
Dependent Stringly-Typed Programming

gallais

March 26, 2021

1 Introduction
Static type systems started as a lightweight compile time
check enforcing basic hygiene by preventing users from
e.g. adding an integer to a boolean. Seduced by the
promise of ever more guarantees computer scientists have
invented ever more powerful type systems to the point
where they could formalise all of mathematics as types
and programs.

In this paper we reclaim this power to the advantage
of the honest working programmer by demonstrating how
one can use the ivory tower concepts to revitalise the age
old practice of stringly typed programming. We will use
Agda [Norell(2009)] as our language of choice because it
provides us with powerful enough “unsafe” primitives to
conduct our experiment.

This paper is a self-contained literate Agda file so the
interested reader should be able to independently repro-
duce our results. You can also find the content on github
at https://github.com/gallais/STRINaGda.

2 What even is a type?
For our purposes, we will simply say that a type is a func-
tion that, given a linked list of characters, tells us whether
we should accept it or not as a value of that type. Luckily
Agda provides us with builtin notions of List, Char, and
Bool so this is easily defined.

open import Agda.Builtin.List using (List)
open import Agda.Builtin.Char using (Char)
open import Agda.Builtin.Bool using (Bool)

Type = List Char→ Bool

Next we can define what it means to belong to a type.
By definition, a list of characters belongs to a type if the
function returns the boolean true when run on that list.
To make this formal we need to define an Agda function
internalising the predicate “this boolean is true”.

Agda ships with a notion of trivial truthfulness (the unit
type) but unfortunately it does not provide us with a no-

tion of trivial falsity. So we have to define the empty type
ourselves as a sum type with zero constructor.

open import Agda.Builtin.Unit using (>)

data ⊥ : Set where

Equipped with trivial truthfulness and trivial falsity, we
can internalise what it means for a boolean to be true by
pattern matching on it and returning the unit type if it is
true, or the empty one if it is false.

open Agda.Builtin.Bool using (true; false)

IsTrue : Bool→ Set
IsTrue true = >
IsTrue false = ⊥

This is precisely what we need to express what it means
for a list of characters to belong to a given type: run the
type on the list of characters and check it returned true.

∈ : List Char→ Type→ Set
cs ∈ A = IsTrue (A cs)

We can define a convenient wrapper for elements of a
given type by packing a list of characters together with the
proof that it is accepted at that type. We use a dependent
record and make the check field an erased instance argu-
ment, that is to say that we never want to have to write
these proofs explicitly, expect Agda to just automatically
pass them around without needing our help, and to forget
about them when compiling the code.

record Elt (A : Type) : Set where
constructor [_]
field value : List Char
field @0 {{check}} : value ∈ A

open Elt

Agda’s string literals are tied to its builtin notion of
String which is distinct from List Char. We can luckily
convert from one to the other by unpacking the string. We
define a convenient helper function to, given a string and

https://github.com/gallais/STRINaGda

a type, return an element of that type by checking that the
unpacked string is accepted at that type. This will help us
write concrete examples and unit tests.

open import Agda.Builtin.String using (String)
renaming (primStringToList to unpack)

infix 100 _3_
3 : (A : Type) (str : String)→

{{unpack str ∈ A}}→ Elt A
A 3 str = record { value = unpack str }

We now have a formal definition of what a type is, what
it means for a string to be accepted at a given type and
what an element of a type looks like. Let us look at a
concrete example of a type.

3 Our First Type: N
As is customary in any document talking about dependent
types, we will start by defining the natural numbers. The
customary presentation is that a natural number is either
zero or the successor of a natural natural number. In terms
of strings, we will characterise this as being either the “Z”
string or a string starting with ‘S’ and whose tail is itself
a natural number.

