
Builtin Types viewed as Inductive Families

Guillaume Allais

January 5, 2023

Abstract

State of the art optimisation passes for dependently typed languages
can help erase the redundant information typical of invariant-rich data
structures and programs. These automated processes do not dramatically
change the structure of the data, even though more efficient representa-
tions could be available.

Using Quantitative Type Theory, we demonstrate how to define an
invariant-rich, typechecking time data structure packing an efficient run-
time representation together with runtime irrelevant invariants. The com-
piler can then aggressively erase all such invariants during compilation.

Unlike other approaches, the complexity of the resulting representation
is entirely predictable, we do not require both representations to have the
same structure, and yet we are able to seamlessly program as if we were
using the high-level structure.

1 Introduction

Dependently typed languages have empowered users to precisely describe their
domain of discourse by using inductive families [Dyb94]. Programmers can bake
crucial invariants directly into their definitions thus refining both their func-
tions’ inputs and outputs. The constrained inputs allow them to only consider
the relevant cases during pattern matching, while the refined outputs guaran-
tee that client code can safely rely on the invariants being maintained. This
programming style is dubbed ‘correct by construction’.

However, relying on inductive families can have a non-negligible runtime
cost if the host language is compiling them näıvely. And even state of the art
optimisation passes for dependently typed languages cannot make miracles: if
the source code is not efficient, the executable will not be either.

A state of the art compiler will for instance successfully compile length-
indexed lists to mere lists thus reducing the space complexity from quadratic
to linear in the size of the list. But, confronted with a list of booleans whose
length is statically known to be less than 64, it will fail to pack it into a single
machine word thus spending linear space when constant would have sufficed.

In section 2, we will look at an optimisation example that highlights both
the strengths and the limitations of the current state of the art when it comes to
removing the runtime overheads potentially incurred by using inductive families.
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In section 3 we will give a quick introduction to Quantitative Type Theory,
the expressive language that grants programmers the ability to have both strong
invariants and, reliably, a very efficient runtime representation.

In section 4 we will look at an inductive family that we use in a performance-
critical way in the TypOS project [AAM+22] and whose compilation suffers
from the limitations highlighted in section 2. Our current and unsatisfactory
approach is to rely on the safe and convenient inductive family when experi-
menting in Agda and then replace it with an unsafe but vastly more efficient
representation in our actual Haskell implementation.

Finally in section 5, we will study the actual implementation of our efficient
and invariant-rich solution implemented in Idris 2. We will also demonstrate
that we can recover almost all the conveniences of programming with inductive
families thanks to smart constructors and views.

2 An Optimisation Example

The prototypical examples of the näıve compilation of inductive families being
inefficient are probably the types of vectors (Vect) and finite numbers (Fin).
Their interplay is demonstrated by the lookup function. Let us study this
example and how successive optimisation passes can, in this instance, get rid of
the overhead introduced by using indexed families over plain data.

A vector is a length-indexed list. The type Vect is parameterised by the
type of values it stores and indexed over a natural number corresponding to its
length. More concretely, its Nil constructor builds an empty vector of size Z
(i.e. zero), and its (::) (pronounced ‘cons’) constructor combines a value of
type a (the head) and a subvector of size n (the tail) to build a vector of size (S
n) (i.e. successor of n).

data Vect : Nat -> Type -> Type where
Nil : Vect Z a
(::) : a -> Vect n a -> Vect (S n) a

The size n is not explicitly bound in the type of (::). In Idris 2, this means
that it is automatically generalised over in a prenex manner reminiscent of the
handling of free type variables in languages in the ML family. This makes it
an implicit argument of the constructor. Consequently, given that Nat is a
type of unary natural numbers, a näıve runtime representation of a (Vect n a)
would have a size quadratic in n. A smarter representation with perfect sharing
would still represent quite an overhead as observed by Brady, McBride, and
McKinna [BMM03].

A finite number is a number known to be strictly smaller than a given natural
number. The type Fin is indexed by said bound. Its Z constructor models 0 and
is bound by any non-zero bound, and its S constructor takes a number bound
by n and returns its successor, bound by (1 + n). A näıve compilation would
here also lead to a runtime representation suffering from a quadratic blowup.
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data Fin : Nat -> Type where
Z : Fin (S n)
S : Fin n -> Fin (S n)

This leads us to the definition of the lookup function. Provided a vector of
size n and a finite number k bound by this same n, we can define a total function
looking up the value stored at position k in the vector. It is guaranteed to return
a value. Note that we do not need to consider the case of the empty vector in the
pattern matching clauses as all of the return types of the Fin constructors force
the index to be non-zero and, because the vector and the finite number talk
about the same n, having an empty vector would automatically imply having a
value of type (Fin 0) which is self-evidently impossible.

lookup : Vect n a -> Fin n -> a
lookup (x :: _) Z = x
lookup (_ :: xs) (S k) = lookup xs k

Thanks to our indexed family, we have gained the ability to define a function
that cannot possibly fail, as well as the ability to only talk about the pattern
matching clauses that make sense. This seemed to be at the cost of efficiency but
luckily for us there has already been extensive work on erasure to automatically
detect redundant data [BMM03] or data that will not be used at runtime [Tej20].

2.1 Optimising Vect, Fin, and lookup

An analysis in the style of Brady, McBride, and McKinna’s [BMM03] can solve
the quadratic blowup highlighted above by observing that the natural number
a vector is indexed by is entirely determined by the spine of the vector. In
particular, the length of the tail does not need to be stored as part of the
constructor: it can be reconstructed as the predecessor of the length of the
overall vector. As a consequence, a vector can be adequately represented at
runtime by a pair of a natural number and a list. Similarly a bounded number
can be adequately represented by a pair of natural numbers. Putting all of this
together and remembering that the vector and the finite number share the same
n, lookup can be compiled to a function taking two natural numbers and a list.
In Idris 2 we would write the optimised lookup as follows (we use the partial
keyword because this transformed version is not total at that type).

partial
lookup : (n : Nat) -> List a -> Nat -> a
lookup (S n) (x :: _) Z = x
lookup (S n) (_ :: xs) (S k) = lookup n xs k

We can see in the second clause that the recursive call is performed on the tail
of the list (formerly vector) and so the first argument to lookup corresponding
to the vector’s size is decreased by one. The invariant, despite not being explicit
anymore, is maintained.
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A Tejǐsčák-style analysis [Tej20] can additionally notice that the lookup func-
tion never makes use of the bound’s value and drop it entirely. This leads to
the lookup function on vectors being compiled to its partial-looking counterpart
acting on lists.

partial
lookup : List a -> Nat -> a
lookup (x :: _) Z = x
lookup (_ :: xs) (S k) = lookup xs k

Even though this is in our opinion a pretty compelling example of erasing
away the apparent complexity introduced by inductive families, this approach
has two drawbacks.

Firstly, it relies on the fact that the compiler can and will automatically
perform these optimisations. But nothing in the type system prevents users from
inadvertently using a value they thought would get erased, thus preventing the
Tejǐsčák-style optimisation from firing. In performance-critical settings, users
may rather want to state their intent explicitly and be kept to their word by
the compiler in exchange for predictable and guaranteed optimisations.

Secondly, this approach is intrinsically limited to transformations that pre-
serve the type’s overall structure: the runtime data structures are simpler but
very similar still. We cannot expect much better than that. It is so far unre-
alistic to expect e.g. a change of representation to use a balanced binary tree
instead of a list in order to get logarithmic lookups rather than linear ones.

