗ 𝑇1 ─ 𝑆 ⊗ 𝑇2

𝑆 ⊗ 𝑇 ≡ [𝜎]⊗ 𝑇 ─ 𝑆 ⊗[𝜏] 𝑆 ⊗ 𝑇 ≡ 𝑆 ⊗[𝜏] ─ [𝜎]⊗ 𝑇

Figure 6 𝖢𝗈𝗏𝖾𝗋 differences

12 Certified Proof Search for Intuitionistic Linear Logic

6.2 Soundness Proof
The proof of soundness is split into auxiliary lemmaswhich are used to combine the induction hypoth-
esis. These lemmas, where the bulk of the work is done, are maybe the places where the precise role
played by the constraints enforced in the generalised calculus come to light. We state them here and
skip the relatively tedious proofs. The interested reader can find them in the Search/Calculus.agda
file.

▶ Lemma 4 (Introduction of with). Assuming that we are given two subproofs 𝛥1 ≡ 𝛤 ─ 𝐸1 and
⌈ 𝐸1 ⌋ ⊢ 𝜎 on one hand and 𝛥2 ≡ 𝛤 ─ 𝐸2 and ⌈ 𝐸2 ⌋ ⊢ 𝜏 on the other, and that we know that the
two 𝖴𝗌𝖺𝗀𝖾𝗌 𝛾 respectively called 𝛥1 and 𝛥2 are such that 𝛥 ≡ 𝛥1 ⊙ 𝛥2 then we can generate 𝐸, an
𝖴𝗌𝖺𝗀𝖾𝗌 𝛾 , such that 𝛥 ≡ 𝛤 ─ 𝐸, ⌈ 𝐸 ⌋ ⊢ 𝜎, and ⌈ 𝐸 ⌋ ⊢ 𝜏.

Proof. The proof is by induction over the structure of the derivation stating that 𝛥1 and 𝛥2 are
synchronised. ◀

We can prove a similar theorem corresponding to the introduction of a tensor constructor. We
write 𝐸 ≡ 𝐸1 ⋈ 𝐸2 to mean that the context 𝐸 is obtained by interleaving 𝐸1 and 𝐸2. This notion
is defined inductively and, naturally, is proof-relevant. It corresponds in our list-based formalisation
of ILL to the multiset union mentioned in the tensor introduction rule in Figure 1.

▶ Lemma 5 (Introduction of tensor). Given 𝐹1 and 𝐹2 two 𝖴𝗌𝖺𝗀𝖾𝗌 𝛾 such that: 𝛥 ≡ 𝛤 ─ 𝐹1 and
⌈ 𝐹1 ⌋ ⊢ 𝜎 on one hand and 𝐸 ≡ 𝛥 ─ 𝐹2 and ⌈ 𝐹2 ⌋ ⊢ 𝜏 on the other, then we can generate 𝐹 an
𝖴𝗌𝖺𝗀𝖾𝗌 𝛾 together with two contexts 𝐸1 and 𝐸2 such that: 𝐸 ≡ 𝛤 ─ 𝐹 , ⌈ 𝐹 ⌋ ≡ 𝐸1 ⋈ 𝐸2, 𝐸1 ⊢ 𝜎
and 𝐸2 ⊢ 𝜏

▶ Theorem 6 (Soundness of the Generalisation). For all context 𝛾 , all 𝛤 , 𝛥 of type 𝖴𝗌𝖺𝗀𝖾𝗌 𝛾 and
all goal 𝜎 such that 𝛤 ⊢ 𝜎 ⊠ 𝛥 holds, there exists an 𝐸 such that 𝛥 ≡ 𝛤 ─ 𝐸 and ⌈ 𝐸 ⌋ ⊢ 𝜎.

Proof. The proof is by induction on the derivation; using auxiliary lemmas to combine the induction
hypothesis. ◀

▶ Corollary 7 (Soundness of the Proof Search). If the proof search shows that 𝗂𝗇𝗃 𝛾 ⊢ 𝜎 ⊠ 𝛥
holds for some 𝛥 and 𝛥 is a full usage then 𝛾 ⊢ 𝜎.

The soundness result relating the new calculus to the original onemakes explicit the fact that valid
ILL derivations correspond to the ones in the generalised calculus which have no leftovers. Together
with the completeness result it implies that if we can write a decision procedure for ILLWiL then we
will automatically have one for ILL.

7 Proof Search

We have defined a lot of elegant datatypes so far but the original goal was to implement a proof search
algorithm for the fragment of ILL we have decided to study. The good news is that all the systems we
have described have algorithmic rules: read bottom-up, they are a set of constructor-directed recipes
to search for a proof. Depending on the set of rules however, they may or may not be deterministic
and they clearly are not total because not all sequents are provable. This simply means that we will
be working in various monads. The axiom rule forces us to introduce non-determinism (which we
will model using the list monad); there are indeed as many ways of proving an atomic proposition as
there are assumptions of that type in the context. The rule for tensor looks like two stateful operations
being run sequentially: one starts by discharging the first subgoal, waits for it to return a modified
context and then threads these leftovers to tackle the second one. And, last but not least, the rule

G. Allais and C. McBride 13

for with looks very much like a map-reduce diagram: we start by generating two subcomputations
which can be run in parallel and later on merge their results by checking whether the output contexts
can be said to be synchronised (and this partiality will be dealt with using the maybe monad).

Now, the presence of these effects is a major reason why it is important to have the elegant inter-
mediate structures we can generate inhabitants of. Even if we are only interested in the satisfiability
of a given problem, having material artefacts at our disposal allows us to state and prove properties
of these functions easily rather than having to suffer from boolean blindness: ”A Boolean is a bit
uninformative” [17]. And we know that we may be able to optimise them away [22, 10] in the case
where we are indeed only interested in the satisfiability of the problem and they turn out to be useless.