Agda, being a very inpractical programming language,
does not ship with _&&_ and _||_ defined on booleans.
The standard library does provide these definitions but has
to be installed separately and we want this document to be
self-contained so we will have to start by defining them
ourselves.

infixr 3 _&&_
&& : Bool→ Bool→ Bool
true && b = b
false && b = false

infixr 2 _||_
|| : Bool→ Bool→ Bool
true || b = true
false || b = b

Next we need a way to test that a list of characters is
empty. The builtin type List has two constructors: [] for
the empty list, and _::_ for putting together a character as
the head of the linked list and a tail of additional charac-
ters. A list is empty precisely when it is [].

open Agda.Builtin.List using ([]; _::_)

isNil : List Char→ Bool

isNil [] = true
isNil (_ :: _) = false

The last piece of the puzzle is the ability to test two
characters for equality. This is once again provided as a
primitive by Agda and we import it and simply rename it
to make the code more readable.

open Agda.Builtin.Char
renaming (primCharEquality to _==_)

We are now ready to define the type of natural numbers.
A beautiful thing about stringly typed programming is that
we can assign a very precise type to each constructor of
a datatype. So we not only define the type N but also
mutually introduce the types isZ and isS of the zero and
successor constructors respectively.

N : Type
isZ : Type
isS : Type

The type of natural numbers is exactly the union of the
type of zero and successors.

N cs = isZ cs || isS cs

The types of zero and successor are defined by case
analysis on the input list of characters. If the list is empty
then it does not belong to any of these types. If it is non-
empty then we check that it is either ‘Z’-headed and with
an empty tail for the zero type, or ‘S’-headed and with a
tail that is itself a natural number in the successor case.

isZ [] = false
isZ (c :: cs) = c == ’Z’ && isNil cs

isS [] = false
isS (c :: cs) = c == ’S’ && N cs

Unsurprisingly we can define the zero and suc con-
structors for N. Note that we do not need to write any
proofs that the strings are valid: Agda takes care of the
proofs for us by a mix of computation and implicit proof
construction.

zero : Elt N
zero = N 3 "Z"

suc : Elt N→ Elt N
suc [n] = [’S’ :: n]

We can define constant numbers either by using our
3 gadget or by using suc and zero, whatever feels most
convenient.

one = N 3 "SZ"
two = suc (suc zero)
three = N 3 "SSSZ"
four = suc three

We will use these constants again when writing unit
tests for the programs over natural numbers we are now
going to develop.

Now that we have our notion of types, a working exam-
ple and even some inhabitants, it would be nice to be able
to do something with them.

4 Stringly Typed Programming
Being able to construct values of a given type is all well
and good but we, as programmers, want to be able to take
them apart too.

Induction is the dependently typed generalisation of
primitive recursion: for a predicate P on values of type
N, if we can prove that P zero holds and that for any nat-
ural number n, if P n holds then so does P (suc n) then
we ought to be able to have a function computing from a
natural number n a proof of type P n.

4.1 Small Scale Reflection
The tricky part in defining induction for the natural num-
bers is in connecting the observations made by the builtin
boolean-valued equality test on characters _==_ with
propositional equality.

We introduce a Reflects inductive fam-
ily [Dybjer(1994)] indexed by two Chars and a Bool.
Inspired by the architecture of Coq’s small scale reflection
library [Mahboubi and Tassi(2021)], it formalises the fact
that whenever the boolean is true then the two characters
are equal.

We name the Reflects constructors the same as the
boolean constructor they are respectively indexed by. This
means that matching on such a proof looks like matching
on the original boolean.

data Reflects (c : Char) : Char→ Bool→ Set where
true : Reflects c c true
false : ∀ {d}→ Reflects c d false

We can readily prove that if a and b are known to be the
same according to Agda’s builtin notion of propositional
equality then we have that Reflects a b true.

open import Agda.Builtin.Equality using (_≡_; refl)

mkTrue : ∀ {a b}→ a ≡ b→ Reflects a b true
mkTrue refl = true

The only thing missing for us is a proof that whenever
the boolean test a == b returns true then the values are
indeed propositionally equal i.e. a ≡ b. Unfortunately
Agda does not provide a primitive proof of this fact. We
will have to use an unsafe primitive called trustMe to build
such a proof.

open import Agda.Builtin.TrustMe
renaming (primTrustMe to trustMe)

By combining mkTrue and trustMe we can write a
function demonstrating that the (a == b) test produces a
boolean that reflects a test on propositional equality.

=? : (a b : Char)→ Reflects a b (a == b)
a =? b with a == b
... | false = false
... | true = mkTrue trustMe

4.2 Induction principle for N
And with that in our backpocket we are well equipped to
prove induction. First we use an anonymous module to
parametrise all of the following definitions over the same
predicate P, proof of the base case P0 and proof of the
step case PS.

module _ (P : Elt N→ Set)
(P0 : P zero)
(PS : ∀ n→ P n→ P (suc n))
where

And we then prove the induction principle stating that
P holds for all of the natural numbers.

induction : ∀ n→ P n

The details of the proof are not very illuminating but we
include them for completeness’ sake. We start by check-
ing whether the natural number is zero, in which case we
can use the base case, or whether it is a successor in which
case we use the step case together with a recursive call to
induction.