2.2 No Magic Solution

Even if we are able to obtain a more compact representation of the inductive
family at runtime through enough erasure, this does not guarantee runtime
efficiency. As the Coq manual [CDT22] reminds its users, extraction does not
magically optimise away a user-defined quadratic multiplication algorithm when
extracting unary natural numbers to an efficient machine representation. In
a pragmatic move, Coq, Agda, and Idris 2 all have ad-hoc rules to replace
convenient but inefficiently implemented numeric functions with asymptotically
faster counterparts in the target language.

However this approach is not scalable: if we may be willing to extend our
trusted core to a high quality library for unbounded integers, we do not want to
replace our code only proven correct thanks to complex invariants with a wildly
different untrusted counterpart purely for efficiency reasons.

In this paper we use Quantitative Type Theory [McB16, Atk18] as imple-
mented in Idris 2 [Bra21] to bridge the gap between an invariant-rich but in-
efficient representation based on an inductive family and an unsafe but effi-
cient implementation using low-level primitives. Inductive families allow us to
view [Wad87, MM04] the runtime relevant information encoded in the low-level
and efficient representation as an information-rich compile time data structure.
Moreover the quantity annotations guarantee that this additional information
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will be erased away during compilation.

3 Some Key Features of Idris 2

Idris 2 implements Quantitative Type Theory, a Martin-Löf type theory enriched
with a semiring of quantities classifying the ways in which values may be used.
In a type, each binder is annotated with the quantity by which its argument
must abide.

3.1 Quantities

A value may be runtime irrelevant, linear, or unrestricted.
Runtime irrelevant values (0 quantity) cannot possibly influence control flow

as they will be erased entirely during compilation. This forces the language
to impose strong restrictions on pattern-matching over these values. Typical
examples are types like the a parameter in (List a), or indices like the natural
number n in (Vect n a). These are guaranteed to be erased at compile time.
The advantage over a Tejǐsčák-style analysis is that users can state their intent
that an argument ought to be runtime irrelevant and the language will insist
that it needs to be convinced it indeed is.

Linear values (1 quantity) have to be used exactly once. Typical examples
include the %World token used by Idris 2 to implement the IOmonad à la Haskell,
or file handles that cannot be discarded without first explicitly closing the file.
At runtime these values can be updated destructively. We will not use linearity
in this paper.

Last, unrestricted values (denoted by no quantity annotation) can flow into
any position, be duplicated or thrown away. They are the usual immutable
values of functional programming.

The most basic of examples mobilising both the runtime irrelevance and
unrestricted quantities is the identity function.

id : {0 a : Type} -> (x : a) -> a
id x = x

Its type starts with a binder using curly braces. This means it introduces
an implicit variable that does not need to be filled in by the user at call sites
and will be reconstructed by unification. The variable it introduces is named
a and has type Type. It has the 0 quantity annotation which means that this
argument is runtime irrelevant and so will be erased during compilation.

The second binder uses parentheses. It introduces an explicit variable whose
name is x and whose type is the type a that was just bound. It has no quantity
annotation which means it will be an unrestricted variable.

Finally the return type is the type a bound earlier. This is, as expected, a
polymorphic function from a to a. It is implemented using a single clause that
binds x on the left-hand side and immediately returns it on the right-hand side.
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If we were to try to annotate the binder for x with a 0 quantity to make
it runtime irrelevant then Idris 2 would rightfully reject the definition. The
following failing block shows part of the error message complaining that x
cannot be used at an unrestricted quantity on the right-hand side.

failing "x is not accessible in this context."
id : {0 a : Type} -> (0 x : a) -> a
id x = x

3.2 Proof Search

In Idris 2, Haskell-style ad-hoc polymorphism [WB89] is superseded by a more
general proof search mechanism. Instead of having blessed notions of type
classes, instances and constraints, the domain of any dependent function type
can be marked as auto. This signals to the compiler that the corresponding
argument will be an implicit argument and that it should not be reconstructed
by unification alone but rather by proof search. The search algorithm will use
the appropriate user-declared hints as well as the local variables in scope.

By default, a datatype’s constructors are always added to the database of
hints. And so the following declaration brings into scope both an indexed family
So of proofs that a given boolean is True, and a unique constructor Oh that is
automatically added as a hint.

data So : Bool -> Type where
Oh : So True

As a consequence, we can for instance define a record type specifying what
it means for n to be an even number by storing its half together with a proof
that is both runtime irrelevant and filled in by proof search. Because (2 * 3 ==
6) computes to True, Idris 2 is able to fill-in the missing proof in the definition
of even6 using the Oh hint.

record Even (n : Nat) where
constructor MkEven
half : Nat
{auto 0 prf : So (2 * half == n)}

even6 : Even 6
even6 = MkEven { half = 3 }

We will use both So and the auto mechanism in section 5.3.

3.3 Application: Vect, as List

We can use the features of Quantitative Type Theory to give an implementa-
tion of Vect that is guaranteed to erase to a List at runtime independently of
the optimisation passes implemented by the compiler. The advantage over the
optimisation passes described in section 2 is that the user has control over the
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runtime representation and does not need to rely on these optimisations being
deployed by the compiler.

The core idea is to make the slogan ‘a vector is a length-indexed list’ a
reality by defining a record packing together the encoding as a list and a proof
its length is equal to the expected Nat index. This proof is marked as runtime
irrelevant to ensure that the list is the only thing remaining after compilation.

record Vect (n : Nat) (a : Type) where
constructor MkVect
encoding : List a
0 valid : length encoding === n

Smart constructors Now that we have defined vectors, we can recover the
usual building blocks for vectors by defining smart constructors, that is to say
functions Nil and (::) that act as replacements for the inductive family’s data
constructors.

Nil : Vect Z a
Nil = MkVect [] Refl

The smart constructor Nil returns an empty vector. It is, unsurprisingly,
encoded as the empty list ([]). Because (length []) statically computes to Z,
the proof that the encoding is valid can be discharged by reflexivity.

(::) : a -> Vect n a -> Vect (S n) a
x :: MkVect xs eq = MkVect (x :: xs) (cong S eq)

Using (::) we can combine a head and a tail of size n to obtain a vector of
size (S n). The encoding is obtained by consing the head in front of the tail’s
encoding and the proof this is valid (cong S eq) uses the fact that propositional
equality is a congruence and that (length (x :: xs)) computes to (S (length
xs)).

View Now that we know how to build vectors, we demonstrate that we can
also take them apart using a view.

A view for a type T , in the sense of Wadler [Wad87], and as refined by
McBride and McKinna [MM04], is an inductive family V indexed by T together
with a total function mapping every element t of T to a value of type (V t). This
simple gadget provides a powerful, user-extensible, generalisation of pattern-
matching. Patterns are defined inductively as either a pattern variable, a forced
term (i.e. an arbitrary expression that is determined by a constraint arising
from another pattern), or a data constructor fully applied to subpatterns. In
contrast, the return indices of an inductive family’s constructors can be arbitrary
expressions.

In the case that interests us, the view allows us to emulate ‘matching’ on
which of the two smart constructors Nil or (::) was used to build the vector
being taken apart.
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data View : Vect n a -> Type where
Nil : View Nil
(::) : (x : a) -> (xs : Vect n a) -> View (x :: xs)

The inductive family View is indexed by a vector and has two constructors
corresponding to the two smart constructors. We use Idris 2’s overloading capa-
bilities to give each of the View’s constructors the name of the smart constructor
it corresponds to. By pattern-matching on a value of type (View xs), we will be
able to break xs into its constitutive parts and either observe it is equal to Nil
or recover its head and its tail.

view : (xs : Vect n a) -> View xs
view (MkVect [] Refl) = Nil
view (MkVect (x :: xs) Refl) = x :: MkVect xs Refl

The function view demonstrates that we can always tell which constructor
was used by inspecting the encoding list. If it is empty, the vector was built
using the Nil smart constructor. If it is not then we got our hands on the
head and the tail of the encoding and (modulo some re-wrapping of the tail)
they are effectively the head and the tail that were combined using the smart
constructor.

