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Abstract

The syntax of almost every programming language includes a notion of binder and corresponding
bound occurrences, along with the accompanying notions of α-equivalence, capture-avoiding substitu-
tion, typing contexts, runtime environments, and so on. In the past, implementing and reasoning about
programming languages required careful handling to maintain the correct behaviour of bound vari-
ables. Modern programming languages include features that enable constraints like scope safety to be
expressed in types. Nevertheless, the programmer is still forced to write the same boilerplate over again
for each new implementation of a scope-safe operation (e.g., renaming, substitution, desugaring, print-
ing), and then again for correctness proofs. We present an expressive universe of syntaxes with binding
and demonstrate how to (1) implement scope-safe traversals once and for all by generic programming;
and (2) how to derive properties of these traversals by generic proving. Our universe description,
generic traversals and proofs, and our examples have all been formalised in Agda and are available in
the accompanying material available online at https://github.com/gallais/generic-syntax.

1 Introduction

In modern typed programming languages, programmers writing embedded Domain-Specific
Languages (DSLs) (Hudak (1996)) and researchers formalising them can now use the host
language’s type system to help them. Using Generalised Algebraic Data Types (GADTs)

https://github.com/gallais/generic-syntax
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or the more general indexed families of Type Theory (Dybjer (1994)) to represent syn-
tax, programmers can statically enforce some of the invariants in their languages. For
example, managing variable scope is a popular use case in LEGO, Idris, Coq, Agda and
Haskell (Altenkirch and Reus (1999); Brady and Hammond (2006); Hirschowitz and
Maggesi (2012); Keuchel and Jeuring (2012); Bach Poulsen et al. (2018); Wadler and Kokke
(2018); Eisenberg (2020)) as directly manipulating raw de Bruijn indices is notoriously
error-prone. Solutions have been proposed that range from enforcing well-scopedness of
variables to ensuring full type correctness. In short, these techniques use the host languages’
types to ensure that “illegal states are unrepresentable”, where illegal states correspond to
ill scoped or ill typed terms in the object language.

Despite the large body of knowledge in how to use types to define well formed syntax
(see the related work in Section 10), it is still necessary for the working DSL designer
or formaliser to redefine essential functions like renaming and substitution for each new
syntax, and then to reprove essential lemmas about those functions. To reduce the burden of
such repeated work and boilerplate, in this paper we apply the methodology of data type
genericity to programming and proving in the domain of syntaxes with binding.

To motivate our approach, let us look at the formalisation of an apparently straightforward
program transformation: the inlining of let-bound variables by substitution together with
a soundness lemma proving that reductions in the source languages can be simulated by
reductions in the target one. There are two languages: the source (S), which has let-bindings,
and the target (T), which only differs in that it does not:

S ::= x | S S | λx.S | let x = S in S T ::= x | T T | λx.T

Breaking the task down, an implementer needs to define an operational semantics for
each language, define the program transformation itself, and prove a correctness lemma that
states each step in the source language is simulated by zero or more steps of the transformed
terms in the target language. In the course of doing this, they will discover that there is
actually a large amount of work:

1. To define the operational semantics, one needs to define substitution, and hence
renaming. This needs to be done separately for both the source and target languages,
even though they are very similar;

2. In the course of proving the correctness lemma, one needs to prove eight lemmas
about the interactions of renaming, substitution, and transformation that are all
remarkably similar, but must be stated and proved separately (e.g, as observed by
Benton, Hur, Kennedy and McBride (2012)).

Even after doing all of this work, they have only a result for a single pair of source and
target languages. If they were to change their languages S or T, they would have to repeat
the same work all over again (or at least do a lot of cutting, pasting, and editing).

The main contribution of this paper is that by using the universe of syntaxes with binding
we present in this paper, we are able to solve this repetition problem once and for all.

Content and Contributions To introduce the basic ideas that this paper builds on, we
start with primers on scoped and sorted terms (Section 2), scope- and sort-safe programs
acting on them (Section 3), and programmable descriptions of data types (Section 4). These
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introductory sections help us build an understanding of the problem at hand as well as a
toolkit that leads us to the novel content of this paper: a universe of scope-safe syntaxes
with binding (Section 5) together with a notion of scope-safe semantics for these syntaxes
(Section 6). This gives us the opportunity to write generic implementations of renaming
and substitution (Section 6.2), a generic let-binding removal transformation (generalising
the problem stated above) (Section 7.5), and normalisation by evaluation (Section 7.7).
Further, we show how to construct generic proofs by formally describing what it means
for one semantics to simulate another (Section 9.2), or for two semantics to be fusible
(Section 9.3). This allows us to prove the lemmas required above for renaming, substitution,
and desugaring of let-binders generically, for every syntax in our universe.

Our implementation language is Agda (Norell (2009)). However, our techniques are
language independent: any dependently typed language at least as powerful as Martin-Löf
Type Theory (Martin-Löf (1982)) equipped with inductive families (Dybjer (1994)) such as
Coq (The Coq Development Team (2017)), Lean (de Moura et al. (2015)) or Idris (Brady
(2013)) ought to do.

Changes with respect to the ICFP 2018 version This paper is a revised and expanded
version of a paper of the same title that appeared at ICFP 2018. This extended version
of the paper includes many more examples of the use of our universe of syntax with
binding for writing generic programs in Section 7: pretty printing with human readable
names (Section 7.1), scope checking (Section 7.2), type checking (Section 7.3), elabo-
ration (Section 7.4), inlining of single use let-bound expressions (shrinking reductions)
(Section 7.6), and normalisation by evaluation (Section 7.7). We have also included a dis-
cussion of how to define generic programs for deciding equality of terms. Additionally, we
have elaborated our descriptions and examples throughout, and expanded our discussion of
related work in Section 10.

2 A primer on scope- and sort-safe terms

From inductive types to inductive families for abstract syntax. A reasonable way to
represent the abstract syntax of the untyped λ-calculus in a typed functional programming
language is to use an inductive type:

data Lam : Set where
‘var : N→ Lam
‘lam : Lam→ Lam
‘app : Lam→ Lam→ Lam

We have used de Bruijn (1972) indices to represent variables by the number of ‘lam binders
one has to pass up through to reach the binding occurrence. The de Bruijn representation
has the advantage that terms are automatically represented up to α-equivalence. If the index
goes beyond the number of binders enclosing it, then we assume that it is referring to some
context, left implicit in this representation.

This representation works well enough for writing programs, but the programmer must
constantly be vigilant to guard against the accidental construction of ill scoped terms. The
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implicit context that accompanies each represented term is prone to being forgotten or
muddled with another, leading to confusing behaviour when variables either have dangling
pointers or point to the wrong thing.