The stage has been set just right so that things compute
where they should, impossible branches are self-evidently
impossible and therefore the proof goes through. The
thing to notice if we want to understand the proof is
that the expression in the IsTrue instance argument gets
smaller as we make more and more observations that con-
strain what the input natural number may be like.

induction [ccs@(c :: cs)] = checkZ (c =? ’Z’) cs refl

where

checkS : ∀ {b}→ Reflects c ’S’ b→ ∀ cs→
{{@0 _ : IsTrue (b && N cs)}}→
∀ {ccs}→ c :: cs ≡ ccs .value→ P ccs

checkS true cs refl = PS [cs] (induction [cs])

checkZ : ∀ {b}→ Reflects c ’Z’ b→ ∀ cs→
{{@0 _ : IsTrue (b && isNil cs || isS (c :: cs))}}→
∀ {ccs}→ c :: cs ≡ ccs .value→ P ccs

checkZ true [] refl = P0
checkZ false cs eq = checkS (c =? ’S’) cs eq

An induction operator is of course not just one that has
the right type but one that has the right computational be-
haviour too. We can readily check that our induction func-
tion behaves exactly like the primitive recursor on natural
numbers ought to by writing two unit tests.

First, when applied to zero, the recursor immediately
returns its base case.

_ : ∀ {P P0 PS}→ induction P P0 PS zero ≡ P0
_ = refl

Second, when applied to the successor of a natural
number n, the recursor returns its step case applied to n
and the result of the recursive call.

_ : ∀ {P P0 PS n}→
induction P P0 PS (suc n)
≡ PS n (induction P P0 PS n)

_ = refl

The fact that both of these unit tests are provable by refl
means that Agda can tell by computation alone that the
expressions are equal.

4.3 Example: Addition, Multiplication

As is well known, primitive recursion is enough to imple-
ment addition and multiplication on the natural numbers.
So induction will be plenty enough power for us.

Addition of m to n can be implemented by induction on
m. The base case, corresponding to zero + n, amounts to
returning n. The step case amounts to taking the successor
of the inductive hypothesis. This gives us the following
definition:

+ : Elt N→ Elt N→ Elt N
m + n = induction (λ _→ Elt N) n (λ _→ suc) m

We can test the function thus implemented by writing a
unit test reusing the constants defined in Section 3, check-
ing for instance that 3 + 1 evaluates to 4.

_ : three + one ≡ four
_ = refl

Multiplication is defined in the same way: zero * n is
equal to zero and the step case amounts to stating that
(suc m) * n should evaluate to n + m * n.

* : Elt N→ Elt N→ Elt N
m * n = induction (λ _→ Elt N) zero (λ _→ n +_) m

We can check with a unit test that our implementation
verifies that 2 ∗ 3 equals 4 + 2.

_ : two * three ≡ four + two
_ = refl

Because our induction function has the right computa-
tional behaviour, the definitions we just introduced should
be well behaved too. They did pass a couple of unit tests
but given that we are using a dependently typed host lan-
guage we ought to do better than that.

5 Stringly Typed Proving
This section is dedicated to proving some of the properties
of the functions we have defined. We hope to convince the
reader that they could pick up any proof from the standard
library’s Data.Nat.Properties module and reproduce
it on our stringly typed natural numbers.

5.1 Equality combinators
Now that we are entering serious proof territory, we will
need to introduce some basic combinators witnessing the
fundamental properties of propositional equality.

We use a block of variables Agda is authorised to im-
plicitly quantify over to avoid repeating ourselves in this
section.

variable
A B : Set
x y z : A

Propositional equality is a congruence. That is to say
that if two values are equal, applying the same function to
both will yield equal results.

cong : (f : A→ B)→ x ≡ y→ f x ≡ f y
cong f refl = refl

We already know that propositional equality is a reflex-
ive relation as witnessed by its constructor refl and we
can additionally prove that is is a symmetric and transi-
tive one.

sym : x ≡ y→ y ≡ x
sym refl = refl

trans : x ≡ y→ y ≡ z→ x ≡ z
trans refl eq = eq

We now have the basic building blocks needed to build
equality proofs.