3.3.1 Application: map

We can then use these constructs to implement the function map on vectors
without ever having to explicitly manipulate the encoding. The maximally
sugared version of map is as follows:

map : (a -> b) -> Vect n a -> Vect n b
map f xs@_ with (view xs)

_ | [] = []
_ | hd :: tl = f hd :: map f tl

On the left-hand side the view lets us seamlessly pattern-match on the input
vector. Using the with keyword we have locally modified the function defini-
tion so that it takes an extra argument, here the result of the intermediate
computation (view xs). Correspondingly, we have two clauses matching on this
extra argument; the symbol | separates the original left-hand side (here elided
using _ because it is exactly the same as in the parent clause) from the addi-
tional pattern. This pattern can either have the shape [] or (hd :: tl) and,
correspondingly, we learn that xs is either [] or (hd :: tl).

On the right-hand side the smart constructors let us build the output vec-
tor. Mapping a function over the empty vector yields the empty vector while
mapping over a cons node yields a cons node whose head and tail have been
appropriately modified.

This sugared version of map is equivalent to the following more explicit one:
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map : (a -> b) -> Vect n a -> Vect n b
map f xs with (view xs)

map f .([]) | [] = []
map f .(hd :: tl) | hd :: tl = f hd :: map f tl

In the parent clause we have explicitly bound xs instead of merely introduc-
ing an alias for it by writing (xs@ ) and so we will need to be explicit about the
ways in which this pattern is refined in the two with-clauses.

In the with-clauses, we have explicitly repeated the refined version of the
parent clause’s left-hand side. In particular we have used dotted patterns to
insist that xs is now entirely forced by the match on the result of (view xs).

We have seen that by matching on the result of the (view xs) call, we get to
‘match’ on xs as if Vect were an inductive type. This is the power of views.

3.3.2 Application: lookup

The type (Fin n) can similarly be represented by a single natural number and
a runtime irrelevant proof that it is bound by n. We leave these definitions
out, and invite the curious reader to either attempt to implement them for
themselves or look at the accompanying code.

Bringing these definitions together, we can define a lookup function which
is similar to the one defined in section 2.

lookup : Vect n a -> Fin n -> a
lookup xs@_ k@_ with (view xs) | (view k)

_ | hd :: _ | Z = hd
_ | _ :: tl | S k’ = lookup tl k’

We are seemingly using view at two different types (Vect and Fin respec-
tively) but both occurrences actually refer to separate functions: Idris 2 lets us
overload functions and performs type-directed disambiguation.

For pedagogical purposes, this sugared version of lookup can also be ex-
panded to a more explicit one that demonstrates the views’ power.

lookup : Vect n a -> Fin n -> a
lookup xs k with (view xs) | (view k)
lookup .(hd :: tl) .(Z) | hd :: tl | Z = hd
lookup .(hd :: tl) .(S k’) | hd :: tl | S k’ = lookup tl k’

The main advantage of this definition is that, based on its type alone, we
know that this function is guaranteed to be processing a list and a single natural
number at runtime. This efficient runtime representation does not rely on the
assumption that state of the art optimisation passes will be deployed.

We have seen some of Idris 2’s powerful features and how they can be lever-
aged to empower users to control the runtime representation of the inductive
families they manipulate. This simple example only allowed us to reproduce
the performance that could already be achieved by compilers deploying state of
the art optimisation passes. In the following sections, we are going to see how
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we can use the same core ideas to compile an inductive family to a drastically
different runtime representation while keeping good high-level ergonomics.

4 Thinnings, cooked two ways

We experienced a major limitation of compilation of inductive families during
our ongoing development of TypOS [AAM+22], a domain specific language to
define concurrent typecheckers and elaborators. Core to this project is the defi-
nition of actors manipulating a generic notion of syntax with binding. Internally
the terms of this syntax with binding are based on a co-de Bruijn representa-
tion (an encoding we will explain below) which relies heavily on thinnings. A
thinning (also known as an Order Preserving Embedding [Cha09]) between a
source and a target scope is an order preserving injection of the smaller scope
into the larger one. They are usually represented using an inductive family.
The omnipresence of thinnings in the co-de Bruijn representation makes their
runtime representation a performance critical matter.

Let us first remind the reader of the structure of abstract syntax trees in a
named, a de Bruijn, and a co-de Bruijn representation. We will then discuss two
representations of thinnings: a safe and convenient one as an inductive family,
and an unsafe but efficient encoding as a pair of arbitrary precision integers.

4.1 Named, de Bruijn, and co-de Bruijn syntaxes

In this section we will use the S combinator (λg.λf.λx.gx(fx)) as a running
example and represent terms using a syntax tree whose constructor nodes are
circles and variable nodes are squares. To depict the S combinator we will
only need λ-abstraction and application (rendered $) nodes. A constructor’s
arguments become its children in the tree. The tree is laid out left-to-right and
a constructor’s arguments are displayed top-to-bottom.

Named syntax The first representation is using explicit names. Each binder
has an associated name and each variable node carries a name. A variable refers
to the closest enclosing binder which happens to be using the same name.

λg. λf. λx. $

$

g

x

$

f

x

To check whether two terms are structurally equivalent (α-equivalence) po-
tentially requires renaming bound names. In order to have a simple and cheap
α-equivalence check we can instead opt for a nameless representation.
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De Bruijn syntax An abstract syntax tree based on de Bruijn indices [dB72]
replaces names with natural numbers counting the number of binders separating
a variable from its binding site. The S combinator is now written (λλλ 2 0 (1 0)).

You can see in the following graphical depiction that λ-abstractions do not
carry a name anymore and that variables are simply pointing to the binder
that introduced them. We have left the squares empty but in practice the
various coloured arrows would be represented by a natural number. For instance
the dashed magenta one corresponds to 1 because you need to ignore one λ-
abstraction (the orange one) on your way towards the root of the tree before
you reach the corresponding magenta binder.

λ. λ. λ. $

$

$

To check whether a subterm does not mention a given set of variables (a
thickening test, the opposite of a thinning which extends the current scope with
unused variables), you need to traverse the whole term. In order to have a
simple cheap thickening test we can ensure that each subterms knows precisely
what its support is and how it embeds in its parent’s.

Co-de Bruijn syntax In a co-de Bruijn representation [McB18] each subterm
selects exactly the variables that stay in scope for that term, and so a variable
constructor ultimately refers to the only variable still in scope by the time it is
reached. This representation ensures that we know precisely what the scope of
a given term currently is.

In the following graphical rendering, we represent thinnings as lists of full
(•) or empty (◦) discs depending on whether the corresponding variable is either
kept or discarded. For instance the thinning represented by ◦•• throws the blue
variable away, and keeps both the magenta and orange ones.

λ. λ. λ. $

$

$

• •• •••

◦••

•◦•

•◦

◦•
•◦

◦•
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We can see that in such a representation, each node in the tree stores one
thinning per subterm. This will not be tractable unless we have an efficient
representation of thinnings.

4.2 The Performance Challenges of co-de Bruijn

Using the co-de Bruijn approach, a term in an arbitrary context is repre-
sented by the pairing of a term in co-de Bruijn syntax with a thinning from
its support into the wider scope. Having such a precise handle on each term’s
support allows us to make operations such as thinning, substitution, unification,
or common sub-expression elimination more efficient.