7.1 Consuming an Atomic Proposition
The proof search procedures are rather simple to implement (they straightforwardly follow the spec-
ifications we have spelled out earlier) and their definitions are succinct. Let us study them.

▶ Lemma 8. Given a type 𝜎 and an atomic proposition 𝑘, we can manufacture a list of pairs
consisting of a 𝖢𝗈𝗏𝖾𝗋 𝜎 we will call 𝑆 and a proof that [𝜎]∋ 𝑘 ⊠ 𝑆.

Proof. We write _∈?[_] for the function describing the different ways in which one can consume an
atomic proposition from a mint assumption. This function, working in the list monad, is defined by
structural induction on its second (explicit) argument: the mint assumption’s type.

Atomic Case If the mint assumption is just an atomic proposition then it may be used if and only
if it is the same proposition. Luckily this is decidable; in the case where propositions are indeed
equal, we return the corresponding consumption whilst we simply output the empty list otherwise.

Tensor & With Case Both the tensor and with case amount to picking a side. Both are equally
valid so we just concatenate the lists of potential proofs after having mapped the appropriate lem-
mas inserting the constructors recording the choices made over the results obtained by induction
hypothesis. ◀

The case where the assumption is not mint is just marginally more complicated as there are more
cases to consider:

▶ Lemma 9. Given a cover 𝑆 and an atomic proposition 𝑘, we can list the ways in which one may
extract and consume 𝑘.

Proof. We write _∈?]_[for the function describing the different ways in which one can consume an
assumption from an already existing cover. This function, working in the list monad, is defined by
structural induction on its second (explicit) argument: the cover.

Atomic Case The atomic proposition has already been used, there is therefore no potential proof:
Tensor Cases The tensor cases all amount to collecting all the ways in which one may use the

sub-assumptions. Whenever a sub-assumption is already partially used (in other words: a 𝖢𝗈𝗏𝖾𝗋)
we use the induction hypothesis delivered by the function _∈?]_[itself; if it is mint then we can fall
back to using the previous lemma. In each case, we then map lemmas applying the appropriate rules
recording the choices made.

With Cases Covers for with are a bit special: either they are stating that an assumption has been
fully used (meaning that there is no way we can extract the atomic proposition 𝑘 out of it) or a side
has already been picked and we can only explore one sub-assumption. As for the other cases, we
need to map auxiliary lemmas. ◀

Now that we know how to list the ways in which one can extract and consume an atomic propo-
sition from a mint assumption or an already existing cover, it is trivial to define the corresponding
process for an 𝖴𝗌𝖺𝗀𝖾.

14 Certified Proof Search for Intuitionistic Linear Logic

▶ Corollary 10. Given an 𝑆 of type 𝖴𝗌𝖺𝗀𝖾 𝜎 and an atomic proposition 𝑘, one can produce a list
of pairs consisting of a 𝖴𝗌𝖺𝗀𝖾 𝜎 we will call 𝑇 and a proof that 𝑆 ∋ 𝑘 ⊠ 𝑇 .

Proof. It amounts to calling the appropriate function to do the job and apply a lemma to transport
the result. ◀

This leads us to the theorem describing how to implement proof search for the _∋_⊠_ relation
used in the axiom rule.

▶ Theorem 11. Given a 𝛤 of type 𝖴𝗌𝖺𝗀𝖾𝗌 𝛾 and an atomic proposition 𝑘, one can produce a list
of pairs consisting of a 𝖴𝗌𝖺𝗀𝖾𝗌 𝛾 we will call 𝛥 and a proof that 𝛤 ∋ 𝑘 ⊠ 𝛥.

Proof. We simply call the function _∈?_ described in the previous corollary to each one of the
assumptions in the context and collect all of the possible solutions: ◀

7.2 Producing Derivations
Assuming the following lemma stating that we can test for being synchronisable, we have all the
pieces necessary to write a proof search procedure listing all the ways in which a context may entail
a goal.

▶ Lemma 12. Given 𝛥1 and 𝛥2 two 𝖴𝗌𝖺𝗀𝖾𝗌 𝛾 , it is possible to test whether they are synchronisable
and, if so, return a 𝖴𝗌𝖺𝗀𝖾𝗌 𝛾 which we will call 𝛥 together with a proof that 𝛥 ≡ 𝛥1 ⊙ 𝛥2. We call
⊙? this function.

▶ Theorem 13 (Proof Search). Given an 𝑆 of type 𝖴𝗌𝖺𝗀𝖾 𝜎 and a type 𝜏, it is possible to produce
a list of pairs consisting of a 𝖴𝗌𝖺𝗀𝖾 𝜎 we will call 𝑇 and a proof that 𝑆 ⊢ 𝜏 ⊠ 𝑇 .

Proof. We write _⊢?_ for this function. It is defined by structural induction on its second (explicit)
argument: the goal’s type. We work, the whole time, in the list monad.

Atomic Case Trying to prove an atomic proposition amounts to lifting the various possibilities
provided to us by _∈?_ thanks to the axiom rule 𝖺𝗑.

Tensor Case After collecting the leftovers for each potential proof of the first subgoal, we try to
produce a proof of the second one. If both of these phases were successful, we can then combine
them with the appropriate tree constructor ⊗.