5.2 Properties of Addition
Given our earlier observation that induction immediately
returns its base case when applied to the natural number
zero, it should not be any surprise that zero is trivially a
left neutral for our definition of addition.

zero-+ : ∀ m→ zero + m ≡ m
zero-+ m = refl

The proof that it is also a right neutral for addition re-
quires a bit more work. We can use induction itself to
build such a proof. The base case corresponding to zero +
zero ≡ zero is trivially true. The step case is just a matter
of using the induction hypothesis together with the fact
that equality is a congruence to add a suc to both sides.

+-zero : ∀ m→ m + zero ≡ m
+-zero =

induction
(λ m→ m + zero ≡ m)
refl
(λ n→ cong suc)

Similarly, our previous unit test should lead us to antic-
ipate that the proof that the addition of suc m to n is equal
to the successor of the addition of m to n is trival. This
indeed holds true by computation alone.

suc-+ : ∀ m n→ suc m + n ≡ suc (m + n)
suc-+ m n = refl

The statement stating that the addition of m to suc n is
equal to the successor of the addition of m to n is however
a bit trickier to deal with. It can once again be proven by
using induction on m.

+-suc : ∀ m n→ m + suc n ≡ suc (m + n)
+-suc m n =

induction

(λ m→ (m + suc n) ≡ suc (m + n))
refl
(λ n→ cong suc)
m

These auxiliary lemmas are the intermediate results we
need to be able to prove that addition is commutative. We,
once again, proceed by induction and this time make cru-
cial use of the fact that equality is symmetric and transi-
tive.

+-comm : ∀ m n→ m + n ≡ n + m
+-comm m n =

induction
(λ m→ m + n ≡ n + m)
(sym (+-zero n))
(λ m ih→ trans (cong suc ih) (sym (+-suc n m)))
m

Let us conclude with one last example of a property one
can prove of addition on stringly natural numbers: addi-
tion is associative.

+-assoc : ∀ m n p→ (m + n) + p ≡ m + (n + p)
+-assoc m n p =

induction
(λ m→ ((m + n) + p) ≡ (m + (n + p)))
refl
(λ m→ cong suc)
m

We have seen how we can define a type together with
its induction principle, and how we can make use of this
induction principle to program and prove our programs’
properties. The next step is to use induction on a given
type to define new types.

6 Our First Indexed Type: Fin
Given that the only type we have defined thus far is N, we
are going to use as the index of our type family. The nat-
ural candidate is Fin n, the type of finite numbers strictly
smaller than n.

This definition proceeds by induction on the index and
as such is characterised by a base and a step case.

Fin : Elt N→ Type
Fin = induction (λ _→ Type) base (λ _→ step)

where

In the base case, corresponding to Fin zero, the boolean
function is constantly false. The type is empty as there are
no finite numbers strictly smaller than zero.

base : Type
base _ = false

In the step case, corresponding to Fin (suc n) we recog-
nise a pattern similar to that used in the definition of N:
the string of interest is either ‘Z’-headed with an empty
tail or ‘S’-headed with a tail of type Fin n (this type is
provided to us by the induction hypothesis called ih here).

This time we do not bother introducing separate types
for each of the constructors but we could very well do so.

step : Type→ Type
step ih [] = false
step ih (c :: cs) = c == ’Z’ && isNil cs

|| c == ’S’ && ih cs

We can once more define the basic constructors for this
type. They have slightly more complex types, statically
enforcing that the return index is suc-headed. “Z” gives
rise to fzero.

fzero : ∀ {n}→ Elt (Fin (suc n))
fzero {n} = Fin (suc n) 3 "Z"

And extending an existing list of characters with ‘S’ is
enough to compute the successor of a Fin n element as
witnessed by fsuc.

fsuc : ∀ {n}→ Elt (Fin n)→ Elt (Fin (suc n))
fsuc [k] = [’S’ :: k]

The definition of the induction principle for Fin is left
as an exercise to the reader. It is very similar to the defini-
tion of induction for N. We will focus instead on a more
interesting observation related to Fin.

6.1 Subtyping: Fin n <: N
The astute reader will have noticed that the definition of
Fin is not only similar to that of N, it should be the case
that all of the values of type Fin n are also stringly natural
number.

