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Abstract
Using a dependently typed host language, we give a well
scoped-and-typed by construction presentation of a minimal
two level simply typed calculus with a static and a dynamic
stage. The staging function partially evaluating the part of
a term that are static is obtained by a model construction
inspired by normalisation by evaluation.

We then go on to demonstrate how this minimal language
can be extended to provide additional metaprogramming ca-
pabilities, and to define a higher order functional language
evaluating to digital circuit descriptions.
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1 Introduction
Staged compilation, by running arbitrary programs at com-
pile time in order to generate code, is a way to offer users
metaprogramming facilities. Kovács demonstrated that the
notion of two level type theories, originally introduced in
homotopy theory, can be repurposed to describe layered lan-
guages equipped with a staging operation partially evaluating
the terms in the upper layer [18].

In order to enable the mechanised study of such systems,
we give an intrinsically scoped-and-typed treatment of various
two level simply typed calculi and their corresponding stag-
ing operations evaluating away all of the static subterms. We
obtain these staging operations by performing type-directed
model constructions reminiscent of the ones used for normal-
isation by evaluation, hence the title of this paper.
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This culminates in a system that takes seriously Kovács’
remark that the static and dynamic layers do not need to have
exactly the same features. Its static layer is a higher order
functional language while the dynamic one corresponds to
digital circuit descriptions. This casts existing work on high
level languages for quantum circuit descriptions into a new
light as two level theories.

This work has been fully formalised using Agda [21] as our
host language (but any implementation of Martin-Löf type
theory [19] with inductive families [14] would do).

2 A Primer on Intrinsically Typed λ-Calculi
Let us start with a quick primer on intrinsically scoped-and-
typed λ-calculi defined in a dependently typed host language.
The interested reader can refer to ACMM [3] for a more
in-depth presentation of this approach.

2.1 Object Types and Contexts
We first give an inductive definition of object types. We call
it Type and its own type is Set, the type of all small types
in Agda. It has two constructors presented in generalised
algebraic datatype fashion. We use ‘α as our base type, and (A
‘⇒ B) is the type of functions from A to B.

data Type : Set where
‘α : Type
_‘⇒_ : (A B : Type)→ Type

Agda-ism (Syntax Highlighting). All of the code snippets in
this paper are semantically highlighed: keywords are orange,
definitions and types are blue, data constructors are green,
bound variables are slanted, and comments are brown.

Agda-ism (Implicit Prenex Polymorphism). We extensively
use Agda’s variable mechanism: all of the seemingly unbound
names will in fact have been automatically quantified over
in a prenex position provided that they have been declared
beforehand.

The following block for instance announces that from now
on unbound As, Bs, and Cs stand for implicitly bound Type
variables.

variable A B C : Type

Next, we form contexts as left-nested lists of types us-
ing constructor names similar to the ones typically used in
type judgments. Contexts may be the empty context ε or a
compound context (Γ , A) obtained by extending an existing
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context Γ on the right with a newly bound (nameless) variable
of type A.

data Context : Set where
ε : Context
_,_ : Context→ Type→ Context

variable Γ ∆ Θ : Context
variable P Q : Context→ Set

2.2 Manipulating Indexed Types
In this paper we are going to conform to the convention of
only mentioning context extensions when presenting judge-
ments. That is to say we will write the application and λ-
abstraction rules as they are in the right column rather than
the left one where the ambient context Γ is explicitly threaded.

Γ ⊢ f : A→ B Γ ⊢ t : A

Γ ⊢ f t : B

Γ, x : A ⊢ b : B

Γ ⊢ λx.b : A→ B

f : A→ B t : A

f t : B

x : A ⊢ b : B

λx.b : A→ B
To do so, we need to introduce a small set of combinators

to manipulate indexed definitions. These are commonplace
and already present in Agda’s standard library. First, ∀[_]
universally quantifies over its argument’s index; it is meant to
be used to surround a complex expression built up using the
other combinators.

∀[_] : (I → Set)→ Set
∀[ P ] = ∀ {i}→ P i

Second, the suggestively named _⊢_ allows us to modify
the index; it will be useful to extend a context with freshly
bound variables.

_⊢_ : (I → J)→ (J → Set)→ (I → Set)
(f ⊢ P) i = P (f i)

Third, we can form index-respecting function spaces.

_⇒_ : (P Q : I → Set)→ (I → Set)
(P⇒ Q) i = P i→ Q i

Finally, the pointwise lifting of pairing is called _∩_; it will
only come into play in Section 5.2.

_∩_ : (P Q : I → Set)→ (I → Set)
(P ∩ Q) i = P i × Q i

We include below an artificial example of a type written
using the combinators together with its full expansion using
explicit context-passing.

∀[ (_, A) ⊢ (P ∩ Q⇒ Q ∩ P) ]
∀ {Γ}→ (P (Γ , A) × Q (Γ , A))→ (Q (Γ , A) × P (Γ , A))

2.3 Intrinsically Typed Variables
Our first inductive family [14] Var formalises what it means
for a variable of type A to be present in context Γ. It is indexed
over said type and context. We present it side by side with the
corresponding inference rules for the typing judgement for
variables denoted (· :v ·). The first constructor (here) states
that in a non-empty context where the most local variable has
type A we can indeed obtain a variable of type A. The second
one (there) states that if a variable of type A is present in a
context then it also is present in the same context extended
with a freshly bound variable of type B.

data Var : Type→ Context→ Set where
here : ∀[ (_, A) ⊢ Var A ]
there : ∀[ Var A⇒ (_, B) ⊢ Var A ]

x : A ⊢ x :v A

x :v A

y : B ⊢ x :v A

This is a standard definition corresponding to a scoped-
and-typed variant of De Bruijn indices [5, 6, 8, 13]: here
corresponds to zero, and there to successor.