To improve on this situation, previous authors have proposed to use the host language’s
type system to make the implicit context explicit, and to enforce well-scopedness of vari-
ables. Scope-safe terms follow the discipline that every variable is either bound by some
binder or is explicitly accounted for in a context. Bellegarde and Hook (1994), Bird and
Paterson (1999), and Altenkirch and Reus (1999) introduced the classic presentation of
scope safety using inductive families (Dybjer (1994)) instead of plain inductive types to
represent abstract syntax. Indeed, using a family indexed by a Set, we can track scop-
ing information at the type level. The empty Set represents the empty scope. The type
constructor 1 + (_) extends the running scope with an extra variable.

data Lam : Set→ Set where
‘var : X→ Lam X
‘lam : Lam (1+X)→ Lam X
‘app : Lam X→ Lam X→ Lam X

Implicit generalisation of variables in Agda. The careful reader may have noticed that
we use a seemingly out-of-scope variable X of type Set. The latest version of Agda allows
us to declare variables that the system should implicitly quantify over if it happens to find
them used in types. This allows us to lighten the presentation by omitting a large number of
prenex quantifiers. The reader will hopefully be familiar enough with prenex polymorphic
types in the style of Standard ML (Milner et al. (1997)) that this will seem natural to them.

The Lam type is now a family of types, indexed by the set of variables in scope. Thus,
the context for each represented term has been made visible to the type system, and the
types enforce that only variables that have been explicitly declared can be referenced in the
‘var constructor. We have made illegal terms unrepresentable.

Since Lam is defined to be a function Set→ Set, it makes sense to ask whether it is also
a functor and a monad. Indeed it is, as Altenkirch and Reus showed. The functorial action
corresponds to renaming, the monadic “return” corresponds to the use of variables (the ‘var
constructor), and the monadic “bind” corresponds to substitution. The functor and monad
laws correspond to well known properties from the equational theories of renaming and
substitution. We will revisit these properties, for our whole universe of syntax with binding,
in Section 9.3.

A Typed Variant of Altenkirch and Reus’ Calculus. There is no reason to restrict this
technique to inductive families indexed by Set. The more general case of inductive families
in SetJ can be endowed with similar functorial and monadic operations by using Altenkirch,
Chapman and Uustalu’s relative monads (2015; 2014).

We pick as our index type J the category whose objects are inhabitants of List I (I is a
parameter of the construction) and whose morphisms are thinnings (permutations that may
forget elements, we give the definition in Section 3.1). Values of type List I are intended to
represent the list of the sorts (or kinds, or types, depending on the application) of the de
Bruijn variables in scope. We can recover an unsorted approach by picking I to be the unit
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type. Given this sorted setting, our functors take an extra I argument corresponding to the
sort of the expression being built. This is captured by the large type I −Scoped:

_−Scoped : Set→ Set1
I −Scoped = I→ List I→ Set

We use Agda’s mixfix operator notation, where underscores denote argument positions.
To lighten the presentation, we exploit the observation that the current scope is either

passed unchanged to subterms (e.g. in the application case) or extended (e.g. in the λ-
abstraction case) by introducing combinators to build indexed types. We conform to the
convention (see e.g. Martin-Löf (1982)) of mentioning only context extensions when
presenting judgements. That is to say that we aim to write sequents with an implicit
ambient context. Concretely: in the simply typed λ-calculus (STLC) we would rather use
the rule appi than appe as the inference rule for application.

f :σ→ τ t :σ

f t : τ
appi

Γ ` f :σ→ τ Γ ` t :σ

Γ ` f t : τ
appe

In this discipline, the turnstile is used in rules which are binding fresh variables. It
separates the extension applied to the ambient context on its left and the judgment that lives
in the thus extended context on its right. Concretely: we would rather use the rule lami than
lame as the inference rule for λ-abstraction in STLC.

x :σ ` b : τ

λx.t :σ→ τ
lami

Γ, x :σ ` b : τ

Γ ` λx.t :σ→ τ
lame

This observation that an ambient context is either passed around as is or extended for
subterms is critical to our whole approach to syntax with binding, and will arise again in
our generic formulation of syntax traversals in Section 6. To facilitate this, we make use of
the following combinators for building indexed sets:

_⇒_ : (P Q : A→ Set)→ (A→ Set)
(P⇒ Q) x = P x→ Q x

_`_ : (A→ B)→ (B→ Set)→ (A→ Set)
(f ` P) x = P (f x)

const : Set→ (A→ Set)
const P x = P

∀[_] : (A→ Set)→ Set
∀[_] P = ∀ {x}→ P x

We lift the function space pointwise with _⇒_, silently threading the underlying scope.
The _`_ makes explicit the adjustment made to the index by a function, a generalisation
of the idea of extension. We write f ` T where f is the adjustment and T the indexed Set
it operates on. Although it may seem surprising at first to define binary infix operators as
having arity three, they are meant to be used partially applied, surrounded by ∀[_] which
turns an indexed Set into a Set by implicitly quantifying over the index. Lastly, const is the
constant combinator, which ignores the index.

We make _⇒_ associate to the right as one would expect and give it the highest prece-
dence level as it is the most used combinator. These combinators lead to more readable type
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declarations. For instance, the compact expression ∀[ (const P⇒ s ` Q)⇒ R ] desugars to
the more verbose type ∀ {i}→ (P→ Q (s i))→ R i.

As the context argument comes second in the definition of _−Scoped, we can readily
use these combinators to thread, modify, or quantify over the scope when defining such
families, as for example in this data type for scope- and sort-aware de Bruijn indices:

data Var : I −Scoped where
z : ∀[ (σ ::_) ` Var σ ]
s : ∀[ Var σ⇒ (τ ::_) ` Var σ ]

The inductive family Var represents well scoped and well sorted de Bruijn indices. Its z
(for zero) constructor refers to the nearest binder in a non-empty scope. The s (for successor)
constructor lifts a a variable in a given scope to the extended scope where an extra variable
has been bound. Both of the constructors’ types have been written using the combinators
defined above. They respectively normalise to:

z : ∀ {σ Γ}→ Var σ (σ :: Γ) s : ∀ {σ τ Γ}→ Var σ Γ→ Var σ (τ :: Γ)

We will reuse the Var family to represent variables in all the syntaxes defined in this paper.
We start with the simply typed λ-calculus (STLC):

data Type : Set where
α : Type
_‘→_ : Type→ Type→ Type

data Lam : Type −Scoped where
‘var : ∀[ Var σ⇒ Lam σ ]
‘app : ∀[ Lam (σ ‘→ τ)⇒ Lam σ⇒ Lam τ ]
‘lam : ∀[ (σ ::_) ` Lam τ⇒ Lam (σ ‘→ τ) ]

The Type −Scoped family Lam is Altenkirch and Reus’ intrinsically typed representation
of the simply typed λ-calculus, where Type is the Agda type of simple types. We can readily
write well scoped-and-typed terms such as application, a closed term of type ((σ ‘→ τ) ‘→
(σ ‘→ τ)) ({- and -} delimit comments meant to help the reader see to which binders each
de Bruijn index refers):

apply : Lam ((σ ‘→ τ) ‘→ (σ ‘→ τ)) []
apply = ‘lam {- f -} (‘lam {- x -}

(‘app (‘var (s z) {- f -}) (‘var z {- x -})))

3 A primer on type- and scope-safe programs

The type- and scope-safe representation described in the previous section is naturally only
a start. Once the programmer has access to a good representation of the language they
are interested in, they will want to write programs manipulating terms. Renaming and
substitution are the two typical examples that are required for almost all syntaxes. Now that
well-typedness and well-scopedness are enforced statically, all of these traversals have to be
implemented in a type- and scope-safe manner. These constraints show up in the types of
renaming and substitution defined as follows:
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ren : (Γ −Env) Var ∆→