With Case Here we produce two independent sets of potential proofs and then check which subset
of their cartesian product gives rise to valid proofs. To do so, we call _⊙?_ on the returned 𝖴𝗌𝖺𝗀𝖾𝗌 to
make sure that they are synchronisable and, based on the result, either combine them using 𝗐𝗁𝖾𝗇𝖲𝗈𝗆𝖾
or fail by returning the empty list. ◀

7.3 From Proof Search to a Decision Procedure
The only thing missing in order for us to have a decision procedure is a proof that all possible inter-
esting cases are considered by the proof search algorithm. The “interesting” keyword is here very
important. In the _∋_⊠_ case, it is indeed crucial that we try all potential candidates as future steps
may reject subproofs.

▶ Lemma 14 (No Overlooked Assumption). Given 𝛤 , 𝛥 two 𝖴𝗌𝖺𝗀𝖾𝗌 𝛾 and 𝑘 an atom such that
there is a proof 𝑝𝑟 that 𝛤 ∋ 𝑘 ⊠ 𝛥 holds, 𝑘 ∈? 𝛤 contains the pair (𝛥 , 𝑝𝑟).

In the _≡_⊙_ case, however, it is not as important: the formalisation is made shorter by having
a constructor for symmetry rather than twice as many introduction rules. This does not mean that
we are interested in the proofs where one spends time applying symmetry over and over again. As a

G. Allais and C. McBride 15

consequence, we have to acknowledge the fact that the proof discovered by the search procedure may
be different from any given proof of the same type. And this constraint is propagated all the way up
to the main theorem

▶ Theorem 15 (No Overlooked Derivation). Given 𝛤 , 𝛥 two 𝖴𝗌𝖺𝗀𝖾𝗌 𝛾 and 𝜎 a type, if 𝛤 ⊢ 𝜎 ⊠
𝛥 holds then there exists a derivation 𝑝𝑟 of 𝛤 ⊢ 𝜎 ⊠ 𝛥 such that the pair (𝛥 , 𝑝𝑟) belongs to the list
𝛤 ⊢? 𝜎.

From this result, we can conclude that we have in practice defined a decision procedure for ILL-
WiL and therefore ILL as per the soundness and completeness results proven in section 6 and section 5
respectively.

8 Applications: building Tactics

A first, experimental, version of the procedure described in the previous sections was purposefully
limited to handling atomic propositions and tensor product. One could argue that this fragment is akin
to Hutton’s razor [12]: small enough to allow for quick experiments whilst covering enough ground
to articulate founding principles. Now, the theory of ILL with just atomic propositions and tensor
products is exactly the one of bag equivalence: a goal will be provable if and only if the multiset of
its atomic propositions is precisely the context’s one.

Naturally, one may want to write a solver for Bag Equivalence based on the one for ILL. But it
is actually possible to solve an even more general problem: equations on a commutative monoid.
Agda’s standard library comes with a solver for equations on a semiring but it’s not always the case
that one has such a rich structure to take advantage of.

8.1 Equations on a Commutative Monoid
Thiswhole section is parametrised by a commutativemonoid𝑀𝑜𝑛 (as defined in the file Algebra.agda
of Agda’s standard library) whose carrier 𝖢𝖺𝗋𝗋𝗂𝖾𝗋 𝑀𝑜𝑛 is assumed to be such that equality of its el-
ements is decidable (_≟_ will be the name of the corresponding function). Alternatively, we may
write 𝑀.𝑛𝑎𝑚𝑒 to mean the 𝑛𝑎𝑚𝑒 defined by the commutative monoid 𝑀𝑜𝑛 (e.g. 𝑀.𝐶𝑎𝑟𝑟𝑖𝑒𝑟 will refer
to the previously mentioned set 𝖢𝖺𝗋𝗋𝗂𝖾𝗋 𝑀𝑜𝑛).

We start by defining a grammar for expressions with a finite number of variable whose carrier is
a commutative monoid: a term may either be a variable (of which there are a finite amount 𝑛), an
element of the carrier set or the combination of two terms.

𝖽𝖺𝗍𝖺 𝖤𝗑𝗉𝗋 (𝑛 ∶ ℕ) ∶ 𝖲𝖾𝗍 𝗐𝗁𝖾𝗋𝖾
༤𝗏 ∶ (𝑘 ∶ 𝖥𝗂𝗇 𝑛) → 𝖤𝗑𝗉𝗋 𝑛
༤𝖼 ∶ (𝑒𝑙 ∶ 𝖢𝖺𝗋𝗋𝗂𝖾𝗋 𝑀𝑜𝑛) → 𝖤𝗑𝗉𝗋 𝑛
༤∙ ∶ (𝑡 𝑢 ∶ 𝖤𝗑𝗉𝗋 𝑛) → 𝖤𝗑𝗉𝗋 𝑛

Assuming the existence of a valuation assigning a value of the carrier set to each one of the
variables, a simple semantics can be given to these expressions:

𝖵𝖺𝗅𝗎𝖺𝗍𝗂𝗈𝗇 ∶ ℕ → 𝖲𝖾𝗍
𝖵𝖺𝗅𝗎𝖺𝗍𝗂𝗈𝗇 𝑛 = 𝖵𝖾𝖼 𝖬.𝖢𝖺𝗋𝗋𝗂𝖾𝗋 𝑛

⟦_⟧𝖤 ∶ {𝑛 ∶ ℕ} (𝑡 ∶ 𝖤𝗑𝗉𝗋 𝑛) (𝜌 ∶ 𝖵𝖺𝗅𝗎𝖺𝗍𝗂𝗈𝗇 𝑛) → 𝖬.𝖢𝖺𝗋𝗋𝗂𝖾𝗋
⟦ ༤𝗏 𝑘 ⟧𝖤 𝜌 = 𝗅𝗈𝗈𝗄𝗎𝗉 𝑘 𝜌
⟦ ༤𝖼 𝑒𝑙 ⟧𝖤 𝜌 = 𝑒𝑙