Thinning a term does not require us to traverse it anymore. Indeed, embed-
ding a term in a wider context will not change its support and so we can simply
compose the two thinnings while keeping the term the same.

Substitution can avoid traversing subterms that will not be changed. Indeed,
it can now easily detect when the substitution’s domain does not intersect with
the subterm’s support.

Unification requires performing thickening tests when we want to solve a
metavariable declared in a given context with a terms seemingly living in a
wider one. We once more do not need to traverse the term to perform this test,
and can simply check whether the outer thinning can be thickened.

Common sub-expression elimination requires us to identify alpha-equivalent
terms potentially living in different contexts. Using a de Bruijn representation,
these can be syntactically different: a variable represented by the natural num-
ber v in Γ would be (1+v) in Γ, σ but (2+v) in Γ, τ, ν. A co-de Bruijn represen-
tation, by discarding all the variables not in the support, guarantees that we can
once more use syntactic equality to detect alpha-equivalence. This encoding is
used for instance (albeit unknowingly) by Maziarz, Ellis, Lawrence, Fitzgibbon,
and Peyton-Jones in their ‘Hashing modulo alpha-equivalence’ work [MEL+21].

For all of these reasons we have, as we mentioned earlier, opted for a co-de
Bruijn representation in the implementation of TypOS [AAM+22]. And so it
is crucial for performance that we have a compact representation of thinnings.

4.2.1 Thinnings in TypOS

We first carefully worked out the trickier parts of the implementation in Agda
before porting the resulting code to Haskell. This process highlighted a glaring
gap between on the one hand the experiments done using a strongly typed
inductive representation of thinnings and on the other hand their more efficient
but unsafe encoding in Haskell.

Agda The Agda-based experiments use inductive families that make the key
invariants explicit which helps tracking complex constraints and catches design
flaws at typechecking time. The indices guarantee that we always transform the
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thinnings appropriately when we add or remove bound variables. In Idris 2, the
inductive family representation of thinnings would be written:

data Thinning : (sx, sy : SnocList a) -> Type where
Done : Thinning [<] [<]
Keep : Thinning sx sy -> (0 x : a) -> Thinning (sx :< x) (sy :< x)
Drop : Thinning sx sy -> (0 x : a) -> Thinning sx (sy :< x)

The Thinning family is indexed by two scopes (represented as snoclists i.e. lists
that are extended from the right, just like contexts in inference rules): sx the
tighter scope and sy the wider one. The Done constructor corresponds to a
thinning from the empty scope to itself ([<] is Idris 2 syntactic sugar for the
empty snoclist), and Keep and Drop respectively extend a given thinning by
keeping or dropping the most local variable (:< is the ‘snoc’ constructor, a sort
of flipped ‘cons’). The ‘name’ (x of type a) is marked with the quantity 0 to
ensure it is erased at compile time (cf. section 3).

During compilation, Idris 2 would erase the families’ indices as they are
forced (in the sense of Brady, McBride, and McKinna [BMM03]), and drop the
constructor arguments marked as runtime irrelevant. The resulting inductive
type would be the following simple data type.

data Thinning = Done | Keep Thinning | Drop Thinning

At runtime this representation is therefore essentially a linked list of booleans
(Done being Nil, and Keep and Drop respectively (True ::) and (False ::)).

Haskell The Haskell implementation uses this observation and picks a packed
encoding of this list of booleans as a pair of integers. One integer represents the
length n of the list, and the other integer’s n least significant bits encode the
list as a bit pattern where 1 is Keep and 0 is Drop.

Basic operations on thinnings are implemented by explicitly manipulating
individual bits. It is not indexed and thus all the invariant tracking has to be
done by hand. This has led to numerous and hard to diagnose bugs.

4.2.2 Thinnings in Idris 2

Idris 2 is a self-hosting language whose core datatype is currently based on a
well-scoped de Bruijn representation. This precise indexing of terms by their
scope helped entirely eliminate a whole class of bugs that plagued Idris 1’s
unification machinery.

If we were to switch to a co-de Bruijn representation for our core language
we would want, and should be able, to have the best of both worlds: a safe and
efficient representation!

Thankfully Idris 2 implements Quantitative Type Theory (QTT) which gives
us a lot of control over what is to be runtime relevant and what is to be erased
during compilation. This should allow us to insist on having a high-level in-
terface that resembles an inductive family while ensuring that everything but
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a pair of integers is erased at compile time. We will exploit the key features of
QTT presented in section 3 to have our cake and eat it.

5 An Efficient Invariant-Rich Representation

We can combine both approaches highlighted in section 4.2 by defining a record
parameterised by a source (sx) and target (sy) scopes corresponding to the two
ends of the thinnings, just like we would for the inductive family. This record
packs two numbers and a runtime irrelevant proof.

Firstly, we have a natural number called bigEnd corresponding to the size of
the big end of the thinning (sy). We are happy to use a (unary) natural number
here because we know that Idris 2 will compile it to an unbounded integer.

Secondly, we have an integer called encoding corresponding to the thinning
represented as a bit vector stating, for each variable, whether it is kept or
dropped. We only care about the integer’s bigEnd least significant bits and
assume the rest is set to 0.

Thirdly, we have a runtime irrelevant proof invariant that encoding is in-
deed a valid encoding of size bigEnd of a thinning from sx to sy. We will explore
the definition of the relation Invariant later on in section 5.3.

record Th {a : Type} (sx, sy : SnocList a) where
constructor MkTh
bigEnd : Nat
encoding : Integer
0 invariant : Invariant bigEnd encoding sx sy

The first sign that this definition is adequate is our ability to construct any
valid thinning. We demonstrate it is the case by introducing functions that act
as smart constructor analogues for the inductive family’s data constructors.

5.1 Smart Constructors for Th

The first and simplest one is done, a function that packs a pair of 0 (the size of
the big end, and the empty encoding) together with a proof that it is an adequate
encoding of the thinning from the empty scope to itself. In this instance, the
proof is simply the Done constructor.

done : Th [<] [<]
done = MkTh { bigEnd = 0, encoding = 0, invariant = Done }

To implement both keep and drop, we are going to need to perform bit-level
manipulations. These are made easy by Idris 2’s Bits interface which provides us
with functions to shift the bit patterns left or right (shiftl, shiftr), set or clear
bits at specified positions (setBit, clearBit), take bitwise logical operations like
disjunction (.|.) or conjunction (.&.), etc.
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In both keep and drop, we need to extend the encoding with an additional
bit. For this purpose we introduce the cons function which takes a bit b and an
existing encoding bs and returns the new encoding bs·b.

cons : Bool -> Integer -> Integer
cons b bs = let bs0 = bs ‘shiftL‘ 1 in

if b then (bs0 ‘setBit‘ 0) else bs0

No matter what the value of the new bit is, we start by shifting the encoding
to the left to make space for it; this gives us bs0 which contains the bit pattern
bs ·0. If the bit is True then we need to additionally set the bit at position 0
to obtain bs ·1. Otherwise if the bit is False, we can readily return the bs ·0
encoding obtained by left shifting. The correctness of this function is backed by
two lemma: testing the bit at index 0 after consing amounts to returning the
cons’d bit, and shifting the cons’d encoding to the right takes us back to the
unextended encoding.

testBit0Cons : (b : Bool) -> (bs : Integer) ->
testBit (cons b bs) 0 === b

consShiftR : (b : Bool) -> (bs : Integer) ->
(cons b bs) ‘shiftR‘ 1 === bs

The keep smart constructor demonstrates that from a thinning from sx to
sy and a runtime irrelevant variable x we can compute a thinning from the
extended source scope (sx :< x) to the target scope (sy :< x) where x was kept.

keep : Th sx sy -> (0 x : a) -> Th (sx :< x) (sy :< x)
keep th x = MkTh
{ bigEnd = S (th .bigEnd)
, encoding = cons True (th .encoding)
, invariant =

let 0 b = eqToSo $ testBit0Cons True (th .encoding) in
Keep (rewrite consShiftR True (th .encoding) in th.invariant) x

}

The outer scope has grown by one variable and so we increment bigEnd. The
encoding is obtained by cons-ing the boolean True to record the fact that this
new variable is kept. Finally, we use the two lemmas shown above to convince
Idris 2 the invariant has been maintained.