Lam σ Γ→ Lam σ ∆

ren ρ (‘var k) = varr (lookup ρ k)
ren ρ (‘app f t) = ‘app (ren ρ f) (ren ρ t)
ren ρ (‘lam b) = ‘lam (ren (extendr ρ) b)

sub : (Γ −Env) Lam ∆→

Lam σ Γ→ Lam σ ∆

sub ρ (‘var k) = vars (lookup ρ k)
sub ρ (‘app f t) = ‘app (sub ρ f) (sub ρ t)
sub ρ (‘lam b) = ‘lam (sub (extends ρ) b)

We have intentionally hidden technical details behind some auxiliary definitions left
abstract here: var and extend. Their implementations are distinct for ren and sub but they
serve the same purpose: var is used to turn a value looked up in the evaluation environment
into a term and extend is used to alter the environment when going under a binder. This
presentation highlights the common structure between ren and sub which we will exploit
later in this section, particularly in Section 3.2 where we define an abstract notion of
semantics and the corresponding generic traversal.

3.1 A generic notion of environments

Both renaming and substitution are defined in terms of environments. We typically call an
environment that associates values to each variable in Γ a Γ-environment. This informs our
notation choice: we write ((Γ −Env) V ∆) for an environment that associates a value V
(variables for renaming, terms for substitution) well scoped and well typed in ∆ to every
entry in Γ. Formally, we have the following record structure (using a record helps Agda’s
type inference reconstruct the type familyV of values for us):

record _−Env (Γ : List I) (V : I −Scoped) (∆ : List I) : Set where
constructor pack
field lookup : Var i Γ→V i ∆

Environments as records in Agda. As with (all) other record structures defined in this
paper, we are able to profit from Agda’s copattern syntax, as introduced in (Abel et al.
(2013)) and showcased in (Thibodeau et al. (2016)). That is, when defining an environment ρ,
we may either use the constructor pack, packaging a function r as an environment ρ = pack r,
or else define ρ in terms of the underlying function obtained from it by projecting out the (in
this case, unique) lookup field, as lookup ρ = r. A value of a record type with more than one
field requires each of its fields to be given, either by a named constructor (or else Agda’s
default record syntax), or in copattern style. By analogy with record/object syntax in other
languages, Agda further supports “dot” notation, so that an equivalent definition here could
be expressed as ρ .lookup = r.

We can readily define some basic building blocks for environments:

ε : ([] −Env)V ∆

lookup ε ()
_•_ : (Γ −Env)V ∆→V σ ∆→ ((σ :: Γ) −Env)V ∆

lookup (ρ • v) z = v
lookup (ρ • v) (s k) = lookup ρ k

_<$>_ : (∀ {i}→V i ∆→W i Θ)→ (Γ −Env)V ∆→ (Γ −Env)W Θ

lookup (f <$> ρ) k = f (lookup ρ k)
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The empty environment (ε) is implemented by remarking that there can be no variable of
type (Var σ []) and to correspondingly dismiss the case with the impossible pattern (). The
function _•_ extends an existing Γ-environment with a new value of type σ thus returning a
(σ :: Γ)-environment. We also include the definition of _<$>_, which lifts in a pointwise
manner a function acting on values into a function acting on environment of such values.

As we have already observed, the definitions of renaming and substitution have very
similar structure. Abstracting away this shared structure would allow for these definitions to
be refactored, and their common properties to be proved in one swift move.

Previous efforts in dependently typed programming (Benton et al. (2012); Allais et al.
(2017)) have achieved this goal and refactored renaming and substitution, but also normali-
sation by evaluation, printing with names or continuation-passing style (CPS) conversion
as various instances of a more general traversal. As we will show in Section 7.3, type
checking in the style of Atkey (2015) also fits in that framework. To make sense of this
body of work, we need to introduce three new notions below: Thinning, a generalisation of
renaming; the � functor, which freely adds the ability to absorb Thinnings to any indexed
type; and Thinnables, which are �-coalgebras, i.e., types that permit thinning. We use �,
and our compact notation for the indexed function space between indexed types, to crisply
encapsulate the additional quantification over environment extensions which is typical of
Kripke semantics.

The special case of thinnings

Thinning : List I→ List I→ Set
Thinning Γ ∆ = (Γ −Env) Var ∆

Thinnings subsume more structured notions such as the Category of
Weakenings (Altenkirch et al. (1995)) or Order Preserving Embeddings (Chapman
(2009)). In particular, they do not prevent the user from defining arbitrary permutations
or from introducing contractions although we will not use such instances. However, such
extra flexibility will not get in our way, and permits a representation as a function space
which grants us monoid laws “for free” as per Jeffrey’s observation (2011). We define the
following identity, weaken and (generalised) transitivity combinators for Thinnings:

identity : Thinning Γ Γ

lookup identity k = k
weaken : Thinning Γ (σ :: Γ)
lookup weaken v = s v

select : Thinning Γ ∆→ (∆ −Env)V Θ→ (Γ −Env)V Θ

lookup (select ren ρ) k = lookup ρ (lookup ren k)

Next, the � combinator turns any (List I)-indexed Set into one that can absorb thinnings.

� : (List I→ Set)→ (List I→ Set)
(� T) Γ = ∀[ Thinning Γ⇒ T ]

Thinnable : (List I→ Set)→ Set
Thinnable T = ∀[ T⇒ � T ]

extract : ∀[ � T⇒ T ]
extract t = t identity

duplicate : ∀[ � T⇒ � (� T) ]
duplicate t ρ σ = t (select ρ σ)

th^� : Thinnable (� T)
th^� = duplicate

This is accomplished by abstracting over all possible thinnings from the current scope,
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akin to an S4-style necessity modality. The axioms of S4 modal logic incite us to observe
that the functor � is a comonad: extract applies the identity Thinning to its argument, and
duplicate is obtained by composing the two Thinnings we are given. The expected laws
hold trivially thanks to Jeffrey’s trick mentioned above.

The notion of Thinnable is the property of being stable under thinnings; in other words
Thinnables are the coalgebras of �. It is a crucial property for values to have if one wants
to be able to push them under binders. From the comonadic structure we get that the �
combinator freely turns any (List I)-indexed Set into a Thinnable one.

3.2 A Generic Notion of Semantics

As we showed in Allais, Chapman, McBride and McKinna (2017), which we will refer to
mnemonically as ACMM, once equipped with these new notions we can define an abstract
concept of semantics for our type- and scope-safe language. Provided that a set of constraints
on two (Type −Scoped) families V and C is satisfied, we will obtain a traversal of the
following type:

semantics : (Γ −Env)V ∆→ (Lam σ Γ→ C σ ∆)

Broadly speaking, a semantics turns our deeply embedded abstract syntax trees into the
shallow embedding of the corresponding parametrised higher order abstract syntax term.
We get a choice of useful type- and scope-safe traversals by using different “host languages”
for this shallow embedding.

Semantics, specified by a record Semantics, are defined in terms of a choice of valuesV
and computations C. A semantics must satisfy constraints on the notions of valuesV and
computations C at hand.