16 Certified Proof Search for Intuitionistic Linear Logic

⟦ 𝑡 ༤∙ 𝑢 ⟧𝖤 𝜌 = ⟦ 𝑡 ⟧𝖤 𝜌 𝖬.∙ ⟦ 𝑢 ⟧𝖤 𝜌

Now, we can normalise these terms down to vastly simpler structures: every 𝖤𝗑𝗉𝗋 𝑛 is equivalent
to a pair of an element of the carrier set (in which we have accumulated the constant values stored
in the tree) together with the list of variables present in the term. We start by defining this 𝖬𝗈𝖽𝖾𝗅
together with its semantics:

𝖬𝗈𝖽𝖾𝗅 ∶ (𝑛 ∶ ℕ) → 𝖲𝖾𝗍
𝖬𝗈𝖽𝖾𝗅 𝑛 = 𝖬.𝖢𝖺𝗋𝗋𝗂𝖾𝗋 × 𝖫𝗂𝗌𝗍 (𝖥𝗂𝗇 𝑛)

⟦_⟧𝖬𝗌 ∶ {𝑛 ∶ ℕ} (𝑘𝑠 ∶ 𝖫𝗂𝗌𝗍 (𝖥𝗂𝗇 𝑛)) (𝜌 ∶ 𝖵𝖺𝗅𝗎𝖺𝗍𝗂𝗈𝗇 𝑛) → 𝖬.𝖢𝖺𝗋𝗋𝗂𝖾𝗋
⟦ 𝑘𝑠 ⟧𝖬𝗌 𝜌 = 𝖿𝗈𝗅𝖽𝗋 𝖬._∙_ 𝖬.𝜀 (𝗆𝖺𝗉 (𝖿𝗅𝗂𝗉 𝗅𝗈𝗈𝗄𝗎𝗉 𝜌) 𝑘𝑠)

⟦_⟧𝖬 ∶ {𝑛 ∶ ℕ} (𝑡 ∶ 𝖬𝗈𝖽𝖾𝗅 𝑛) (𝜌 ∶ 𝖵𝖺𝗅𝗎𝖺𝗍𝗂𝗈𝗇 𝑛) → 𝖬.𝖢𝖺𝗋𝗋𝗂𝖾𝗋
⟦ 𝑒𝑙 , 𝑘𝑠 ⟧𝖬 𝜌 = 𝑒𝑙 𝖬.∙ ⟦ 𝑘𝑠 ⟧𝖬𝗌 𝜌

We then provide a normalisation function turning a 𝖤𝗑𝗉𝗋 𝑛 into such a pair. The variable and
constant cases are trivial whilst the _༝∙_ is handled by an auxiliary definition combining the induction
hypotheses:

∙∙ ∶ {𝑛 ∶ ℕ} → 𝖬𝗈𝖽𝖾𝗅 𝑛 → 𝖬𝗈𝖽𝖾𝗅 𝑛 → 𝖬𝗈𝖽𝖾𝗅 𝑛
(𝑒 , 𝑘𝑠) ∙∙ (𝑓 , 𝑙𝑠) = 𝑒 𝖬.∙ 𝑓 , 𝑘𝑠 ++ 𝑙𝑠

𝗇𝗈𝗋𝗆 ∶ {𝑛 ∶ ℕ} (𝑡 ∶ 𝖤𝗑𝗉𝗋 𝑛) → 𝖬𝗈𝖽𝖾𝗅 𝑛
𝗇𝗈𝗋𝗆 (༤𝗏 𝑘) = 𝖬.𝜀 , 𝑘 ∷ []
𝗇𝗈𝗋𝗆 (༤𝖼 𝑒𝑙) = 𝑒𝑙 , []
𝗇𝗈𝗋𝗆 (𝑡 ༤∙ 𝑢) = 𝗇𝗈𝗋𝗆 𝑡 ∙∙ 𝗇𝗈𝗋𝗆 𝑢

This normalisation step is proved semantics preserving with respect to the commutative monoid’s
notion of equality by the following lemma:
▶ Lemma 16 (Normalisation Soundness). Given 𝑡 an 𝖤𝗑𝗉𝗋 𝑛, for any 𝜌 a 𝖵𝖺𝗅𝗎𝖺𝗍𝗂𝗈𝗇 𝑛, we have: ⟦
𝑡 ⟧𝖤 𝜌 𝖬.≈ ⟦ 𝗇𝗈𝗋𝗆 𝑡 ⟧𝖬 𝜌.

This means that if we know how to check whether two elements of the model are equal then we
know how to do the same for two expressions: we simply normalise both of them, test the normal
forms for equality and transport the result back thanks to the soundness result. But equality for
elements of the model is not complex to test: they are equal if their first components are and their
second ones are the same multisets. This is where our solver for ILL steps in: if we limit the context
to atoms only and the goal to being one big tensor of atomic formulas then we prove precisely multiset
equality. Let us start by defining this subset of ILL we are interested in. We introduce two predicates
on types 𝗂𝗌𝖠𝗍𝗈𝗆𝗌 saying that contexts are made out of atomic formulas and 𝗂𝗌𝖯𝗋𝗈𝖽𝗎𝖼𝗍 restricting goal
types to big products of atomic propositions:

𝜅 𝑘 ∶ 𝗂𝗌𝖯𝗋𝗈𝖽𝗎𝖼𝗍 𝜅 𝑘
𝑆 ∶ 𝗂𝗌𝖯𝗋𝗈𝖽𝗎𝖼𝗍 𝜎 𝑇 ∶ 𝗂𝗌𝖯𝗋𝗈𝖽𝗎𝖼𝗍 𝜏

𝑆 ⊗ 𝑇 ∶ 𝗂𝗌𝖯𝗋𝗈𝖽𝗎𝖼𝗍 𝜎 ⊗ 𝜏
For each one of these predicates, we define the corresponding erasure function (𝖿𝗋𝗈𝗆𝖠𝗍𝗈𝗆𝗌 and

𝖿𝗋𝗈𝗆𝖯𝗋𝗈𝖽𝗎𝖼𝗍 respectively) listing the hypotheses mentioned in the derivation. We can then formulate
the following soundness theorem:

G. Allais and C. McBride 17

▶ Lemma 17. Given three contexts 𝛾 , 𝛿 and 𝑒 composed only of atoms (we call 𝛤 , 𝛥 and 𝐸 the
respective proofs that 𝗂𝗌𝖠𝗍𝗈𝗆𝗌 holds for them) and a proof that 𝛾 is obtained by merging 𝛿 and 𝑒
together, we can demonstrate that for all 𝜌 a 𝖵𝖺𝗅𝗎𝖺𝗍𝗂𝗈𝗇 𝑛:

⟦ 𝖿𝗋𝗈𝗆𝖠𝗍𝗈𝗆𝗌 𝛤 ⟧𝖬𝗌 𝜌 𝖬.≈ ⟦ 𝖿𝗋𝗈𝗆𝖠𝗍𝗈𝗆𝗌 𝛥 ⟧𝖬𝗌 𝜌 𝖬.∙ ⟦ 𝖿𝗋𝗈𝗆𝖠𝗍𝗈𝗆𝗌 𝐸 ⟧𝖬𝗌 𝜌

Proof. The proof is by induction on the structure of the proof that 𝛾 is obtained by merging 𝛿 and 𝑒
together. ◀

This auxiliary lemma is what allows us to prove the main soundness theorem which will allow to
derive a solver for commutative monoids from the one we already have:

▶ Theorem 18. From a context 𝛾 and a goal 𝜎 such that 𝛤 and 𝑆 are respectively proofs that
𝗂𝗌𝖠𝗍𝗈𝗆𝗌 𝛾 and 𝗂𝗌𝖯𝗋𝗈𝖽𝗎𝖼𝗍 𝜎 hold true, and from a given proof that 𝛾 ⊢ 𝜎 we can derive that for any (𝜌
∶ 𝖵𝖺𝗅𝗎𝖺𝗍𝗂𝗈𝗇 𝑛), ⟦ 𝖿𝗋𝗈𝗆𝖠𝗍𝗈𝗆𝗌 𝛤 ⟧𝖬𝗌 𝜌 𝖬.≈ ⟦ 𝖿𝗋𝗈𝗆𝖯𝗋𝗈𝖽𝗎𝖼𝗍 𝑆 ⟧𝖬𝗌 𝜌.

Proof. The proof is by induction on the derivation of type 𝛾 ⊢ 𝜎. The hypothesis that assumptions
are atomic discards all cases where a left rule might have been applied whilst the one saying that the
goal is a big product helps us discard the with introduction case.

The two cases left are therefore the variable one (trivial) and the tensor introduction one which is
dealt with by combining the induction hypotheses generated by the subderivations using the previous
lemma. ◀

The existence of injection function taken a list of atomic proposition as an input, delivering an
appropriately atomic context or product goal is the last piece of boilerplate we need. Fortunately, it
is very easy to deliver:
▶ Proposition 19 (Injection functions). From a list of atomic propositions 𝑥𝑠, one can produce a
context 𝗂𝗇𝗃𝗌 𝑥𝑠 such that there is a proof 𝛤 of 𝗂𝗌𝖠𝗍𝗈𝗆𝗌 (𝗂𝗇𝗃𝗌 𝑥𝑠) and 𝖿𝗋𝗈𝗆𝖠𝗍𝗈𝗆𝗌 𝛤 is equal to 𝑥𝑠.

Similarly, from a non-empty list 𝑥 ∷ 𝑥𝑠, one can produce a type 𝗂𝗇𝗃 𝑥 𝑥𝑠 such that there is a proof
𝑆 of 𝗂𝗌𝖯𝗋𝗈𝖽𝗎𝖼𝗍 (𝗂𝗇𝗃 𝑥 𝑥𝑠) and 𝖿𝗋𝗈𝗆𝖯𝗋𝗈𝖽𝗎𝖼𝗍 𝑆 is equal to 𝑥 ∷ 𝑥𝑠.

Proof. In the first case, we simply map the atomic constructor over the list of propositions. In the
second one, we create a big right-nested tensor product. ◀

We can now combine all of these elements to prove:

▶ Corollary 20. Given 𝑡 and 𝑢 two 𝖤𝗑𝗉𝗋 𝑛 and 𝜌 a 𝖵𝖺𝗅𝗎𝖺𝗍𝗂𝗈𝗇 𝑛, one can leverage the ILL solver to
(perhaps) produce a derivation proving that ⟦ 𝑡 ⟧𝖤 𝜌 𝖬.≈ ⟦ 𝑢 ⟧𝖤 𝜌

Proof. We know from Theorem 16 that we can reduce that problem to the equivalent ⟦ 𝗇𝗈𝗋𝗆 𝑡 ⟧𝖤