2.4 Intrinsically Typed Terms
We are now ready to give the type of intrinsically typed terms.
It is once again an inductive family indexed over a type and a
context; its declaration is as follows.

data Term : Type→ Context→ Set where

We will introduce constructors in turn, each paralleled
by its counterpart as an inference rule. We start with the
variable rule: a variable of type A forms a valid term of type
A. As you can see below, we use a line lexed as a comment
(----) to suggestively typeset the constructor’s type like the
corresponding rule.

‘var : ∀[ Var A⇒
--------

Term A ]

x :v A

x : A

Next we have the constructor for applications. It states that
by combining a term whose type is a function type from A to
B and a term of type A, we obtain a term of type B.

‘app : ∀[ Term (A ‘⇒ B)⇒ Term A⇒
------------------------

Term B ]

f : A→ B t : A

f t : B

Last but not least, the rule for λ-abstraction is the only rule
with a premise mentioning a context extension. It states that
we can build a term for a function from A to B by building the
function’s body of type B in a context extended by a freshly
bound variable of type A.
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‘lam : ∀[ (_, A) ⊢ Term B⇒
----------------

Term (A ‘⇒ B) ]

x : A ⊢ b : B

λx.b : A→ B

Putting it all together, we obtain the following inductive
family.

data Term : Type→ Context→ Set where
‘var : ∀[ Var A⇒ Term A ]
‘app : ∀[ Term (A ‘⇒ B)⇒ Term A⇒ Term B ]
‘lam : ∀[ (_, A) ⊢ Term B⇒ Term (A ‘⇒ B) ]

This gives us the intrinsically scoped-and-typed syntax
for the simply typed lambda calculus. And we give our first
example: the identity function (λ.0 in de Bruijn notation).

‘id : ∀[ Term (A ‘⇒ A) ]
‘id = ‘lam (‘var here)

As any well behaved syntax should, it is stable under weak-
ening as we are going to see shortly.

2.5 Weakening
Following Altenkirch, Hofmann, and Streicher [4] we start by
defining the category of weakenings with contexts as objects
and the following inductive family as morphims.

data _≤_ : Context→ Context→ Set where
done : ε ≤ ε
keep : Γ ≤ ∆→ Γ , A ≤ ∆ , A
drop : Γ ≤ ∆→ Γ ≤ ∆ , A

This relation on contexts, also known as order-preserving
embeddings in the literature, is a first order description of
order-preserving injections: done is the trivial injection of
the empty context into itself; keep extends an existing injec-
tion into one that preserves the most local variable; and drop
records that the most local variable of the target context does
not have a pre-image via the injection.

We can define identity and composition of these morphisms
(we leave the definitions out but they are available in the
accompanying material).

≤-refl : Γ ≤ Γ ≤-trans : Γ ≤ ∆→ ∆ ≤ Θ→ Γ ≤ Θ

These order-preserving embeddings all have an action on
suitably well behaved scoped families. We will call these
actions weakening principles, and introduce the following
type synonym to describe them.

Weaken : (Context→ Set)→ Set
Weaken P = ∀ {Γ ∆}→ Γ ≤ ∆→ P Γ→ P ∆

The action on variables is given by the following wkVar
definition. It is defined by induction over the renaming and
case analysis on the de Bruijn index if the most local variable
happens to be in both contexts.

wkVar : Weaken (Var A)
wkVar (drop σ) v = there (wkVar σ v)

wkVar (keep σ) here = here
wkVar (keep σ) (there v) = there (wkVar σ v)

The action on terms is purely structural, with the caveat
that the weakening needs to be amended when going under
a binder: the most recently bound variable is present in both
the source and target contexts and so we use keep to mark it
as retained.

wkTerm : Weaken (Term A)
wkTerm σ (‘var v) = ‘var (wkVar σ v)
wkTerm σ (‘app f t) = ‘app (wkTerm σ f ) (wkTerm σ t)
wkTerm σ (‘lam b) = ‘lam (wkTerm (keep σ) b)

Using these results, we can define function composition as
a pseudo constructor: provided g and f , we form λx.g f x i.e.
we use g and f in a context extended with x hence the need
for weakening.

_‘∘_ : ∀[ Term (B ‘⇒ C)⇒ Term (A ‘⇒ B)⇒ Term (A ‘⇒ C) ]
g ‘∘ f = let Γ≤Γ,A = drop ≤-refl in

‘lam (‘app (wkTerm Γ≤Γ,A g)
(‘app (wkTerm Γ≤Γ,A f ) (‘var here)))

Agda-ism (Lexing of Identifiers). Ignoring details about re-
served characters for now: any space-free string of unicode
characters is considered a single identifier. Correspondingly,
in the example above Γ≤Γ,A is a single identifier named like
this to document for the human reader what its type looks
like.