In the following paragraphs, we interleave the definition of the record of constraints
Semantics with explanations of our choices. It is important to understand that all of the
indented Agda snippets are part of the record’s definition. Some correspond to record fields
(highlighted in pink) while others are mere auxiliary definitions (highlighted in blue) as
permitted by Agda.

record Semantics (V C : Type −Scoped) : Set where

First of all, valuesV should be Thinnable so that semantics may push the environment
under binders. We call this constraint th^V, using a caret to generate a mnemonic name: th
refers to thinnable andV clarifies the family which is proven to be thinnable1.

th^V : Thinnable (V σ)

This constraint allows us to define extend, the generalisation of the two auxiliary definitions
we used when defining ren and sub at the start of Section 3, in terms of the building blocks
introduced in Section 3.1. It takes a context extension from ∆ to Θ in the form of a thinning,
an existing evaluation environment mapping Γ variables to ∆ values and a value living in
the extended context Θ and returns an evaluation environment mapping (σ :: Γ) variables to
Θ values.

1 We use this convention consistently throughout the paper, using names such as vl^Tm for the proof that terms
are VarLike in Section 6
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extend : Thinning ∆ Θ→ (Γ −Env)V ∆→V σ Θ→ ((σ :: Γ) −Env)V Θ

extend σ ρ v = ((λ t→ th^V t σ) <$> ρ) • v

Second, the set of computations needs to be closed under various combinators which are
the semantical counterparts of the language’s constructors. For instance in the variable case
we obtain a value from the evaluation environment but we need to return a computation.
This means that values should embed into computations.

var : ∀[V σ⇒ C σ ]

The semantical counterpart of application is an operation that takes a representation of a
function and a representation of an argument and produces a representation of the result.

app : ∀[ C (σ ‘→ τ)⇒ C σ⇒ C τ ]

The interpretation of the λ-abstraction is of particular interest: it is a variant on the Kripke
function space one can find in normalisation by evaluation (Berger and Schwichtenberg
(1991); Berger (1993); Coquand and Dybjer (1997); Coquand (2002)). In all possible
thinnings of the scope at hand, it promises to deliver a computation whenever it is provided
with a value for its newly bound variable. This is concisely expressed by the constraint’s
type:

lam : ∀[ � (V σ⇒ C τ)⇒ C (σ ‘→ τ) ]

Agda allows us to package the definition of the generic traversal function semantics
together with the fields of the record Semantics. This causes the definition to be specialised
and brought into scope for any instance of Semantics the user will define. We thus realise
the promise made earlier, namely that any given SemanticsV C induces a function which,
given a value inV for each variable in scope, transforms a Lam term into a computation C.
This function is the proof of the Fundamental Lemma of Semantics for Lam, relative to a
given SemanticsV C:

semantics : (Γ −Env)V ∆→ (Lam σ Γ→ C σ ∆)
semantics ρ (‘var k) = var (lookup ρ k)
semantics ρ (‘app f t) = app (semantics ρ f) (semantics ρ t)
semantics ρ (‘lam b) = lam (λ σ v→ semantics (extend σ ρ v) b)

3.3 Instances of Semantics

Recall that each Semantics is parametrised by two families:V and C. During the evaluation
of a term, variables are replaced by values of typeV and the overall result is a computation
of type C. Coming back to renaming and substitution:

ren : (Γ −Env) Var ∆→ Lam σ Γ→ Lam σ ∆

ren = Semantics.semantics Renaming

sub : (Γ −Env) Lam ∆→ Lam σ Γ→ Lam σ ∆

sub = Semantics.semantics Substitution

we see that they both fit in the Semantics framework:
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Renaming : Semantics Var Lam
Renaming = record

{ th^V = th^Var
; var = ‘var
; app = ‘app
; lam = λ b→ ‘lam (b weaken z) }

Substitution : Semantics Lam Lam
Substitution = record

{ th^V = λ t ρ→ ren ρ t
; var = id
; app = ‘app
; lam = λ b→ ‘lam (b weaken (‘var z)) }

The family V of values is respectively the family of variables for renaming, and the
family of λ-terms for substitution. In both cases C is the family of λ-terms because the result
of the operation will be a term. We notice that the definition of substitution depends on the
definition of renaming: to be able to push terms under a binder, we need to have already
proven that they are thinnable. In both cases we use weaken defined in Section 3.1 as the
definition of the thinning which embeds Γ into (σ :: Γ).

We also include the definition of a basic printer relying on a name supply to highlight
the fact that computations can very well be effectful. The ability to generate fresh names is
given to us by a monad that here we decide to call Fresh. Concretely, Fresh is implemented
as an instance of the State monad where the state is a stream of distinct strings:

Fresh : Set→ Set
Fresh = State (Stream String _)

The Printing semantics is defined by using Names (i.e. Strings) as values and Printers
(i.e. monadic actions in Fresh returning a String) as computations. We use a Wrapper
with a type and a context as phantom types in order to help Agda’s inference propagate
the appropriate constraints. We define a function fresh that fetches a name from the name
supply and makes sure it is not available anymore.

record Wrap (A : Set) (σ : I) (Γ : List I) : Set where
constructor MkW; field getW : A

Name : I −Scoped
Name = Wrap String

Printer : I −Scoped
Printer = Wrap (Fresh String)

fresh : ∀ σ→ Fresh (Name σ (σ :: Γ))
fresh σ = do

names← get
put (tail names)
pure (MkW (head names))

The wrapper Wrap does not depend on the scope Γ so it is automatically a thinnable
functor, that is to say that we have the (used but not shown here) definitions map^Wrap
witnessing the functoriality of Wrap and th^Wrap witnessing its thinnability. We jump
straight to the definition of the printer.

To print a variable, we are handed the Name associated to it by the environment and
return it immediately.

var : ∀[ Name σ⇒ Printer σ ]
var = map^Wrap return
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To print an application, we produce a string representation, f, of the term in function
position, then one, t, of its argument and combine them by putting the argument between
parentheses.

app : ∀[ Printer (σ ‘→ τ)⇒ Printer σ⇒ Printer τ ]
app mf mt = MkW do

f← getW mf
t← getW mt
return (f ++ " (" ++ t ++ ")")

To print a λ-abstraction, we start by generating a fresh name, x, for the newly bound
variable, use that name to generate a string b representing the body of the function to which
we prepend a “λ” binding the name x.

lam : ∀[ � (Name σ⇒ Printer τ)⇒ Printer (σ ‘→ τ) ]
lam {σ} mb = MkW do

x← fresh σ
b← getW (mb weaken x)
return ("λ" ++ getW x ++ ". " ++ b)

Putting all of these pieces together, we get the Printing semantics:

Printing : Semantics Name Printer
Printing = record { th^V = th^Wrap; var = var; app = app; lam = lam }

We show how one can use this newly defined semantics to implement print, a printer for
closed terms assuming that we have already defined names, a stream of distinct strings
used as our name supply. We show the result of running print on the term apply.

print : Lam σ []→ String
print t = proj1 (getW printer names) where

empty : ([] −Env) Name []
empty = ε

printer = semantics Printing empty t

apply : Lam ((σ ‘→ τ) ‘→ (σ ‘→ τ)) []
apply = ‘lam (‘lam (‘app (‘var (s z)) (‘var z)))

_ : print apply ≡ "λa. λb. a (b)"

_ = refl

Both printing and renaming highlight the importance of distinguishing values and com-
putations: the type of values in their respective environments is distinct from their type of
computations.