𝜌 𝖬.≈ ⟦ 𝗇𝗈𝗋𝗆 𝑢 ⟧𝖤 𝜌 so we start by normalising both sides to (𝑒 , 𝑘𝑠) on one hand and (𝑓 , 𝑙𝑠) on
the other. These two normal forms are then equal if the two constants 𝑒 and 𝑓 are themselves equal
(which, by assumption, we know how to decide) and the two lists of variables 𝑘𝑠 and 𝑙𝑠 are equal up
to permutation which is the case if we are able to produce an ILL derivation 𝗂𝗇𝗃𝗌 𝑘𝑠 ⊢ 𝗂𝗇𝗃 𝑙𝑠 as per
the combination of the soundness result and the injection functions’ properties. ◀

Now, the standard library already contains a proof that (ℕ, 𝟢, _+_, _≡_) is a commutative monoid
so we can use this fact (named ℕ+ here) to have a look at an example. In the following code snippet,
𝖫𝖧𝖲, 𝖱𝖧𝖲 and 𝖢𝖳𝖷 are respectively reified versions of the left and right hand sides of the equation,
as well as the 𝖵𝖺𝗅𝗎𝖺𝗍𝗂𝗈𝗇 𝟤 mapping variables in the 𝖤𝗑𝗉𝗋 language to their names in Agda.

𝟤+𝗑+𝗒+𝟣 ∶ (𝑥 𝑦 ∶ ℕ) → 𝟤 + (𝑥 + 𝑦 + 𝟣) ≡ 𝑦 + 𝟥 + 𝑥
𝟤+𝗑+𝗒+𝟣 𝑥 𝑦 = 𝗉𝗋𝗈𝗏𝖾𝖬𝗈𝗇𝖤𝗊 𝖫𝖧𝖲 𝖱𝖧𝖲 𝖢𝖳𝖷

18 Certified Proof Search for Intuitionistic Linear Logic

𝗐𝗁𝖾𝗋𝖾 𝗈𝗉𝖾𝗇 ℕ+
༤𝗑 = ༤𝗏 (# 𝟢)
༤𝗒 = ༤𝗏 (# 𝟣)
𝖫𝖧𝖲 = ༤𝖼 𝟤 ༤∙ ((༤𝗑 ༤∙ ༤𝗒) ༤∙ ༤𝖼 𝟣)
𝖱𝖧𝖲 = (༤𝗒 ༤∙ ༤𝖼 𝟥) ༤∙ ༤𝗑
𝖢𝖳𝖷 = 𝑥 ∷ 𝑦 ∷ []

The normalisation step reduced proving this equation to proving that the pair (𝟥, {{𝑥, 𝑦}}) is equal
to the pair (𝟥, {{𝑦, 𝑥}}). Equality of the first components is trivial whilst the multiset equality one is
proven true by our solver.

8.2 Proving Bag Equivalence
We claimed that proving equations for a commutative monoid was more general than mere bag equiv-
alence. It is now time to make such a statement formal: using Danielsson’s rather consequent library
for reasoning about Bag Equivalence [7], we can build a tactics for proving bag equivalences of
expressions involving finite lists (and list variables) by simply leveraging the solver defined in the
previous subsection. Assuming that we have a base 𝖲𝖾𝗍 named 𝑃𝑟 equipped with a decidable equality
≟, here is how to proceed:

▶ Lemma 21. 𝖫𝗂𝗌𝗍 𝑃𝑟 equipped with the binary operation _++_ is a commutative monoid for the
equivalence relation _≈−𝖻𝖺𝗀_.

We therefore have a solver for this theory. Now, it would be a grave mistake to translate con-
stants using the ༝𝖼 constructor of the solver: results would be accumulated using concatenation and
compared for syntactic equality rather than up to permutation. This means that, for instance, 𝟣 ∷ 𝟤
∷ 𝑥𝑠 and 𝟤 ∷ 𝟣 ∷ 𝑥𝑠 would be declared distinct because their normal forms would be, respectively,
the pair 𝟣 ∷ 𝟤 ∷ [], 𝑥𝑠 ∷ [] on one hand and 𝟤 ∷ 𝟣 ∷ [], 𝑥𝑠 ∷ [] on the other one. Quite embarrassing
indeed.

Instead we ought to treat the expressions as massive joins of lists of singletons (seen as variables)
and list variables. And this works perfectly well as demonstrated by the following example:

𝖾𝗑𝖺𝗆𝗉𝗅𝖾 ∶ (𝑥𝑠 𝑦𝑠 ∶ 𝖫𝗂𝗌𝗍 ℕ) →
𝟣 ∷ 𝟤 ∷ 𝑥𝑠 ++ 𝟣 ∷ 𝑦𝑠 ≈−𝖻𝖺𝗀 𝑦𝑠 ++ 𝟤 ∷ 𝑥𝑠 ++ 𝟣 ∷ 𝟣 ∷ []

𝖾𝗑𝖺𝗆𝗉𝗅𝖾 𝑥𝑠 𝑦𝑠 = 𝗉𝗋𝗈𝗏𝖾𝖬𝗈𝗇𝖤𝗊 𝖫𝖧𝖲 𝖱𝖧𝖲 𝖢𝖳𝖷
𝗐𝗁𝖾𝗋𝖾 𝗈𝗉𝖾𝗇 𝖡𝖤

༤𝟣 = ༤𝗏 (# 𝟢)
༤𝟤 = ༤𝗏 (# 𝟣)
༤𝗑𝗌 = ༤𝗏 (# 𝟤)
༤𝗒𝗌 = ༤𝗏 (# 𝟥)
𝖫𝖧𝖲 = ((༤𝟣 ༤∙ ༤𝟤) ༤∙ ༤𝗑𝗌) ༤∙ ༤𝟣 ༤∙ ༤𝗒𝗌
𝖱𝖧𝖲 = ༤𝗒𝗌 ༤∙ (༤𝟤 ༤∙ ༤𝗑𝗌) ༤∙ ༤𝟣 ༤∙ ༤𝟣
𝖢𝖳𝖷 = 𝗌𝗀𝗅 𝟣 ∷ 𝗌𝗀𝗅 𝟤 ∷ 𝑥𝑠 ∷ 𝑦𝑠 ∷ []