Similarly the drop function demonstrates that we can compute a thinning
getting rid of the variable x freshly added to the target scope.
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drop : Th sx sy -> (0 x : a) -> Th sx (sy :< x)
drop th x = MkTh
{ bigEnd = S (th .bigEnd)
, encoding = cons False (th .encoding)
, invariant =
let 0 prf = testBit0Cons False (th .encoding)

0 nb = eqToSo $ cong not prf in
Drop (rewrite consShiftR False (th .encoding) in th .invariant) x

}

We once again increment the bigEnd, use cons to record that the variable is
being discarded and use the lemmas ensuring its correctness to convince Idris 2
the invariant is maintained.

We can already deploy these smart constructors to implement functions pro-
ducing thinnings. We use which as our example. It is a filter-like function that
returns a dependent pair containing the elements that satisfy a boolean predi-
cate together with a proof that there is a thinning embedding them back into
the input snoclist.

which : (a -> Bool) -> (sy : SnocList a) ->
(sx : SnocList a ** Th sx sy)

which p [<] = ([<] ** done)
which p (sy :< y) =
let (sx ** th) = which p sy in
if p y then (sx :< y ** keep th y)

else (sx ** drop th y)

If the input snoclist is empty then the output shall also be, and done builds
a thinning from [<] to itself. If it is not empty we can perform a recursive call
on the tail of the snoclist and then depending on whether the predicates holds
true of the head we can either keep or drop it.

We are now equipped with these smart constructors that allow us to seam-
lessly build thinnings. To recover the full expressive power of the inductive
family, we also need to be able to take these thinnings apart. We are now going
to tackle this issue.

5.2 Pattern Matching on Th

The View family is a sum type indexed by a thinning. It has one data constructor
associated to each smart constructor and storing its arguments.

data View : Th sx sy -> Type where
Done : View done
Keep : (th : Th sx sy) -> (0 x : a) -> View (keep th x)
Drop : (th : Th sx sy) -> (0 x : a) -> View (drop th x)

The accompanying view function witnesses the fact that any thinning arises
as one of these three cases.
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view : (th : Th sx sy) -> View th

We show the implementation of view in its entirety but leave out the tech-
nical auxiliary lemma it invokes. The interested reader can find them in the
accompanying material. We will however inspect the code view compiles to af-
ter erasure in section 5.5 to confirm that these auxiliary definitions do not incur
any additional runtime cost.

We first start by pattern matching on the bigEnd of the thinning. If it is 0
then we know the thinning has to be the empty thinning. Thanks to an inversion
lemma called isDone, we can collect a lot of equality proofs: the encoding bs has
to be 0, the source and target scopes sx and sy have to be the empty snoclists,
and the proof prf of the invariant has to be of a specific shape. Rewriting by
these equalities changes the goal type enough for the typechecker to ultimately
see that the thinning was constructed using the done smart constructor and so
we can use the view’s Done constructor.

view (MkTh 0 bs prf) =
let 0 eqs = isDone prf in
rewrite bsIsZero eqs in
rewrite fstIndexIsLin eqs in
rewrite sndIndexIsLin eqs in
rewrite invariantIsDone eqs in
Done

In case the thinning is non-empty, we need to inspect the 0-th bit of the
encoding to know whether it keeps or discards its most local variable. This is
done by calling the choose function which takes a boolean b and returns a value
of type (Either (So b) (So (not b)) i.e. we not only inspect the boolean but also
record which value we got in a proof using the So family introduced in section 3.

view (MkTh (S i) bs prf) = case choose (testBit bs Z) of

If the bit is set then we know the variable is kept. And so we can invoke an
inversion lemma that will once again provide us with a lot of equalities that we
immediately deploy to reshape the goal’s type. This ultimately lets us assemble
a sub-thinning and use the view’s Keep constructor.

Left so =>
let 0 eqs = isKeep prf so in
rewrite fstIndexIsSnoc eqs in
rewrite sndIndexIsSnoc eqs in
rewrite invariantIsKeep eqs in
rewrite isKeepInteger bs so in
let th : Th eqs.fstIndexTail eqs.sndIndexTail

th = MkTh i (bs ‘shiftR‘ 1) eqs.subInvariant in
cast $ Keep th eqs.keptHead

If the bit is not set then we learn that the thinning was constructed using
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drop. We can once again use an inversion lemma to rearrange the goal and
finally invoke the view’s Drop constructor.

Right soNot =>
let 0 eqs = isDrop prf soNot in
rewrite sndIndexIsSnoc eqs in
rewrite invariantIsDrop eqs in
rewrite isDropInteger bs soNot in
let th : Th sx eqs.sndIndexTail

th = MkTh i (bs ‘shiftR‘ 1) eqs.subInvariant in
cast $ Drop th eqs.keptHead

We can readily use this function to implement pattern matching functions
taking a thinning apart. We can for instance define kept, the function that
counts the number of keep smart constructors used when manufacturing the
input thinning and returns a proof that this is exactly the length of the source
scope sx.

kept : Th sx sy -> (n : Nat ** length sx === n)
kept th = case view th of
Done => (0 ** Refl)
Keep th x => let (n ** eq) = kept th in

(S n ** cong S eq)
Drop th x => kept th

We proceed by calling the view function on the input thinning which im-
mediately tells us that we only have three cases to consider. The Done case is
easily handled because the branch’s refined types inform us that both sx and
sy are the empty snoclist [<] whose length is evidently 0. In the Keep branch
we learn that sx has the shape (_ :< x) and so we must return the successor of
whatever the result of the recursive call gives us. Finally in the Drop case, sx
is untouched and so a simple recursive call suffices. Note that the function is
correctly detected as total because the target scope sy is indeed getting struc-
turally smaller at every single recursive call. It is runtime irrelevant but it can
still be successfully used as a termination measure by the compiler.

5.3 The Invariant Relation

We have shown the user-facing Th and have claimed that it is possible to define
smart constructors done, keep, and drop, as well as a view function. This should
become apparent once we show the actual definition of Invariant.

5.3.1 Definition of Invariant

The relation maintains the invariant between the record’s fields bigEnd (a Nat)
and encoding (an Integer) and the index scopes sx and sy. Its definition can
favour ease-of-use of runtime efficiency because we statically know that all of
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the Invariant proofs will be erased during compilation.

data Invariant : (i : Nat) -> (bs : Integer) ->
(sx, sy : SnocList a) -> Type where

Done : Invariant Z 0 [<] [<]
Keep : Invariant i (bs ‘shiftR‘ 1) sx sy -> (0 x : a) ->

{auto 0 b : So (testBit bs Z)} ->
Invariant (S i) bs (sx :< x) (sy :< x)

Drop : Invariant i (bs ‘shiftR‘ 1) sx sy -> (0 x : a) ->
{auto 0 nb : So (not (testBit bs Z))} ->
Invariant (S i) bs sx (sy :< x)

As always, the Done constructor is the simplest. It states that the thinning
of size Z and encoded as the bit pattern 0 is the empty thinning.