All of these examples are already described at length by ACMM (2017) so we will not
spend any more time on them. In ACMM we have also obtained the simulation and fusion
theorems demonstrating that these traversals are well behaved as corollaries of more general
results expressed in terms of semantics. We will come back to this in Section 9.2.
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One important observation to make is the tight connection between the constraints
described in Semantics and the definition of Lam: the semantical counterparts of the Lam
constructors are obtained by replacing the recursive occurrences of the inductive family with
either a computation or a Kripke function space depending on whether an extra variable was
bound. This suggests that it ought to be possible to compute the definition of Semantics
from the syntax description. Before doing this in Section 5, we need to look at a generic
descriptions of data types.

4 A primer on universes of data types

Chapman, Dagand, McBride and Morris (CDMM) (2010) defined a universe of data
types inspired by Dybjer and Setzer’s finite axiomatisation of inductive-recursive def-
initions (1999) and Benke, Dybjer and Jansson’s universes for generic programs and
proofs (2003). This explicit definition of codes for data types empowers the user to write
generic programs tackling all of the data types one can obtain this way. In this section we
recall the main aspects of this construction we are interested in to build up our generic
representation of syntaxes with binding.

The first component of the definition of CDMM’s universe (defined below) is an inductive
type of Descriptions of strictly positive functors from SetJ to SetI . These functors corre-
spond to I-indexed containers of J-indexed payloads. Keeping these index types distinct
prevents mistaking one for the other when constructing the interpretation of descriptions.
Later of course we can use these containers as the nodes of recursive datastructures by
interpreting some payloads sorts as requests for subnodes (Altenkirch et al. (2015)).

The inductive type of descriptions has three constructors: ‘σ to store data (the rest of the
description can depend upon this stored value), ‘X to attach a recursive substructure indexed
by J and ‘� to stop with a particular index value.

The recursive function ~_� makes the interpretation of the descriptions formal.
Interpretation of descriptions give rise to right-nested tuples terminated by equality
constraints.

data Desc (I J : Set) : Set1 where
‘σ : (A : Set)→ (A→ Desc I J)→ Desc I J
‘X : J→ Desc I J→ Desc I J
‘� : I→ Desc I J

~_� : Desc I J→ (J→ Set)→ (I→ Set)
~ ‘σ A d � X i = Σ[ a ∈ A ] (~ d a � X i)
~ ‘X j d � X i = X j × ~ d � X i
~ ‘� i′ � X i = i ≡ i′

These constructors give the programmer the ability to build up the data types they are used
to. For instance, the functor corresponding to lists of elements in A stores a Boolean which
stands for whether the current node is the empty list or not. Depending on its value, the
rest of the description is either the “stop” token or a pair of an element in A and a recursive
substructure, that is, the tail of the list. The List type is unindexed, and we represent the lack
of an index with the unit type > whose unique inhabitant is tt.

listD : Set→ Desc > >
listD A = ‘σ Bool $ λ isNil→

if isNil then ‘� tt
else ‘σ A (λ _→ ‘X tt (‘� tt))
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Indices can be used to enforce invariants. For example, the type Vec A n of length-
indexed lists. It has the same structure as the definition of listD. We start with a Boolean
distinguishing the two constructors: either the empty list (in which case the branch’s index
is enforced to be 0) or a non-empty one in which case we store a natural number n, the head
of type A and a tail of size n and the branch’s index is enforced to be suc n.

vecD : Set→ Desc N N
vecD A = ‘σ Bool $ λ isNil→

if isNil then ‘� 0
else ‘σ N (λ n→ ‘σ A (λ _→ ‘X n (‘� (suc n))))

The pay-off for encoding our data types as descriptions is that we can define generic
programs for whole classes of data types. The decoding function ~_� acted on the objects of
SetJ , and we will now define the function fmap by recursion over a code d. It describes the
action of the functor corresponding to d over morphisms in SetJ . This is the first example of
generic programming over all the functors one can obtain as the meaning of a description.

fmap : (d : Desc I J)→ ∀[ X⇒ Y ]→ ∀[ ~ d � X⇒ ~ d � Y ]
fmap (‘σ A d) f (a , v) = (a , fmap (d a) f v)
fmap (‘X j d) f (r , v) = (f r , fmap d f v)
fmap (‘� i) f t = t

All the functors obtained as meanings of Descriptions are strictly positive. So we can
build the least fixpoint of the ones that are endofunctors (i.e. the ones for which I equals J).
This fixpoint is called µ and its iterator is given by the definition of fold d2 .

data µ (d : Desc I I) : Size→ I→ Set where
‘con : ~ d � (µ d s) i→ µ d (↑ s) i

fold : (d : Desc I I)→ ∀[ ~ d � X⇒ X ]→ ∀[ µ d s⇒ X ]
fold d alg (‘con t) = alg (fmap d (fold d alg) t)

This least fixpoint allows us to recover the data types we would otherwise declare
recursively and generatively. Pattern synonyms let us hide away the encoding: programmers
can use them to pattern-match on lists and Agda conveniently resugars them when displaying
a goal. Finally, we can get our hands on the types’ eliminators by instantiating the generic
fold:

List : Set→ Set
List A = µ (listD A)∞ tt

pattern []’ = (true , refl)
pattern [] = ‘con []’

pattern _::’_ x xs = (false , x , xs , refl)
pattern _::_ x xs = ‘con (x ::’ xs)

foldr : (A→ B→ B)→ B→ List A→ B
foldr c n = fold (listD _) $ λ where

[]’ → n
(hd ::’ rec)→ c hd rec

2 The Size (Abel (2010)) index added to the inductive definition of µ plays a crucial role in getting the termination
checker to see that fold is a total function.
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The CDMM approach, therefore, allows us to generically define iteration principles for
all data types that can be described. These are exactly the features we desire for a universe of
data types with binding, so in the next section we will see how to extend CDMM’s approach
to include binding.

The functor underlying any well scoped and sorted syntax can be coded as some Desc
(I × List I) (I × List I), with the free monad construction from CDMM uniformly adding
the variable case. While a good start, Desc treats its index types as unstructured, so this
construction is blind to what makes the List I index a scope. The resulting “bind” operator
demands a function which maps variables in any sort and scope to terms in the same sort
and scope. However, the behaviour we need is to preserve sort while mapping between
specific source and target scopes which may differ. We need to account for the fact that
scopes change only by extension, and hence that our specifically scoped operations can be
pushed under binders by weakening.