Once more, 𝖫𝖧𝖲, 𝖱𝖧𝖲 and 𝖢𝖳𝖷 are the respective reifications of the left and right hand sides of
the equation as well as the one of the context. All these reification are done by hand. Having a nice
interface for these solvers would involve a little bit of engineering work such as writing a (partial)
function turning elements of the 𝖳𝖾𝗋𝗆 type describing quoted Agda term into the corresponding 𝖤𝗑𝗉𝗋.
All of these issues have been thoroughly dealt with by van der Walt and Swierstra [20, 21].

G. Allais and C. McBride 19

9 Conclusion, Related and Future Work

We have seen how, starting from provability in Intuitionistic Linear Logic, a problem with an exten-
sional formulation, we canmove towards a type-theoretic approach to solving it. This was done firstly
by generalising the problem to a calculus with leftovers better matching the proof search process and
secondly by introducing resource-aware contexts which are datatypes retaining the important hidden
structure of the problem. These constructions led to the definition of Intuitionistic Linear LogicWith
Leftovers, a more general calculus enjoying a notion of weakening whilst, at the same time, sound
and complete with respect to ILL. Provability of formulas in ILL being decidable is then a simple
corollary of it being decidable for ILLWiL. Finally, a side effect of this formalisation effort is the
definition of helpful tactics targeting commutative monoids and, in particular, bag equivalence of
lists.

This development has evident connections with Andreoli’s vastly influential work on focusing in
Linear Logic [2] which demonstrates that by using a more structured calculus (the focused one), the
logician can improve her proof search procedure by making sure that she ignores irrelevant variations
between proof trees. The fact that our approach is based on never applying a left rule explicitly and
letting the soundness result insert them in an optimal fashion is in the same vein: we are, effectively,
limiting the search space to proof trees with a very specific shape without losing any expressivity.

In the domain of certified proof search, Kokke and Swierstra have designed a prolog-style pro-
cedure in Agda [13] which, using a fuel-based model, will explore a bounded part of the set of trees
describing the potential proofs generated by backward-chaining using a fixed set of deduction rules
as methods. Their approach crucially relies on unification which, as demonstrated by Lengrand, Dy-
ckhoff, and McKinna’s work [14], could be framed as a more general sequent calculus equipped with
meta-variables and unification constraints.

As already heavily hinted at by the previous section, there is a number of realms which benefit
from proof search in Linear Logic. Bag equivalence [7] is clearly one of them but recent works
also draw connections between Intuitionistic Linear Logic and narrative representation: proof search
then becomes narrative generation [4, 15, 3] and a proof is seen as a trace corresponding to one
possible storyline given the plot-devices available in the context. Our approach is certified to produce
all possible derivations (modulo commuting the application of the left rules) and therefore all the
corresponding storylines.

9.1 Tackling a Larger Fragment

The fragment we are studying is non-trivial: as showcased, having only tensor and atomic formulas
would already be equivalent to testing bag equivalence between the context and the goal; limiting
ourselves to with and atomic formulas would amount to checking that there is a non-empty intersec-
tion between the context and the goal. However mixing tensors and withs creates a more intricate
theory hence this whole development. It would nonetheless be exciting to tackle a larger fragment in
a similar, well-structured manner.

A very important connector in ILL is the lollipop. Although dealing with it on the right hand side
is extremely simple (one just extends the context with the newly acquired assumption and check that it
has been entirely consumed in the subderivation corresponding to the body of the lambda abstraction),
its elimination rule is more complex: if 𝜎 ⊸ 𝜏 belongs to the context, then one needs to be able to
make this specific assumption temporarily unavailable when proving its premise. Indeed, it would
otherwise be possible to use its own body to discharge the premise thus leading to a strange fixpoint
making e.g. 𝜎 ⊸ (𝜎 ⊗ 𝜎) ⊢ 𝜎 provable. We have explored various options but a well-structured
solution has yet to be found.

20 Certified Proof Search for Intuitionistic Linear Logic

9.2 Search Parallelisation
The reader familiar with linear logic will not have been surprised by the fact that some rules are
well-suited for a parallel exploration of the provability of its sub-constituents. The algorithm we
have presented however remains sequential when it comes to a goal whose head symbol is a tensor.
But that is not a fatality: it is possible to design a tensor introduction rule following the map-reduce
approach seen earlier. It will let us try to produce both subproofs in parallel before performing an a
posteriori check to make sure that the output contexts of the two subcomputations are disjoint.

𝛤 ⊢ 𝜎 ⊠ 𝛥1 𝛤 ⊢ 𝜏 ⊠ 𝛥2 𝛥 ≡ 𝛥1 ⊎ 𝛥2

𝛤 ⊢ 𝜎 ⊗ 𝜏 ⊠ 𝛥

This approach would allow for a complete parallelisation of the work at the cost of more subproofs
being thrown away at the merge stage because they do not fit together.

9.3 Connection to Typechecking
A problem orthogonal to proof search but that could benefit from the techniques and datastructures
presented here is the one of typechecking. In the coeffect calculus introduced by Petricek, Orchard
and Mycroft [18], extra information is attached to the variables present in the context. Their ap-
proach allows for writing derivations in Bounded Linear Logic or building a programwith an attached
dataflow analysis. However their deduction rules, when read bottom-up, are suffering from some of
the issues we highlighted in this paper’s introduction (having to guess how to partition a context for
instance). This may be tractable for Hindley-Milner-like type systems enjoying type inference but
we are interested in more powerful type theories.