This can actually be proven. It should be unsurprising
by now that our tool of choice in this endeavour will be
the induction principle for N.

The key ingredient is the step case stating that, provided
that we can already prove that elements of Fin n are ele-
ments of N then we should be able to do the same for
elements of Fin (suc n).

step : ∀ n→ (∀ str→ str ∈ Fin n→ str ∈ N)→
(∀ str→ str ∈ Fin (suc n)→ str ∈ N)

step n ih (c :: cs) isFin =
checkZ (c =? ’Z’) cs {{isFin}} where

We include the proof for completness’ sake even
though it may not be illuminating for the Agda novice. It
proceeds by case analysis on the input string, concluding
immediately if it is “Z” and utilising the induction hypoth-
esis if it is ‘S’-headed instead.

checkS : ∀ {b}→ Reflects c ’S’ b→ ∀ cs→
{{IsTrue (b && Fin n cs)}}→
(c :: cs) ∈ N

checkS true cs {{isFin}} = ih cs isFin

checkZ : ∀ {b}→ Reflects c ’Z’ b→ ∀ cs→
{{IsTrue (b && isNil cs || c == ’S’ && Fin n cs)}}→
(c :: cs) ∈ N

checkZ true [] = _
checkZ false cs = checkS (c =? ’S’) cs

This can be put together with a trivial base case (re-
member that Fin zero is the empty type so it cannot have
any element in it) to obtain the proof sub.

sub : ∀ n str→ str ∈ Fin n→ str ∈ N
sub = induction

(λ n→ ∀ str→ str ∈ Fin n→ str ∈ N)
(λ _ ())
step

This result allows us to write a cast function convert-
ing an element of Fin n into a stringly natural number.
Notice that the value part is the identity. Given that the
check part of the record will be erased at compile time
this means we have defined a zero cost coercion from
Fin n to N which is much better than most state of the
art dependently typed programming languages, save for
Cedille [Diehl and Stump(2018)].

cast : ∀ {n}→ Elt (Fin n)→ Elt N
cast {n} p .value = p .value
cast {n} p .check = sub n (p .value) (p .check)

7 Conclusion & Future Work
We have seen that we can take advantage of a dependently
typed host language to seriously consider the prospect of
safe and proven correct stringly typed programming.

We were able to define a notion of type of natural num-
bers carving out a subset of well structured strings. This
type is closed under the usual constructors for the natural
numbers zero and suc.

We then proved an induction principle for those strings
that represent natural numbers. This empowered us to

start programming over these stringly typed natural num-
bers in a way that is guaranteed total.

We demonstrated that our induction principle is strong
enough to not only program on the stringly typed natural
numbers but also to prove the fundamental properties of
these programs.

We finally showed how we can use induction to define
new types, and how we can take advantage of the fact we
are doing dependent stringly typed programming to obtain
zero cost coercions.

The definition of parametrised types such as the type of
linked lists or binary trees with values stored at the leaves
is left to future work.

References
[Diehl and Stump(2018)] L. Diehl and A. Stump. Zero-

cost coercions for program and proof reuse. CoRR,
abs/1802.00787, 2018. URL http://arxiv.org/
abs/1802.00787.

[Dybjer(1994)] P. Dybjer. Inductive families. Formal as-
pects of computing, 6(4):440–465, 1994.

[Mahboubi and Tassi(2021)] A. Mahboubi and E. Tassi.
Mathematical Components. Zenodo, Jan. 2021. doi:
10.5281/zenodo.4457887. URL https://doi.org/
10.5281/zenodo.4457887.

[Norell(2009)] U. Norell. Dependently typed program-
ming in Agda. In AFP Summer School, pages 230–
266. 2009.

http://arxiv.org/abs/1802.00787
http://arxiv.org/abs/1802.00787
https://doi.org/10.5281/zenodo.4457887
https://doi.org/10.5281/zenodo.4457887

	Introduction
	What even is a type?
	Our First Type: N
	Stringly Typed Programming
	Small Scale Reflection
	Induction principle for N
	Example: Addition, Multiplication

	Stringly Typed Proving
	Equality combinators
	Properties of Addition

	Our First Indexed Type: Fin
	Subtyping: Fin n <: N

	Conclusion & Future Work