The Keep constructor guarantees that the thinning of size (S i) and encoding
bs represents an injection from (sx :< x) to (sy :< x) provided that the bit at
position Z of bs is set, and that the rest of the bit pattern (obtained by a right
shift on bs) is a valid thinning of size i from sx to sy.

The Drop constructor is structured the same way, except that it insists the
bit at position Z should not be set.

We can readily use this relation to prove that some basic encoding are valid
representations of useful thinnings.

5.3.2 Examples of Invariant proofs

For instance, we can always define a thinning from the empty scope to an
arbitrary scope sy.

none : (sy : SnocList a) -> Th [<] sy
none sy = MkTh (length sy) 0 (none sy)

The encoding of this thinning is 0 because every variable is being discarded
and its bigEnd is the length of the outer scope sy. The proof that this encoding
is valid is provided by the none lemma proven below. We once again use Idris 2’s
overloading to give the same to functions that play similar roles but at different
types.

none : (sy : SnocList a) -> Invariant (length sy) 0 [<] sy
none [<] = Done
none (sy :< y) = Drop (none sy) y

The proof proceeds by induction over the outer scope sy. If it is empty,
we can simply use the constructor for the empty thinning. Otherwise we can
invoke Drop on the induction hypothesis. This all typechecks because (testBit
0 Z) computes to False and so the nb proof can be constructed automatically
by Idris 2’s proof search (cf. section 3.2), and (0 ‘shiftR‘ 1) evaluates to 0
which means the induction hypothesis has exactly the right type.
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The definition of the identity thinning is a bit more involved. For a scope of
size n, we are going to need to generate a bit pattern consisting of n ones. We
define it in two steps. First, cofull defines a bit pattern of k zeros followed by
infinitely many ones by shifting k places to the left a bit pattern of ones only.
Then, we obtain full by taking the complement of cofull.

cofull : Nat -> Integer
cofull n = oneBits ‘shiftL‘ n

full : Nat -> Integer
full n = complement (cofull n)

We can then define the identity thinning for a scope of size n by pairing
(full n) as the encoding and n as the bigEnd.

ones : (sx : SnocList a) -> Th sx sx
ones sx = let n : Nat; n = length sx in MkTh n (full n) (ones sx)

The bulk of the work is once again in the eponymous lemma proving that
this encoding is valid.

ones : (sx : SnocList a) ->
let n = length sx in Invariant n (full n) sx sx

ones [<] = Done
ones (sx :< x) =
let 0 nb = eqToSo (testBitFull (S (length sx)) Z) in
Keep (rewrite shiftRFull (length sx) in ones sx) x

This proof proceeds once more by induction on the scope. If the scope is
empty then once again the constructor for the empty thinning will do. In the
non-empty case, we first appeal to an auxiliary lemma (not shown here) to con-
struct a proof nb that the bit at position Z for a non-zero full integer is known
to be True. We then need to use another lemma to cast the induction hypothesis
which mentions (full (length sx)) so that it may be used in a position where
we expect a proof talking about (full (length (sx :< x)) ‘shiftR‘ 1).

5.3.3 Properties of the Invariant relation

This relation has a lot of convenient properties.
First, it is proof irrelevant: any two proofs that the same i, bs, sx, and sy

are related are provably equal. Consequently, equality on Th values amounts to
equality of the bigEnd and encoding values. In particular it is cheap to test
whether a given thinning is the empty or the identity thinning.

Second, it can be inverted [CT95] knowing only two bits: whether the natural
number is empty and what the value of the bit at position Z of the encoding
is. This is what allowed us to efficiently implement the view function by using
these two checks and then inverting the Invariant proof to gain access to the
proof that the remainder of the thinning’s encoding is valid. We will see in
section 5.5 that this leads to efficient runtime code for the view.
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5.4 Choose Your Own Abstraction Level

Access to both the high-level View and the internal Invariant relation means
that programmers can pick the level of abstraction at which they want to work.
They may need to explicitly manipulate bits to implement key operators that
are used in performance-critical paths but can also stay at the highest level for
more negligible operations, or when proving runtime irrelevant properties.

In the previous section we saw simple examples of these bit manipulations
when defining none (using the constant 0 bit pattern) and ones using bit shifting
and complement to form an initial segment of 1s followed by 0s.

Other natural examples include the meet and join of two thinnings sharing
the same wider scope. The join can for instance be thought of either as a
function defined by induction on the first thinning and case analysis on the
second, emitting a Keep constructor whenever either of the inputs does. Or we
can observe that the bit pattern in the join is exactly the disjunction of the
inputs’ respective bit patterns and prove a lemma about the Invariant relation
instead. This can be visualised as follows. In each column, the meet is a •
whenever either of the inputs is.

◦◦••◦
∨ •◦◦••

•◦•••

The join is of particular importance because it appears when we convert
an ‘opened’ view of a term into its co-de Bruijn counterpart. As we mentioned
earlier, co-de Bruijn terms in an arbitrary scope are represented by the pairing of
a term indexed by its precise support with a thinning embedding this support
back into the wider scope. When working with such a representation, it is
convenient to have access to an ‘opened’ view where the outer thinning has
been pushed inside therefore exposing the term’s top-level constructor, ready
for case-analysis.

The following diagram shows the correspondence between an ‘opened’ ap-
plication node using the view (the diamond ‘$’ node) with two subterms both
living in the outer scope and its co-de Bruijn form (the circular ‘$’ node) with
an outer thinning selecting the term support.

$

t1

t2

◦◦••◦

•◦◦••

$

t1

t2

•◦•••

◦••◦

•◦••

The outer thinning of the co-de Bruijn term is obtained precisely by com-
puting the join of the respective outer thinnings of the ‘opened’ application’s
function and argument.

These explicit bit manipulations will be preserved during compilation and
thus deliver more efficient code.
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5.5 Compiled Code

The following code block shows the JavaScript code that is produced when
compiling the view function. We chose to use the JavaScript backend rather
than e.g. the ChezScheme one because it produces fairly readable code. We
have modified the backend to also write comments reminding the reader of the
type of the function being defined and the data constructors the natural number
tags correspond to. These changes are now available to all in Idris 2’s current
development version.

The only manual modifications we have performed are the inlining of a func-
tion corresponding to a case block, renaming variables and property names to
make them human-readable, introducing the $tail definitions to make lines
shorter, and slightly changing the layout.

/* Thin.Smart.view : (th : Th sx sy) -> View th */
function Thin_Smart_view($th) {
switch($th.bigEnd) {
case 0n: return {h: 0 /* Done */};
default: {
const $predBE = ($th.bigEnd-1n);
const $test = choose(notEq(($th.encoding&1n), 0n)));
switch($test.tag) {
case 0: /* Left */ {
const $tail = $th.encoding>>1n;
return { tag: 1 /* Keep */

, val: {bigEnd: $predBE, encoding: $tail}}; }
case 1: /* Right */ {
const $tail = $th.encoding>>1n;
return { tag: 2 /* Drop */

, val: {bigEnd: $predBE, encoding: $tail}}; }
}}}}

Readers can see that the compilation process has erased all of the indices
and the proofs showing that the invariant tying the efficient runtime represen-
tation to the high-level specification is maintained. A thinning is represented
at runtime by a JavaScript object with two properties corresponding to Th’s
runtime relevant fields: bigEnd and encoding. Both are storing a JavaScript
bigInt (one corresponding to the Nat, the other to the Integer). For instance
the thinning [01101] would be at runtime { bigEnd: 5n, encoding: 13n }.