2.6 Normalisation by Evaluation
It is now time to define an evaluation function for this syn-
tax. By the end of this section, we will have a function eval
turning terms into Kripke-style values, provided that we have
an environment assigning values to each of the term’s free
variables. It will have the following type.

eval : Env Γ ∆→ Term A Γ→ Value A ∆

2.6.1 Kripke Function Spaces. This whole process is based
on Kripke semantics for intuitionistic logic [20]. As a con-
sequence one of the central concepts is closure under future
worlds, here context extensions. This idea is captured by the
definition of the □ record: we can inhabit (□ A Γ) whenever
for any extension ∆ of Γ we are able to construct an (A ∆).

record □ (A : Context→ Set) (Γ : Context) : Set where
constructor mk□
field run□ : ∀[ (Γ ≤_)⇒ A ]

For more information on □ and its properties, see Allais,
Atkey, Chapman, McBride, and McKinna [2, Section 3.1].
We will only use the fact that it is a comonad, that is to say
that we can define extract and duplicate thanks to the fact that
the embedding relation is a preorder.

extract : ∀[ □ P⇒ P ]
extract p = p .run□ ≤-refl
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duplicate : ∀[ □ P⇒ □ (□ P) ]
duplicate p .run□ σ .run□ = p .run□ ∘ ≤-trans σ

Agda-ism (Copattern matching). The definition of duplicate
proceeds by copattern-matching [1]. This allows us to define
values of a record type (here □) by defining the result of
taking each of its projections (here the unique run□ one). In
this instance it is particularly useful because we have a type
involving nested records and each projection takes additional
arguments: an (implicit) context and a weakening into that
context.

Kripke function spaces then correspond to functions inside
a box, hence the following definition.

Kripke : (P Q : Context→ Set)→ (Context→ Set)
Kripke P Q = □ (P⇒ Q)

The comonadic structure of □ additionally ensures we can
define semantic application (_$$_) and weakening of Kripke
function spaces.

_$$_ : ∀[ Kripke P Q⇒ P⇒ Q ]
_$$_ = extract

wkKripke : Weaken (Kripke P Q)
wkKripke σ f = duplicate f .run□ σ

Finally, we introduce a notation to hide away □-related
notions when building Kripke functions. After the following
declarations we can write λλ[ σ , v ] b to implement a function
of type (Kripke A B Γ).

syntax mk□ (λ σ x→ b) = λλ[ σ , x ] b

Agda-ism (Syntax Declarations). A syntax declaration in-
troduces syntactic sugar that is allowed to perform variable
binding, or take arguments in a seemingly out-of-order man-
ner. In the above declaration the left hand side describes
the actual term and the right hand side its newly introduced
sugared form.

We now have all of the ingredients necessary to perform the
model construction allowing us to implement a normaliser.

2.6.2 Model Construction. This step follows standard tech-
niques for normalisation by evaluation [7, 10, 11]. The family
of values is defined by induction on the value’s type. Values
of a base type are neutral terms (this is not enforced here and
we are happy to simply reuse Term) while values of a function
type are Kripke function spaces between values of the domain
and values of the codomain.

Value : Type→ Context→ Set
Value ‘α = Term ‘α
Value (A ‘⇒ B) = Kripke (Value A) (Value B)

We prove that values can be weakened by using the fact
they are defined in terms of families already known to be
amenable to weakenings.

wkValue : (A : Type)→Weaken (Value A)
wkValue ‘α σ v = wkTerm σ v
wkValue (A ‘⇒ B) σ v = wkKripke σ v

Environments are functions associating a Value to each
Variable in scope.

record Env (Γ ∆ : Context) : Set where
field get : ∀ {A}→ Var A Γ→ Value A ∆

In the upcoming definition of the evaluation function, envi-
ronments will in general simply be threaded through. They
will only need to be modified when going under a binder. This
binder, interpreted as a Kripke function space, will provide
a context weakening and a value living in that context. The
environment will have to be extended with the value while its
existing content will need to be transported, along the weak-
ening, into the bigger context. The extend definition combines
these two operations into a single one. It is defined in copat-
tern style: .run□ builds a box while .get builds the returned
environment. The definition proceeds by case analysis on the
variable to be mapped to a value: if it is the newly bound one,
we immediately return the value we just obtained, and other-
wise we look up the associated value in the old environment
and use σ to appropriately weaken it.

extend : ∀[ Env Γ⇒ □ (Value A⇒ Env (Γ , A)) ]
extend ρ .run□ σ v .get here = v
extend ρ .run□ σ v .get (there x) = wkValue _ σ (ρ .get x)

The evaluation function maps terms to values provided
that an environment assigns a value to every free variable in
scope. It is defined by induction on the term and maps every
construct to its semantical counterpart: variables become en-
vironment lookups, application become Kripke applications,
and λ-abstractions become Kripke functions.

eval : Env Γ ∆→ Term A Γ→ Value A ∆
eval ρ (‘var v) = ρ .get v
eval ρ (‘app f t) = eval ρ f $$ eval ρ t
eval ρ (‘lam b) = λλ[ σ , v ] eval (extend ρ .run□ σ v) b

A typical normalisation by evaluation presentation would
conclude with the definition of a reification function extract-
ing a term from a value in a type-directed manner before
defining normalisation as the composition of evaluation and
reification. This last step will however not be useful for our
study of two level calculi and so we leave it out. It can be
found in details in Catarina Coquand’s work on normalisa-
tion by evaluation for a simply typed λ-calculus with explicit
substitutions [10].