5 A universe of scope-safe and well sorted syntaxes

Our universe of scope-safe and well sorted syntaxes follows the same principle as CDMM’s
universe of data types, except that we are not building endofunctors on SetI any more but
rather on I −Scoped. We now think of the index type I as the sorts used to distinguish terms
in our embedded language. The ‘σ and ‘� constructors are as in the CDMM Desc type and
are used to represent data and index constraints respectively. What distinguishes this new
universe Desc from that of Section 4 is that the ‘X constructor is now augmented with an
additional List I argument that describes the new binders that are brought into scope at this
recursive position. This list of the sorts of the newly bound variables will play a crucial role
when defining the description’s semantics as a binding structure below.

data Desc (I : Set) : Set1 where
‘σ : (A : Set)→ (A→ Desc I)→ Desc I
‘X : List I→ I→ Desc I → Desc I
‘� : I → Desc I

The meaning function ~_� we associate to a description follows closely its CDMM
equivalent. It only departs from it in the ‘X case and the fact it is not an endofunctor on I
−Scoped; it is more general than that. The function takes an X of type List I→ I −Scoped
to interpret ‘X ∆ j (i.e. substructures of sort j with newly bound variables in ∆) in an ambient
scope Γ as X ∆ j Γ.

~_� : Desc I→ (List I→ I −Scoped)→ I −Scoped
~ ‘σ A d � X i Γ = Σ[ a ∈ A ] (~ d a � X i Γ)
~ ‘X ∆ j d � X i Γ = X ∆ j Γ × ~ d � X i Γ

~ ‘� j � X i Γ = i ≡ j

The astute reader may have noticed that ~_� is uniform in X and Γ; however refactoring
~_� to use the partially applied X _ _ Γ following this observation would lead to a definition
harder to use with the combinators for indexed sets described in Section 2 which make our
types much more readable.
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If we pre-compose the meaning function ~_�with a notion of “de Bruijn scopes” (denoted
Scope here) which turns any I −Scoped family into a function of type List I→ I −Scoped
by appending the two List indices, we recover a meaning function producing an endofunctor
on I −Scoped. So far we have only shown the action of the functor on objects; its action on
morphisms is given by a function fmap defined by induction over the description just as in
Section 4.

Scope : I −Scoped→ List I→ I −Scoped
Scope T ∆ i = (∆ ++_) ` T i

The endofunctors thus defined are strictly positive and we can take their fixpoints. As
we want to define the terms of a language with variables, instead of considering the initial
algebra, this time we opt for the free relative monad (Altenkirch et al. (2014)) (with respect
to the functor Var): the ‘var constructor corresponds to return, and we will define bind (also
known as the parallel substitution sub) in the next section.

data Tm (d : Desc I) : Size→ I −Scoped where
‘var : ∀[ Var i ⇒ Tm d (↑ s) i ]
‘con : ∀[ ~ d � (Scope (Tm d s)) i⇒ Tm d (↑ s) i ]

Coming back to our original examples, we now have the ability to give codes for the well
scoped untyped λ-calculus and, just as well, the intrinsically typed STLC. We add a third
example to showcase the whole spectrum of syntaxes: a well scoped and well sorted but not
well typed bidirectional language. In all examples, the variable case will be added by the
free monad construction so we only have to describe the other constructors.

Un(i)typed λ-calculus (UTLC). For the untyped case, the lack of type translates to picking
the unit type (>) as our notion of sort. We have two possible constructors: application where
we have two substructures which do not bind any extra argument and λ-abstraction which
has exactly one substructure with precisely one extra bound variable. A single Boolean is
enough to distinguish the two constructors.

UTLC : Desc >
UTLC = ‘σ Bool $ λ isApp→ if isApp

then ‘X [] tt (‘X [] tt (‘� tt))
else ‘X (tt :: []) tt (‘� tt)

Bidirectional STLC. Our second example is a bidirectional (Pierce and Turner (2000))
language hence the introduction of a notion of Mode: each term is either part of the Infer
or Check fraction of the language. This language has four constructors which we list in
the ad hoc ‘Bidi type of constructor tags, its decoding Bidi is defined by a pattern-matching
λ-expression in Agda. Application and λ-abstraction behave as expected, with the important
observation that λ-abstraction binds an Inferrable term. The two remaining constructors
correspond to changes of direction: one can freely Embbed inferrable terms as checkable
ones whereas we require a type annotation when forming a Cut (we reuse the notion of
Type introduced in the STLC example at the end of Section 2).
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data Mode : Set where
Check Infer : Mode

data ‘Bidi : Set where
App Lam Emb : ‘Bidi
Cut : Type→ ‘Bidi

Bidi : Desc Mode
Bidi = ‘σ ‘Bidi $ λ where

App → ‘X [] Infer (‘X [] Check (‘� Infer))
Lam → ‘X (Infer :: []) Check (‘� Check)
(Cut σ)→ ‘X [] Check (‘� Infer)
Emb → ‘X [] Infer (‘� Check)

Intrinsically typed STLC. In the typed case (for the same notion of Type), we are back
to two constructors: the terms are fully annotated and therefore it is not necessary to
distinguish between Modes anymore. We need our tags to carry extra information about the
types involved so we use once more an ad hoc data type ‘STLC, and define its decoding
STLC by a pattern-matching λ-expression.

data ‘STLC : Set where
App Lam : Type→ Type→ ‘STLC

STLC : Desc Type
STLC = ‘σ ‘STLC $ λ where

(App σ τ)→ ‘X [] (σ ‘→ τ) (‘X [] σ (‘� τ))
(Lam σ τ)→ ‘X (σ :: []) τ (‘� (σ ‘→ τ))

For convenience we use Agda’s pattern synonyms corresponding to the original construc-
tors in Section 2. These synonyms can be used when pattern-matching on a term and Agda
resugars them when displaying a goal. This means that the end user can seamlessly work
with encoded terms without dealing with the gnarly details of the encoding. These pattern
definitions can omit some arguments using “_”, in which case they will be filled in by
unification just like any other implicit argument: there is no extra cost to using an encoding!
The only downside is that the language currently does not allow the user to specify type
annotations for pattern synonyms. We only include examples of pattern synonyms for the
two extreme examples, the definition for Bidi are similar.

pattern ‘app f t = ‘con (true , f , t , refl)
pattern ‘lam b = ‘con (false , b , refl)

pattern ‘app f t = ‘con (App _ _ , f , t , refl)
pattern ‘lam b = ‘con (Lam _ _ , b , refl)

As a usage example of these pattern synonyms, we define the identity function in all three
languages, using the same caret-based naming convention we introduced earlier. The code
is virtually the same except for Bidi which explicitly records the change of direction from
Check to Infer.

id^U : Tm UTLC∞ tt []
id^U = ‘lam (‘var z)

id^B : Tm Bidi∞ Check []
id^B = ‘lam (‘emb (‘var z))

id^S : Tm STLC∞ (σ ‘→ σ) []
id^S = ‘lam (‘var z)

A sum combinator for syntaxes. The definition of UTLC is the third time (the first and
second times being the definition of listD and vecD in Section 4) that we use a Bool to
distinguish between two constructors. We can abstract this common pattern as a combinator
_‘+_ together with an appropriate eliminator case which, given two methods, picks the one
corresponding to the chosen branch.