The view proceeds in two steps. First if the bigEnd is 0n then we know the
thinning is empty and can immediately return the Done constructor. Otherwise
we know the thinning to be non-empty and so we can compute the big end of its
tail ($predBE) by subtracting one to the non-zero bigEnd. We can then inspect
the bit at position 0 to decide whether to return a Keep or a Drop constructor.
This is performed by using a bit mask to 0-out all the other bits ($th.bigEnd&1n)
and checking whether the result is zero. If it is not equal to 0 then we emit
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Keep and compute the $tail of the thinning by shifting the original encoding
to drop the 0th bit. Otherwise we emit Drop and compute the same tail.

By running view on this [01101] thinning, we would get back (Keep [0110]),
that is to say { tag: 1, val: { bigEnd: 4n, encoding: 6n } }.

Thanks to Idris 2’s implementation of Quantitative Type Theory we have
managed to manufacture a high level representation that can be manipulated
like a classic inductive family using smart constructors and views without giving
up an inch of control on its runtime representation.

The remaining issues such as the fact that we form the view’s constructors
only to immediately take them apart thus creating needless allocations can be
tackled by reusing Wadler’s analysis (section 12 of [Wad87]).

6 Conclusion

We have seen that inductive families provide programmers with ways to root out
bugs by enforcing strong invariants. Unfortunately these families can get in the
way of producing performant code despite existing optimisation passes erasing
redundant or runtime irrelevant data. This tension has led us to take advantage
of Quantitative Type Theory in order to design a library combining the best of
both worlds: the strong invariants and ease of use of inductive families together
with the runtime performance of explicit bit manipulations.

6.1 Related Work

For historical and ergonomic reasons, idiomatic code in Coq tends to center
programs written in a subset of the language quite close to OCaml and then
prove properties about these programs in the runtime irrelevant Prop fragment.
This can lead to awkward encodings when the unrefined inputs force the user
to consider cases which ought to be impossible. Common coping strategies in-
volve relaxing the types to insert a modicum of partiality e.g. returning an
option type or taking an additional input to be used as the default return value.
This approach completely misses the point of type-driven development. We
benefit a lot from having as much information as possible available during in-
teractive editing. This information not only helps tremendously getting the
definitions right by ensuring we always maintain vital invariants thus making
invalid states unrepresentable, it also gives programmers access to type-driven
tools and automation. Thankfully libraries such as Equations [Soz10, SM19]
can help users write more dependently typed programs, by taking care of the
complex encoding required in Coq. A view-based approach similar to ours but
using Prop instead of the zero quantity ought to be possible. We expect that
the views encoded this way in Coq will have an even worse computational be-
haviour given that Equations uses a sophisticated elaboration process to encode
dependent pattern-matching into Gallina. However Coq does benefit from good
automation support for unfolding lemmas, inversion principles, and rewriting
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by equalities which may compensate for the awkwardness introduced by the
encoding.

Prior work on erasure [Tej20] has the advantage of offering a fully automated
analysis of the code. The main inconvenience is that users cannot state explic-
itly that a piece of data ought to be runtime irrelevant and so they may end
up inadvertently using it which would prevent its erasure. Quantitative Type
Theory allows us users to explicitly choose what is and is not runtime relevant,
with the quantity checker keeping us true to our word. This should ensure that
the resulting program has a much more predictable complexity.

A somewhat related idea was explored by Brady, McKinna, and Hammond
in the context of circuit design [BMH07]. In their verification work they index
an efficient representation (natural numbers as a list of bits) by its meaning
as a unary natural number. All the operations are correct by construction as
witnessed by the use of their unary counterparts acting as type-level specifica-
tions. In the end their algorithms still process the inductive family instead of
working directly with binary numbers. This makes sense in their setting where
they construct circuits and so are explicitly manipulating wires carrying bits.
By contrast, in our motivating example we really want to get down to actual
(unbounded) integers rather than linked lists of bits.

6.2 Limitations and Future Work

Overall we found this case study using Idris 2, a state of the art language based
on Quantitative Type Theory, very encouraging. The language implementation
is still experimental (see for instance appendix B for some of the bugs we found)
but none of the issues are intrinsic limitations. We hope to be able to push
this line of work further, tackling the following limitations and exploring more
advanced use cases.

6.2.1 Limitations

Unfortunately it is only propositionally true that (view (keep th x)) computes
to (Keep th x) (and similarly for done/Done and drop/Drop). This means that
users may need to manually deploy these lemmas when proving the properties
of functions defined by pattern matching on the result of calling the view func-
tion. This annoyance would disappear if we had the ability to extend Idris 2’s
reduction rules with user-proven equations as implemented in Agda and formally
studied by Cockx, Tabareau, and Winterhalter [CTW21].

In this paper’s case study, we were able to design the core Invariant relation
making the invariants explicit in such a way that it would be provably proof
irrelevant. This may not always be possible given the type theory currently im-
plemented by Idris 2. Adding support for a proof-irrelevant sort of propositions
(see e.g. Altenkirch, McBride, and Swierstra’s work [AMS07]) could solve this
issue once and for all.

The Idris 2 standard library thankfully gave us access to a polished pure
interface to explicitly manipulate an integer’s bits. However these built-in oper-
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ations came with no built-in properties whatsoever. And so we had to postulate
a (minimal) set of axioms (see appendix A) and prove a lot of useful corollar-
ies ourselves. There is even less support for other low-level operations such as
reading from a read-only array, or manipulating pointers.

We also found the use of runtime irrelevance (the 0 quantity) sometimes
somewhat frustrating. Pattern-matching on a runtime irrelevant value in a
runtime relevant context is currently only possible if it is manifest for the
compiler that the value could only arise using one of the family’s construc-
tors. In non-trivial cases this is unfortunately only merely provable rather
than self-evident. Consequently we are forced to jump through hoops to ap-
pease the quantity checker, and end up defining complex inversion lemmas to
bypass these limitations. This could be solved by a mix of improvements to
the typechecker and meta-programming using prior ideas on automating inver-
sion [CT95, McB96, Mon10].

6.2.2 Future work

We are planning to explore more memory-mapped representations equipped
with a high level interface.

We already have experimental results demonstrating that we can use a read-
only array as a runtime representation of a binary search tree. Search can be
implemented as a proven-correct high level decision procedure that is seem-
ingly recursively exploring the ”tree”. At runtime however, this will effectively
execute like a classic search by dichotomy over the array.

More generally, we expect that a lot of the work on programming on serialised
data done in LoCal [VKR+19] thanks to specific support from the compiler can
be done as-is in a QTT-based programming language. Indeed, QTT’s type
system is powerful enough that tracking these invariants can be done purely in
library code.

In the short term, we would like to design a small embedded domain specific
language giving users the ability to more easily build and take apart products
and sums efficiently represented in the style we presented here. Staging would
help here to ensure that the use of the eDSL comes at no runtime cost. There
are plans to add type-enforced staging to Idris 2, thus really making it the ideal
host language for our project.

Our long term plan is to go beyond read-only data and look at imperative
programs proven correct using separation logic and see how much of this after-
the-facts reasoning can be brought back into the types to enable a high-level
correct-by-construction programming style that behaves the same at runtime.
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A Postulated lemmas for the Bits interface

It is often more convenient to reason about integers in terms of their bits. We
define the notion of bitwise equality as the pointwise equality according to the
testBit.