Now that we have seen how to define a small well scoped-
and-typed language and construct an evaluation function by
performing a model construction, we can start looking at a
extending it to two level language.
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3 Minimal Intrinsically Typed Two Level
Type Theory

We start with the smallest two level calculus we can possibly
define by extending the simply typed λ-calculus as defined in
the previous section with quotes (‘⟨_⟩) and splices (‘∼_).

This will enable us to write and stage simple programs
such as the following.

‘α ‘⇒ ‘α ∋ ‘app ‘idd (‘∼ ‘app ‘ids ‘⟨ ‘idd ⟩){ ‘app ‘idd ‘idd

The three-place relation (A ∋ s { t) states that staging a
term s at type A yields the term t. Here, ‘idd is a dynamic
identity function while ‘ids is a static one, ‘⟨_⟩ quotes a static
term inside a dynamic one, and ‘∼_ splices a dynamic term in
a static one. Correspondingly, staging will partially evaluate
the call to ‘ids as well as all the quotes and splices while
leaving the rest of the term intact. Hence the result: the call
to the static identity function has fully reduced but the call to
the dynamic one has been preserved.

3.1 Phases, Stages, and Types
We start by defining a sum type of phases denoting whether
we are currently writing src code or inspecting stg code that
has already been partially evaluated.

data Phase : Set where
src stg : Phase

variable ph : Phase

Additionally, our notion of types is going to be explicitly
indexed by the stage they live in. These stages are themselves
indexed over the phase they are allowed to appear in. The
static (sta) stage is only available in the src phase: once code
has been staged, all of its static parts will be gone. The dy-
namic (dyn) stage however will be available in both phases,
hence the unconstrained index ph.

data Stage : Phase→ Set where
sta : Stage src
dyn : Stage ph

variable st : Stage ph

We can now define our inductive family of simple types
indexed by their stage.

data Type : Stage ph→ Set where
‘α : Type st
‘⇑_ : Type {src} dyn→ Type sta
_‘⇒_ : (A B : Type st)→ Type st

variable A B C : Type st

We have both static and dynamic terms of base type, hence
the unconstrained indices ph and st for the constructor ‘α.
The constructor ‘⇑_ allows us to embed dynamic types into
static ones; (‘⇑ A) is effectively the type of programs that will
compute a value of type A at runtime. This is only available
in the src phase. Function types are available in both layers

provided that they are homogeneous: both the domain and
codomain need to live in the same layer.

Purely dynamic types in the source phase have a direct
counterpart in the staged one. We demonstrate this by imple-
menting the following asStaged function.

asStaged : Type {src} dyn→ Type {stg} dyn
asStaged ‘α = ‘α
asStaged (A ‘⇒ B) = asStaged A ‘⇒ asStaged B

It is essentially the identity function except for the fact that
its domain and codomain have different indices.

3.2 Intrinsically Scoped and Typed Syntax
We skip over the definition of contexts and variables: they are
essentially the same as the ones we gave in Section 2.

Our type of term is indexed by a phase, a stage, a type at
that stage, and a context.

data Term : (ph : Phase) (st : Stage ph)→
Type st→ Context→ Set where

The first constructors are familiar: they are exactly the ones
seen in the previous section. These constructs are available at
both levels and both before and after staging hence the fact
that the phase and stage indices are polymorphic here.

‘var : ∀[ Var A⇒ Term ph st A ]
‘app : ∀[ Term ph st (A ‘⇒ B)⇒ Term ph st A⇒ Term ph st B ]
‘lam : ∀[ (_, A) ⊢ Term ph st B⇒ Term ph st (A ‘⇒ B) ]

Next we have the constructs specific to the two level cal-
culus: quotes (‘⟨_⟩) let users insert dynamic terms into static
expressions while splices (‘∼_) allow static terms to be in-
serted in dynamic ones. Staging will, by definition, eliminate
these and so their phase index is constrained to be src.

‘⟨_⟩ : ∀[ Term src dyn A⇒ Term src sta (‘⇑ A) ]
‘∼_ : ∀[ Term src sta (‘⇑ A)⇒ Term src dyn A ]

Putting it all together, we obtain the following inductive
family representing a minimal intrinsically typed two-level
calculus.

data Term : (ph : Phase) (st : Stage ph)→
Type st→ Context→ Set where

‘var : ∀[ Var A⇒ Term ph st A ]
‘app : ∀[ Term ph st (A ‘⇒ B)⇒ Term ph st A⇒ Term ph st B ]
‘lam : ∀[ (_, A) ⊢ Term ph st B⇒ Term ph st (A ‘⇒ B) ]
‘⟨_⟩ : ∀[ Term src dyn A⇒ Term src sta (‘⇑ A) ]
‘∼_ : ∀[ Term src sta (‘⇑ A)⇒ Term src dyn A ]

We can readily write examples such as the following defini-
tions of a purely dynamic and a purely static identity function.
The dynamic function will survive staging even if it is applied
to a dynamic argument while the static one can only exist in
the source phase and will be fully evaluated during staging.

‘idd : ∀[ Term ph dyn (A ‘⇒ A) ]
‘idd = ‘lam (‘var here)

‘ids : ∀[ Term src sta (A ‘⇒ A) ]
‘ids = ‘lam (‘var here)
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Now that we have a syntax, we can start building the ma-
chinery that will actually perform its partial evaluation.