_‘+_ : Desc I→ Desc I→ Desc I
d ‘+ e = ‘σ Bool $ λ isLeft→

if isLeft then d else e

case : (~ d � X i Γ→ A)→ (~ e � X i Γ→ A)→
(~ d ‘+ e � X i Γ→ A)

case l r (true , t) = l t
case l r (false , t) = r t
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A concrete use case for this combinator will be given in Section 7.5 where we explain
how to seamlessly enrich an existing syntax with let-bindings and how to use the Semantics
framework to elaborate them away.

6 Generic scope-safe and well sorted programs for syntaxes

Based on the Semantics type we defined for the specific example of the simply typed λ-
calculus in Section 3, we can define a generic notion of semantics for all syntax descriptions.
It is once more parametrised by two I−Scoped familiesV andC corresponding, respectively,
to values associated to bound variables and computations delivered by evaluating terms.
These two families have to abide by three constraints:

• th^V Values should be thinnable so that we can push the evaluation environment
under binders;

• var Values should embed into computations for us to be able to return the value
associated to a variable as the result of its evaluation;

• alg We should have an algebra turning a term whose substructures have been replaced
with computations (possibly under some binders, represented semantically by the
Kripke type-valued function defined below) into computations

record Semantics (d : Desc I) (V C : I −Scoped) : Set where
field th^V : Thinnable (V σ)

var : ∀[V σ⇒ C σ ]
alg : ∀[ ~ d � (KripkeV C) σ⇒ C σ ]

Here we crucially use the fact that the meaning of a description is defined in terms of a
function interpreting substructures which has the type List I→ I−Scoped, that is, that gets
access to the current scope but also the exact list of the sorts of the newly bound variables.
We define a function Kripke by case analysis on the number of newly bound variables.
It is essentially a subcomputation waiting for a value associated to each one of the fresh
variables.

• If it is 0 we expect the substructure to be a computation corresponding to the result
of the evaluation function’s recursive call;

• But if there are newly bound variables then we expect to have a function space. In
any context extension, it will take an environment of values for the newly bound
variables and produce a computation corresponding to the evaluation of the body of
the binder.

Kripke : (V C : I −Scoped)→ (List I→ I −Scoped)
KripkeV C [] j = C j
KripkeV C ∆ j = � ((∆ −Env)V⇒ C j)

It is once more the case that the abstract notion of Semantics comes with a fundamental
lemma: all I −Scoped familiesV and C satisfying the three criteria we have put forward give
rise to an evaluation function. We introduce a notion of computation _−Comp analogous to
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that of environments: instead of associating values to variables, it associates computations
to terms.

_−Comp : List I→ I −Scoped→ List I→ Set
(Γ −Comp) C ∆ = ∀ {s σ}→ Tm d s σ Γ→ C σ ∆

6.1 Fundamental lemma of semantics

We can now define the type of the fundamental lemma (called semantics) which takes a
semantics and returns a function from environments to computations. It is defined mutually
with a function body turning syntactic binders into semantic binders: to each de Bruijn
Scope (i.e. a substructure in a potentially extended context) it associates a Kripke (i.e. a
subcomputation expecting a value for each newly bound variable).

semantics : (Γ −Env)V ∆→ (Γ −Comp) C ∆

body : (Γ −Env)V ∆→ ∀ Θ σ→

Scope (Tm d s) Θ σ Γ→ KripkeV C Θ σ ∆

The semantics proof is straightforward now that we have clearly identified the problem
structure and the constraints we need to enforce. If the term considered is a variable, we
look up the associated value in the evaluation environment and turn it into a computation
using var. If it is a non-variable constructor then we call fmap to evaluate the substructures
using body and then call the algebra to combine these results.

semantics ρ (‘var k) = var (lookup ρ k)
semantics ρ (‘con t) = alg (fmap d (body ρ) t)

The auxiliary lemma body distinguishes two cases. If no new variable has been bound
in the recursive substructure, it is a matter of calling semantics recursively. Otherwise we
are provided with a Thinning, some additional values and evaluate the substructure in the
thinned and extended evaluation environment (thanks to a auxiliary function _>>_ which
given two environments (Γ −Env)V Θ and (∆ −Env)V Θ produces an environment ((Γ ++
∆) −Env)V Θ).

body ρ [] i t = semantics ρ t
body ρ (_ :: _) i t = λ σ vs→ semantics (vs >> th^Env th^V ρ σ) t

Given that fmap introduces one level of indirection between the recursive calls and the
subterms they are acting upon, the fact that our terms are indexed by a Size is once more
crucial in getting the termination checker to see that our proof is indeed well founded.

We immediately introduce closed, a corollary of the fundamental lemma of semantics
for the special cases of closed terms.

closed : TM d σ→ C σ []
closed = semantics ε

Given a Semantics with value typeV and computation type C, we can evaluate a closed
term of type σ and obtain a computation of type (C σ []) by kickstarting the evaluation with
an empty environment.
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6.2 Our first generic programs: renaming and substitution

Similarly to ACMM (2017) renaming can be defined generically for all syntax descriptions
as a semantics with Var as values and Tm as computations. The first two constraints on
Var described earlier are trivially satisfied. Observing that renaming strictly respects the
structure of the term it goes through, it makes sense for the algebra to be implemented
using fmap. When dealing with the body of a binder, we “reify” the Kripke function by
evaluating it in an extended context and feeding it placeholder values corresponding to
the extra variables introduced by that context. This is reminiscent both of what we did in
Section 3 and the definition of reification in the setting of normalisation by evaluation (see
e.g. Catarina Coquand’s formal development (2002)).

Substitution is defined in a similar manner with Tm as both values and computations. Of
the two constraints applying to terms as values, the first one corresponds to renaming and
the second one is trivial. The algebra is once more defined by using fmap and reifying the
bodies of binders.

Ren : Semantics d Var (Tm d∞)
Ren .th^V = th^Var
Ren .var = ‘var
Ren .alg = ‘con ◦ fmap d (reify vl^Var)

ren : (Γ −Env) Var ∆→

Tm d∞ σ Γ→ Tm d∞ σ ∆

ren ρ t = Semantics.semantics Ren ρ t

Sub : Semantics d (Tm d∞) (Tm d∞)
Sub .th^V = th^Tm
Sub .var = id
Sub .alg = ‘con ◦ fmap d (reify vl^Tm)

sub : (Γ −Env) (Tm d∞) ∆→

Tm d∞ σ Γ→ Tm d∞ σ ∆

sub ρ t = Semantics.semantics Sub ρ t

The reification process mentioned in the definition of renaming and substitution can be
implemented generically for Semantics families which have VarLike values, that is, values
which are Thinnable and such that we can craft placeholder values in non-empty contexts.
It is almost immediate that both Var and Tm are VarLike (with proofs vl^Var and vl^Tm,
respectively).

record VarLike (V : I −Scoped) : Set where
field th^V : Thinnable (V σ)

new : ∀[ (σ ::_) ` V σ ]