(˜˜˜) : Integer -> Integer -> Type
bs ˜˜˜ cs = (i : Nat) -> testBit bs i === testBit cs i

Our first postulate is a sort of extensionality principle stating that bitwise
equality implies propositional equality.

extensionally : {bs, cs : Integer} -> bs ˜˜˜ cs -> bs === cs
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This gives us a powerful reasoning principle once combined with axioms
explaining the behaviour of various primitives at the bit level. This is why
almost all of the remaining axioms are expressed in terms of testBit calls.

A.1 Logical operations

Our first batch of axioms relates logical operations on integers to their boolean
counterparts. This is essentially stating that these operations are bitwise.

testBitAnd : (bs, cs : Integer) -> (i : Nat) ->
testBit (bs .&. cs) i === (testBit bs i && testBit cs i)

testBitOr : (bs, cs : Integer) -> (i : Nat) ->
testBit (bs .|. cs) i === (testBit bs i || testBit cs i)

testBitComplement : (bs : Integer) -> (i : Nat) ->
testBit (complement bs) i === not (testBit bs i)

Together with the extensionality principle mentioned above this already al-
lows us to prove for instance that the binary operators are commutative and
associative, that the de Morgan laws hold, or that conjunction distributes over
disjunction.

A.2 Bit Shifting

The second set of axiom describes the action of left and right shifting on bit
patterns.

A right shift of size k will drop the k least significant bits; consequently
testing the bit i on the right-shifted integer amounts to testing the bit (k + i)
on the original integer.

testBitShiftR : (bs : Integer) -> (k : Nat) ->
(i : Nat) -> testBit (bs ‘shiftR‘ k) i === testBit bs (k + i)

A left shift will add k new least significant bits initialised at 0; consequently
testing a bit i on the left-shifted integer will either return False if i is strictly
less than k, or the bit at position (i - k) in the original integer.

For simplicity we state these results without mentioning the ‘strictly less
than’ relation, by considering on the one hand the effect of a non-zero left shift,
and on the other the fact that a left-shift by 0 bits is the identity function.

testBit0ShiftL : (bs : Integer) -> (k : Nat) ->
testBit (bs ‘shiftL‘ S k) Z === False

testBitSShiftL : (bs : Integer) -> (k : Nat) -> (i : Nat) ->
testBit (bs ‘shiftL‘ S k) (S i) === testBit (bs ‘shiftL‘ k) i
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shiftL0 : (bs : Integer) -> (bs ‘shiftL‘ 0) === bs

A.3 Bit testing

The last set of axioms specifies what happens when a bit is set.
Testing a bit other than the one that was set amounts to testing it on the

original integer.

testSetBitOther : (bs : Integer) -> (i, j : Nat) -> Not (i === j) ->
testBit (setBit bs i) j === testBit bs j

Finally, we have an axiom stating that the integer (bit i) (i.e. 2i) is non-
zero.

bitNonZero : (i : Nat) -> (bit i == 0) === False

B Current Limitations of Idris 2

This challenge, suggested by Jacques Carette, highlights some of the current
limitations of Idris 2.

B.1 Problem statement

The goal is to use the Vect type defined in section 3.3 and define a view that
un-does vector-append. This is a classic exercise in dependently-typed program-
ming, the interesting question being whether we can implement the function just
as seamlessly with our encoding.

Vector append can easily be defined by induction over the first vector.

(++) : Vect m a -> Vect n a -> Vect (m + n) a
xs@_ ++ ys with (view xs)
_ | [] = ys
_ | hd :: tl = hd :: (tl ++ ys)

If the first vector is empty we can readily return the second vector. If it
is cons-headed, we can return the head and compute the tail by performing a
recursive call.

Equipped with this definition, we can declare the view type which we call
SplitAt by analogy with its weakly typed equivalent processing lists. It states
that a vector xs of length p can be split at m if p happens to be (m + n) and xs
happens to be (pref ++ suff) where pref and suff’s respective lengths are m
and n.
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data SplitAt : (m : Nat) -> (xs : Vect p a) -> Type where
MkSplitAt : (pref : Vect m a) -> (suff : Vect n a) ->

SplitAt m (pref ++ suff)

The challenge is to define the function proving that a vector of size (m + n)
can be split at m.

B.2 Failing attempts

The proof will necessarily go by induction on m, followed by a case analysis on
the input vector and a recursive call in the non-zero case.

Our first failing attempt successfully splits the natural number, calls the view
on the vector xs to take it apart but then fails when performing the recursive
call to splitAt.

failing "tl is not accessible in this context"

splitAt : (m : Nat) -> (xs : Vect (m + n) a) -> SplitAt m xs
splitAt 0 xs = MkSplitAt [] xs
splitAt (S m) xs@_ with (view xs)
_ | hd :: tl@_ with (splitAt m tl)
_ | res = ?a

This reveals an issue in Idris 2’s handling of the interplay between @-patterns
and quantities: the compiler arbitrarily decided to make the alias tl runtime
irrelevant only to then complain that tl is not accessible when we want to
perform the recursive call (splitAt m tl)!

In order to work around this limitation, we decided to let go of @-patterns
and write the fully explicit clause ourselves, using dotted patterns to mark the
forced expressions.

failing "Can’t match on ?postpone [no locals in scope] (User dotted)"

splitAt : (m : Nat) -> (xs : Vect (m + n) a) -> SplitAt m xs
splitAt 0 xs = MkSplitAt [] xs
splitAt (S m) xs@_ with (view xs)
_ | hd :: tl with (splitAt m tl)
splitAt (S m) .(hd :: (pref ++ suff))
| hd :: .(pref ++ suff)
| MkSplitAt pref suff = ?a

The left-hand side now typechecks but the case tree builder fails with a
perplexing error. This reveals a bug in Idris 2’s implementation of elaboration of
pattern-matching functions to case trees. Instead of ignoring dotted expressions
when building the case tree (these expressions are forced and so the variables
they mention will have necessarily been bound in another pattern), it attempts
to use them to drive the case-splitting strategy. This is a well-studied problem
and should be fixable by referring to Cockx and Abel’s work [CA20].
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B.3 Working Around Idris 2’s Limitations

This leads us to our working solution. Somewhat paradoxically, working around
these Idris 2 bugs led us to a more principled solution whereby the pattern-
matching step needed to adjust the result returned by the recursive call is ab-
stracted away in an auxiliary function whose type clarifies what is happening.

From an m split on xs, we can easily compute an (S m) split on (x :: xs) by
cons-ing x on the prefix.

(::) : (x : a) -> SplitAt m xs -> SplitAt (S m) (x :: xs)
x :: MkSplitAt pref@(MkVect _ Refl) suff
= MkSplitAt (x :: pref) suff

In this auxiliary function, xs is clearly runtime irrelevant and so the case-
splitter will not attempt to inspect it, thus generating the correct case tree.
We are forced to match further on pref (in particular by making the equality
proof Refl) so that just enough computation happens at the type level for the
typechecker to see that things do line up. A proof irrelevant type of propositional
equality would have helped us here.

We can put all of these pieces together and finally get our splitAt view.

splitAt : (m : Nat) -> (xs : Vect (m + n) a) -> SplitAt m xs
splitAt 0 xs = MkSplitAt [] xs
splitAt (S m) xs@_ with (view xs)
_ | hd :: tl = hd :: splitAt m tl

We do want to reiterate that these limitations are not intrinsic limitations of
the approach, there are just flaws in the current experimental implementation
of the Idris 2 language and can and should be remedied.
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