4 Staging by Evaluation
The goal of this section is to define a type of Values as well as
an evaluation function which computes the value associated to
each term, provided that we have an appropriate environment
to interpret the term’s free variables. This will once again
yield a function eval of the following type.

eval : Env Γ ∆→ Term src st A Γ→ Value st A ∆

As a corollary we will obtain a staging function that takes
a closed dynamic term and gets rid of all of the quotes and
splices by fully evaluating all of its static parts.

stage : Term src dyn A ε→ Term stg dyn (asStaged A) ε

We start with the model construction describing precisely
the type of values.

4.1 Model Construction
The type of values is defined by case analysis on the stage.
Static values are given a static meaning (defined below) while
dynamic values are given a meaning as staged terms i.e. terms
guaranteed not to contain any static subterm.

Value : (st : Stage src)→ Type st→ Context→ Set
Value sta = Static
Value dyn = Term stg dyn ∘ asStaged

The family of static values is defined by induction on the
value’s type. It is fairly similar to the standard normalisation
by evaluation construction except that static values at a base
types cannot possibly be neutral terms.

Static : Type sta→ Context→ Set
Static ‘α = const ⊥
Static (‘⇑ A) = Value dyn A
Static (A ‘⇒ B) = Kripke (Static A) (Static B)

There are no static values of type ‘α as this base type does
not have any associated constructors and so we return the
empty type ⊥; values of type (‘⇑ A) are dynamic values of
type A i.e. staged terms of type A; functions from A to B are
interpreted using Kripke function spaces from static values of
type A to static values of type B.

4.2 Evaluation
We can now explain what the meaning of each term construc-
tor is. In every instance we will proceed by case analysis on
the stage the meaning is being used at, essentially using a
meaning inspired by normalisation by evaluation for the static
part and one inspired by substitution for the dynamic one.

Application is interpreted as the semantic application de-
fined for Kripke function spaces in the static case, and the
syntactic ‘app constructor in the dynamic one.

app : (st : Stage src) {A B : Type st}→
Value st (A ‘⇒ B) Γ→ Value st A Γ→ Value st B Γ

app sta = _$$_
app dyn = ‘app

Lambda-abstraction are mapped to Kripke λs for static
values and to syntactic ones for the dynamic ones.

lam : (st : Stage src) {A B : Type st}→
Kripke (Value st A) (Value st B) Γ→
Value st (A ‘⇒ B) Γ

lam sta b = λλ[ σ , v ] b .run□ σ v
lam dyn b = ‘lam (b .run□ (drop ≤-refl) (‘var here))

Putting it all together, we obtain the following definition of
the evaluation function. Note that by virtue of the model con-
struction the interpretation of both ‘∼_ and ‘⟨_⟩ is the identity
function: static values of type (‘⇑ A) and staged terms of type
A are interchangeable.

eval : Env Γ ∆→ Term src st A Γ→ Value st A ∆
eval ρ (‘var v) = ρ .get v
eval ρ (‘app {st = st} f t) = app st (eval ρ f ) (eval ρ t)
eval ρ (‘lam {st = st} b) = lam st (body ρ b)
eval ρ ‘⟨ t ⟩ = eval ρ t
eval ρ (‘∼ v) = eval ρ v

The function eval is mutually defined with an auxiliary func-
tion describing its behaviour on the body of a λ-abstraction.
It is defined using semantics lambdas and extend.

body : Env Γ ∆→ Term src st B (Γ , A)→
Kripke (Value st A) (Value st B) ∆

body ρ b = λλ[ σ , v ] eval (extend ρ .run□ σ v) b

We finally obtain the stage function by calling eval with an
empty environment.

stage : Term src dyn A ε→ Term stg dyn (asStaged A) ε
stage = eval (λ where .get ())

Agda-ism ((Co)Pattern-Matching Lambda). The keyword
(λ where) is analogous to Haskell’s \case: it introduces a
pattern-matching lambda. In this instance, it is a copattern-
matching one: we define the environment of type (Env ε ε)
by copattern-matching on .get which allows us to bind an
argument of type (Var A ε) that can in turn be immediately
dismissed as uninhabited using the empty pattern ().

5 A More Practical Two Level Calculus
We are now going to extend the minimal calculus we used so
far to show a more realistic example of a two level calculus.

First we are going to add natural numbers and their elimi-
nator. These will be available at both stages and we will see
how we can transfer a static natural number to the dynamic
phase by defining a static ‘reify term.

Second, based on Kovács’ observation that the static and
dynamic language do not need to have exactly the same fea-
tures, we are going to add a type of static pairs. These pairs
and their projections can be used in arbitrary static code but
will be guaranteed to be evaluated away during staging. We
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will demonstrate this by giving a static term ‘fib implementing
a standard linear (ignoring the cost of addition) algorithm for
the Fibonacci function. This will allow us to obtain e.g.

‘N ∋ ‘app (‘app ‘add ‘zero) (‘∼ ‘app (‘reify ‘∘ ‘fib) (fromN 8))
{ ‘app (‘app ‘add ‘zero) (fromN 21)

where fromN is a helper function turning Agda literals into
Terms built using ‘zero and ‘succ, and ‘add is a dynamic addi-
tion function. Note that the dynamic call to addition was not
evaluated away during staging.