We believe that moving from their presentation to one with input and output contexts as well
as keeping more structured contexts would give rise to a range of calculi whose judgements are
algorithmic in nature thus making them more amenable to (bidirectional) typechecking. We are
interested in investigating a principled way to turn systems using annotations presented using an
additive monoid into ones where consumption is the central notion.

It should also be noted that our notion of variable annotation allows for slightly more subtle
invariants being tracked: the annotation’s structure may depend on the structure of the variable’s
type.

Special Thanks

This paper was typeset thanks to Stevan Andjelkovic’s work to make compilation from literate agda
to LATEX possible.

BenKavanaghwas instrumental in pushing us to introduce a visual representation of consumption
annotations thus making the lump of nested predicate definitions more accessible to the first time
reader.

References
1 ThorstenAltenkirch,MartinHofmann, and Thomas Streicher. Categorical reconstruction of a reduc-

tion free normalization proof. InCategory Theory and Computer Science, pages 182–199. Springer,
1995.

2 Jean-Marc Andreoli. Logic Programming with Focusing Proofs in Linear Logic. Journal of Logic
and Computation, 2(3):297–347, 1992.

G. Allais and C. McBride 21

3 Anne-Gwenn Bosser, Marc Cavazza, Ronan Champagnat, et al. Linear logic for non-linear story-
telling. In ECAI, pages 713–718, 2010.

4 Anne-Gwenn Bosser, Pierre Courtieu, Julien Forest, and Marc Cavazza. Structural analysis of
narratives with the Coq proof assistant. In Interactive Theorem Proving, pages 55–70. Springer,
2011.

5 Samuel Boutin. Using reflection to build efficient and certified decision procedures. In Theoretical
Aspects of Computer Software, pages 515–529. Springer, 1997.

6 Pierre Crégut. Une procédure de décision réflexive pour un fragment de l’arithmétique de Pres-
burger. In Informal proceedings of the 15th Journées Francophones des Langages Applicatifs,
2004.

7 Nils Anders Danielsson. Bag equivalence via a proof-relevant membership relation. In Interactive
Theorem Proving, pages 149–165. Springer, 2012.

8 Nicolaas Govert de Bruijn. Lambda Calculus notation with nameless dummies. In Indagationes
Mathematicae (Proceedings), volume 75, pages 381–392. Elsevier, 1972.

9 Peter Dybjer. Inductive families. Formal Aspects of Computing, 6(4):440–465, 1994.
10 Andrew Gill, John Launchbury, and Simon L Peyton Jones. A short cut to deforestation. In Pro-

ceedings of the conference on Functional programming languages and computer architecture, pages
223–232. ACM, 1993.

11 Jean-Yves Girard. Linear Logic. Theoretical Computer Science, 50(1):1–101, 1987.
12 GrahamHutton. Fold and Unfold for Program Semantics. In Proceedings of the 3rd ACM SIGPLAN

International Conference on Functional Programming, Baltimore, Maryland, September 1998.
13 Pepijn Kokke and Wouter Swierstra. Auto in Agda: programming proof search. Submitted to ICFP

2014., 2014.
14 Stéphane Lengrand, Roy Dyckhoff, and James McKinna. A focused sequent calculus framework

for proof search in Pure Type Systems. Logical Methods in Computer Science, 7(1), 2011.
15 ChrisMartens, Anne-Gwenn Bosser, Joao F Ferreira, andMarc Cavazza. Linear logic programming

for narrative generation. In Logic Programming and Nonmonotonic Reasoning, pages 427–432.
Springer, 2013.

16 Per Martin-Löf. Intuitionistic type theory, volume 1 of Studies in Proof Theory. Bibliopolis, 1984.
17 Conor McBride. Epigram: Practical programming with dependent types. In Advanced Functional

Programming, pages 130–170. Springer, 2005.
18 Tomas Petricek, Dominic Orchard, and Alan Mycroft. Coeffects: A calculus of context-dependent

computation. In ICFP 2014, 2014.
19 Robert Pollack. On extensibility of proof checkers. In Types for Proofs and Programs, pages 140–

161. Springer, 1995.
20 Paul van der Walt. Reflection in Agda. Master’s thesis, Universiteit Utrecht, 2012.
21 Paul van derWalt andWouter Swierstra. Engineering proof by reflection in Agda. In Implementation

and Application of Functional Languages, pages 157–173. Springer, 2013.
22 Philip Wadler. Deforestation: Transforming programs to eliminate trees. Theoretical Computer

Science, 73(2):231–248, 1990.

	Introduction
	The Calculus, Informally
	Generalising the Problem
	Example
	A Calculus with Leftovers

	Keeping the Structure
	Resource-Aware Contexts
	Being Synchronised, Formally
	Resource-Aware Primitives
	Consumption from a Mint Assumption
	Consumption from an Existing Cover

	Completeness
	A Notion of Weakening for ILLWiL
	=0mu=0muUsage extensions
	=0mu=0muUsages extensions

	Proof of completeness

	Soundness
	Usages Difference
	Soundness Proof

	Proof Search
	Consuming an Atomic Proposition
	Producing Derivations
	From Proof Search to a Decision Procedure

	Applications: building Tactics
	Equations on a Commutative Monoid
	Proving Bag Equivalence

	Conclusion, Related and Future Work
	Tackling a Larger Fragment
	Search Parallelisation
	Connection to Typechecking