5.1 Adding natural numbers
Our first extension adds the inductive type of Peano-style
natural numbers, its two constructors, and the appropriate
eliminator for it.

5.1.1 Types and Terms. First we extend the definition of
Type with a new constructor ‘N. Natural numbers will be
present at both stages and so we allow the index to be poly-
morphic.

‘N : Type st

We then add Term constructors for the two Peano-style
constructors (‘zero and ‘succ) as well as an eliminator (‘iter)
which turns a natural number into its Church encoding [9,
Chapter 3].

‘zero : ∀[ Term ph st ‘N ]
‘succ : ∀[ Term ph st ‘N⇒ Term ph st ‘N ]
‘iter : ∀[ Term ph st (‘N ‘⇒ (A ‘⇒ A) ‘⇒ A ‘⇒ A) ]

Our first program example is the function ‘reify that turns
its static natural number argument into a dynamic encoding.
It does so by iterating over its input and replacing static ‘zeros
and ‘succs by dynamic ones.

‘reify : ∀[ Term src sta (‘N ‘⇒ ‘⇑ ‘N) ]
‘reify = ‘lam (‘app (‘app (‘app ‘iter (‘var here))

(‘lam ‘⟨ ‘succ (‘∼ ‘var here) ⟩))
‘⟨ ‘zero ⟩)

We can also naturally define addition as iterated calls to
‘succ. This definition is valid at both stages hence the poly-
morphic phase and stage indices.

‘add : ∀[ Term ph st (‘N ‘⇒ ‘N ‘⇒ ‘N) ]
‘add = ‘lam (‘app (‘app ‘iter (‘var here)) (‘lam (‘succ (‘var here))))

Let us now see how to evaluate the newly added constructs.

5.1.2 Staging by Evaluation. We extend the definition of
Static with a new clause decreeing that values of type ‘N are
constant natural numbers.

Static ‘N = const N

We can then describe the semantical counterparts of the
newly added constructors. The term constructor ‘zero is either
interpreted by the natural number 0 or by the term constructor
itself depending on whether it is used in a static or dynamic
manner.

zero : (st : Stage src)→ Value st ‘N Γ
zero sta = 0
zero dyn = ‘zero

Similarly ‘succ is interpreted either as (1 +_) if it used in
a static manner or by the term constructor itself for dynamic
uses.

succ : (st : Stage src)→ Value st ‘N Γ→ Value st ‘N Γ
succ sta = 1 +_
succ dyn = ‘succ

The meaning of ‘iter in the static layer is defined in terms
of the iterate function defined by pattern-matching in the
host language and turning a natural number into its Church
encoding. Note that we need to use wkKripke to bring the succ
argument into the wider scope the zero one lives int.

iterate : {ty : Set}→ (ty→ ty)→ ty→ N→ ty
iterate s z 0 = z
iterate s z (suc n) = s (iterate s z n)

iter : ∀ st {A}→ Value st (‘N ‘⇒ (A ‘⇒ A) ‘⇒ (A ‘⇒ A)) Γ
iter dyn = ‘iter
iter sta = λλ[ _ , m ] λλ[ _ , succ ] λλ[ σ , zero ]

iterate (weak-Kripke σ succ $$_) zero m

We can readily compute with these numbers. Reifying the
static result obtained by adding 7 to 35 will for instance return
42 (here fromN once again stands for a helper function turning
Agda literals into Term numbers).

‘N ∋ ‘∼ ‘app ‘reify (‘app (‘app ‘add (fromN 7)) (fromN 35))
{ fromN 42

Let us now look at an example of the fact, highlighted in
Kovács’ original paper, that static datatypes do not need to
have a counterpart at runtime.

5.2 Adding static pairs
We now want to add pairs that are only available in the static
layer and ensure that all traces of pairs and their projections
will have completely disappeared after staging.

5.2.1 Types and Terms. We first extend the inductive defi-
nition of object types with a new construct for pair types. It is
explicitly marked as sta only.

_‘×_ : (A B : Type sta)→ Type sta

We then extend the inductive family of term constructs
with a constructor for pairs (_‘,_) and two constructors for the
first (‘fst) and second (‘snd) projection respectively.

_‘,_ : ∀[ Term src sta A⇒ Term src sta B⇒
Term src sta (A ‘× B) ]

‘fst : ∀[ Term src sta ((A ‘× B) ‘⇒ A) ]
‘snd : ∀[ Term src sta ((A ‘× B) ‘⇒ B) ]

This enables us to implement in the static layer the classic
linear definition of the Fibonacci function which internally
uses a pair of the current Fibonacci number and its successor.
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It is obtained by taking the first projection of the result of
iterating the invariant-respecting step function over the valid
base case.

‘fib : Term src sta (‘N ‘⇒ ‘N) ε
‘fib = ‘fst ‘∘ ‘lam (‘app (‘app (‘app
-- this implements n ↦→ (fib n, fib (1 + n))

‘iter (‘var here))
{- step -} (‘lam

let fibn = ‘app ‘fst (‘var here)
fib1 n = ‘app ‘snd (‘var here)
fib2 n = ‘app (‘app ‘add fibn) fib1 n

in (fib1 n ‘, fib2 n)))
{- base -} (‘zero ‘, ‘succ ‘zero))

This definition uses _‘∘_ defined in Section 2.5, and ‘add
defined in Section 5.1.1.

5.2.2 Staging by Evaluation. The amendment to the model
construction and the definition of the constructors’ semantical
counterparts is easy. First, static pairs are pairs of static values.

Static (A ‘× B) = Static A ∩ Static B

Second, pair constructors are mapped to pair constructors
in the host language, and the same for projections.

eval ρ (s ‘, t) = eval ρ s , eval ρ t
eval ρ ‘fst = λλ[ _ , v ] Prod.proj1 v
eval ρ ‘snd = λλ[ _ , v ] Prod.proj2 v

These definition now allow us to evaluate static calls to the
Fibonacci function such as the one presented in this section’s
introduction.

‘N ∋ ‘app (‘app ‘add ‘zero) (‘∼ ‘app (‘reify ‘∘ ‘fib) (fromN 8))
{ ‘app (‘app ‘add ‘zero) (fromN 21)

While this addition of static pairs may seem interesting
but anecdotal, the same techniques can be used to work on
defining a much more applicable two level language.

6 Application: Circuit Generation
This section’s content is inspired by Quipper, a functional
programming language to describe quantum computations
introduced by Green, Lumsdaine, Ross, Selinger, and Val-
iron [16] and related formal treatments such as Rennela and
Staton’s categorical models [23]. This strand of research gives
us a good example of a setting in which we have two very
distinct layers: a static layer with a full-fledged functional
language, and a dynamic layer of quantum circuits obtained
by partially evaluating the source.

In our proof of concept, we study a minimal language
of classical circuits inspired by Π-ware a formal hardware
description and verification language proposed by Flor, Swier-
stra, and Sijsling [15]. This allows us to focus on the two-level
aspect instead of having to deal with linearity and unitary op-
erators which are specific to the Quantum setting.

6.1 Types and Terms
Our definition of types should now be mostly unsurprising.
We have function spaces (this time confined to the static
layer), a lifting construct allowing the embedding of dynamic
types in the static layer at the source stage, and finally a type
of circuits ⟨ i | o ⟩ characterised by their input (i) and output
(o) arities, each represented by a natural number in the host
language.

data Type : Stage ph→ Set where
_‘⇒_ : (A B : Type sta)→ Type sta
‘⇑_ : Type {src} dyn→ Type sta
‘⟨_|_⟩ : (i o : N)→ Type {ph} dyn

Next, we extend the basic simply typed lambda calculus
with quotes and splices with term constructors for circuit
descriptions. They will all belong to the dynamic stage. Our
first constructor gives us the universal nand gate. Its type
records the fact it takes two inputs and returns a single output.

‘nand : ∀[ Term ph dyn ‘⟨ 2 | 1 ⟩ ]

Next, we have a constructor for the parallel composition of
existing circuits. The input and output arities of the resulting
circuit are obtained by adding up the respective input and
output arities of each of the components.

‘par : ∀[ Term ph dyn ‘⟨ i1 | o1 ⟩ ⇒

Term ph dyn ‘⟨ i2 | o2 ⟩ ⇒

Term ph dyn ‘⟨ i1 + i2 | o1 + o2 ⟩ ]

We can also compose circuits sequentially, provided that
the output arity of the first circuit matches the input arity of
the second.

‘seq : ∀[ Term ph dyn ‘⟨ i | m ⟩ ⇒
Term ph dyn ‘⟨ m | o ⟩ ⇒
Term ph dyn ‘⟨ i | o ⟩ ]

Finally, we follow the Π-ware [15] approach and offer a
general rewiring component. A ‘mix’ of i inputs returning
o outputs is defined by a vector (i.e. a list of known length)
of size o containing finite numbers between 0 and i corre-
sponding to the input the output is connected to. This allows
arbitrary duplications and deletions of inputs.

‘mix : Vec (Fin i) o→ ∀[ Term ph dyn ‘⟨ i | o ⟩ ]

Typical examples include ‘id2 (the identity circuit on two
inputs), ‘swap (the circuit swapping its two inputs), and ‘dup
(the circuit duplicating its single input). We present them
below together with the corresponding wiring diagrams.

‘id2 : ∀[ Term ph dyn ‘⟨ 2 | 2 ⟩ ]
‘id2 = ‘mix (0 :: 1 :: [])

‘swap : ∀[ Term ph dyn ‘⟨ 2 | 2 ⟩ ]
‘swap = ‘mix (1 :: 0 :: [])

‘dup : ∀[ Term ph dyn ‘⟨ 1 | 2 ⟩ ]
‘dup = ‘mix (0 :: 0 :: [])
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We can then define our first real example: ‘diag, a static
program taking a circuit with two inputs and one output and
returning a circuit with one input and one output. It does so by
first duplicating the one input using ‘dup and then feeding it
to both of the argument’s ports. We present it below together
with the corresponding circuit diagram.

‘diag : ∀[ Term src sta (‘⇑ ‘⟨ 2 | 1 ⟩ ‘⇒ ‘⇑ ‘⟨ 1 | 1 ⟩) ]
‘diag = ‘lam ‘⟨ ‘seq ‘dup (‘∼ ‘var here) ⟩

c ↦→ x c r

We can then obtain the ‘not gate by taking the diagonal of
the ‘nand built-in gate.

‘not : ∀[ Term src dyn ‘⟨ 1 | 1 ⟩ ]
‘not = ‘∼ ‘app ‘diag ‘⟨ ‘nand ⟩

Staging this definition does evaluate away all of the func-
tion calls to yield a simple circuit obtained by sequentially
composing ‘dup and ‘nand as shown below.

‘⟨ 1 | 1 ⟩ ∋ ‘not{ ‘seq ‘dup ‘nand

Using standard constructions, we can define ‘and and ‘or in
terms of the universal ‘nand gate.

‘and : ∀[ Term src dyn ‘⟨ 2 | 1 ⟩ ]
‘and = ‘seq ‘nand ‘not

‘or : ∀[ Term src dyn ‘⟨ 2 | 1 ⟩ ]
‘or = ‘seq (‘par ‘not ‘not) ‘nand

Going back to a slightly more complex setting, adding
booleans in the static layer lets us once again define more
interesting terms. For instance, the following ‘tab circuit
tabulating its input: given a function that takes a boolean and
computes a one-input one-output circuit, it returns a circuit
with two inputs and one output that has the same behaviour.

‘tab : ∀[ Term src sta ((‘Bool ‘⇒ ‘⇑ ‘⟨ 1 | 1 ⟩) ‘⇒ ‘⇑ ‘⟨ 2 | 1 ⟩) ]
‘tab = ‘lam ‘⟨ ‘seq (‘seq (‘seq

(‘par ‘dup ‘dup)
(‘mix (0 :: 2 :: 1 :: 3 :: [])))
(‘par (‘seq (‘par ‘id1 (‘∼ ‘app (‘var here) ‘true)) ‘and)

(‘seq (‘par ‘not (‘∼ ‘app (‘var here) ‘false)) ‘and)))
‘or ⟩

Using dashed lines to separate the different constituting
parts of the circuit as defined above, we obtain the following
circuit diagram.

f ↦→

b

x

f 1

f 0

r

This term is not in and of itself particularly useful but its
generalisation to one that could take a function computing an
⟨ i | o ⟩ circuit and return an equivalent ⟨ 1 + i | o ⟩ circuit would
allow us to build arbitrarily complex circuits by tabulating
static n-ary boolean functions.

This would however require a setting where the static layer
is dependently typed like in Kovács’ original work, something
out of scope for this paper.

7 Related work
Prior work on partial evaluation and metaprogramming abounds
so we will only focus on the very most relevant works involv-
ing strong types.

Quantum Circuits Generation. As already mentioned in
Section 6, such two level systems occur naturally when defin-
ing high level languages for (quantum) circuit descriptions.
Rennela and Staton’s EWire language is itself the categor-
ical treatment of a minor generalisation of Paykin, Rand,
and Zdancewic’s QWire [22], a clear invariant-enforcing im-
provement over the weakly typed Haskell embedded domain
specific language Quipper [16]. EWire is an ad-hoc construc-
tion which, although not worded explicitly in terms of a two
level type theory, effectively is one: quotes and splices are
called boxing and unboxing, and a QWire-inspired partial
normalisation procedure proven to be semantics-preserving
is defined.

SMT Constraints Generation. In their work on compiling
higher order specifications to SMT constraints [12], Dag-
git, Atkey, Kokke, Komendantskaya, and Arnaboldi designed
a cunning ’translation by evaluation’ to partially evaluate
specifications written in a full featured high level functional
language (without recursion) into first order SMT constraints.
This is not explicitly designed as a two level system and so
the sucess of the partial evaluation comes from a careful but
ultimately ad-hoc design rather than a systematic approach.
Unlike ours, their system however comes with a proof of
correctness: the generated formula is proven to be logically
equivalent to the high level specification. This is an obvious
avenue for future work on our part.

Typed Metaprogramming. Jang, Gélineau, Monnier, and
Pientka’s Mœbius [17] defines a type theory with a built in
notion of quasiquotations that can be used to generate pro-
grams in a type-safe manner. The language lets metaprograms
inspect the code fragments they are passed as arguments
thus allowing e.g. the implementation of optimisation passes
post-processing the result of a prior metaprogram. This is
extremely powerful, at the cost of a more complex under-
lying theory. In Mœbius the meta and object language are
essentially the same but it does not seem to be a necessary
restriction.

8 Future Work
Soundness and Completeness. We focused here on the

intrinsically typed language description, the corresponding
model construction, and the acquisition of a staging-by-evaluation
function as a corollary. Following Catarina Coquand’s work
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on formalising normalisation by evaluation [10] we could ad-
ditionally introduce the appropriate logical relations to prove
that this process is sound and complete with respect to a small
step semantics for the static layer.

Dependently Typed Circuit Description Language. Our
undergraduates are already being taught digital logic using
a functional-style circuit description language. Extending it
with a dependently typed meta-programming layer would
allow them to structure their understanding of the generic
construction of arithmetic circuits for arbitrarily large inputs.

Generic Two Level Construction. Even though we have
seen that having two wildly different language layers can
be extremely useful, a two-level construction with exactly
the same features is still very useful: it lets programmers
use their language of choice as its own metaprogramming
facilities. Correspondingly, giving a generic treatment of the
construction taking a language and returning its standard
two-level version is an important endeavour. A promising
approach involves defining such a transformation by induction
over a universe of language descriptions [2].
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