Given a proof that V is VarLike, we can manufacture several useful environments of
valuesV. We provide users with base of type (Γ −Env)V Γ, freshr of type (Γ −Env)V (∆
++ Γ) and freshl of type (Γ −Env)V (Γ ++ ∆) by combining the use of placeholder values
and thinnings. In the Var case these very general definitions respectively specialise to the
identity renaming for a context Γ and the injection of Γ fresh variables to the right or the left
of an ambient context ∆. Similarly, in the Tm case, we can show base vl^Tm extensionally
equal to the identity environment id^Tm given by lookup id^Tm = ‘var, which associates
each variable to itself (seen as a term). Using these definitions, we can then implement reify
as follows:

reify : VarLikeV→ ∀ ∆ i→ KripkeV C ∆ i Γ→ Scope C ∆ i Γ

reify vl^V [] i b = b
reify vl^V ∆@(_ :: _) i b = b (freshr vl^Var ∆) (freshl vl^V _)
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7 A catalogue of generic programs for syntax with binding

In this section we explore a large part of the spectrum of traversals a compiler writer may
need when implementing their own language. In Section 7.1 we look at the production of
human-readable representations of internal syntax; in Section 7.2 we write a generic scope
checker thus bridging the gap between raw data fresh out of a parser to well scoped syntax;
we then demonstrate how to write a type checker in Section 7.3 and even an elaboration
function turning well scoped into well scoped and typed syntax in Section 7.4. We then study
type and scope respecting transformations on internal syntax: desugaring in Section 7.5 and
size preserving inlining in Section 7.6. We conclude with an unsafe but generic evaluator
defined using normalisation by evaluation in Section 7.7.

7.1 Printing with names

We have seen in Section 3.3 that printing with names is an instance of ACMM’s notion
of Semantics. We will now show that this observation can be generalised to arbitrary
syntaxes with binding. Unlike renaming or substitution, this generic program will require
user guidance: there is no way for us to guess how an encoded term should be printed. We
can however take care of the name generation (using the Fresh monad from Page 11), deal
with variable binding, and implement the traversal generically. We want our printer to have
type:

print : Display d→ Tm d i σ Γ→ String

where Display explains how to print one ‘layer’ of term provided that we are handed the
Pieces corresponding to the printed subterm and names for the bound variables:

Display : Desc I→ Set
Display d = ∀ {i Γ}→ ~ d � Pieces i Γ→ String

Reusing the notion of Name introduced in Section 3.3, we can make Pieces formal. A
subterm has already been printed if we have a string representation of it together with
an environment of Names we have attached to the newly bound variables this structure
contains. That is to say:

Pieces : List I→ I −Scoped
Pieces [] i Γ = String
Pieces ∆ i Γ = (∆ −Env) Name (∆ ++ Γ) × String

The key observation that will help us define a generic printer is that Fresh composed with
Name is VarLike. Indeed, as the composition of a functor and a trivially thinnable Wrapper,
Fresh is Thinnable, and fresh (defined on Page 11) is the proof that we can generate
placeholder values thanks to the name supply.

vl^FreshName : VarLike (λ (σ : I)→ Fresh ◦ (Name σ))
vl^FreshName = record

{ th^V = th^Functor functor^M th^Wrap
; new = fresh _
}
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This VarLike instance empowers us to reify in an effectful manner a Kripke function
space taking Names and returning a Printer to a set of Pieces.

reify^Pieces : ∀ ∆ i→ Kripke Name Printer ∆ i Γ→ Fresh (Pieces ∆ i Γ)

In case there are no newly bound variables, the Kripke function space collapses to a mere
Printer which is precisely the wrapped version of the type we expect.

reify^Pieces [] i p = getW p

Otherwise we proceed in a manner reminiscent of the pure reification function defined at
the end of Section 6.2. We start by generating an environment of names for the newly bound
variables by using the fact that Fresh composed with Name is VarLike together with the
fact that environments are Traversable (McBride and Paterson (2008)), and thus admit the
standard Haskell-like mapA and sequenceA traversals. We then run the Kripke function on
these names to obtain the string representation of the subterm. We finally return the names
we used together with this string.

reify^Pieces ∆@(_ :: _) i f = do
ρ← sequenceA (freshl vl^FreshName _)
b← getW (f (freshr vl^Var ∆) ρ)
return (ρ , b)

We can put all of these pieces together to obtain the Printing semantics. The first two
constraints can be trivially discharged. When defining the algebra we start by reifying the
subterms, then use the fact that one “layer” of term of our syntaxes with binding is always
traversable to combine all of these results into a value we can apply our display function to.

Printing : Display d→ Semantics d Name Printer
Printing dis .th^V = th^Wrap
Printing dis .var = map^Wrap return
Printing dis .alg = λ v→ MkW $ dis <$> mapA d reify^Pieces v

This allows us to write a printer for open terms:
print : Display d→ Tm d i σ Γ→ String
print dis t = proj1 (printer names) where

printer : Fresh String
printer = do

init← sequenceA (base vl^FreshName)
getW (Semantics.semantics (Printing dis) init t)

We start by using base (defined in Section 6.2) to generate an environment of Names for
the free variables, then use our semantics to get a printer which we can run using a stream
names of distinct strings as our name supply.

Untyped λ-calculus. Defining a printer for the untyped λ-calculus is now very easy: we
define a Display by case analysis. In the application case, we combine the string representa-
tion of the function, wrap its argument’s representation between parentheses and concatenate
the two together. In the lambda abstraction case, we are handed the name the bound variable
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was assigned together with the body’s representation; it is once more a matter of putting the
Pieces together.

printUTLC : Display UTLC
printUTLC = λ where

(‘app’ f t) → f ++ " (" ++ t ++ ")"

(‘lam’ (x , b))→ "λ" ++ getW (lookup x z) ++ ". " ++ b

As always, these functions are readily executable and we can check their behaviour by
writing tests. First, we print the identity function defined in Section 5 in an empty context
and verify that we do obtain the string "λa. a". Next, we print an open term in a context
of size two and can immediately observe that names are generated for the free variables
first, and then the expression itself is printed.

_ : print printUTLC id^U ≡ "λa. a"

_ = refl

_ : let tm : Tm UTLC _ _ (_ :: _ :: [])
tm = ‘app (‘var z) (‘lam (‘var (s (s z))))

in print printUTLC tm ≡ "b (λc. a)"

_ = refl

7.2 Writing a generic scope checker

Converting terms in the internal syntax to strings which can in turn be displayed in a terminal
or an editor window is only part of a compiler’s interaction loop. The other direction takes
strings as inputs and attempts to produce terms in the internal syntax. The first step is to
parse the input strings into structured data, the second is to perform scope checking, and the
third step consists of type checking.

Parsing is currently out of scope for our library; users can write safe ad-hoc parsers for
their object language by either using a library of total parser combinators (Danielsson (2010);
Allais (2018)) or invoking a parser generator oracle whose target is a total language (Stump
(2016)). As we will see shortly, we can write a generic scope checker transforming terms in
a raw syntax where variables are represented as strings into a well scoped syntax. We will
come back to type checking with a concrete example in section 7.3 and then discuss related
future work in the conclusion.

Our scope checker will be a function taking two explicit arguments: a name for each
variable in scope Γ and a raw term for a syntax description d. It will either fail (the Monad
Fail granting us the ability to fail is defined below) or return a well scoped and sorted term
for that description.

toTm : Names Γ→ Raw d i σ→ Fail (Tm d i σ Γ)

Scope. We can obtain Names, the datastructure associating to each variable in scope its raw
name as a string by reusing the standard library’s All. The inductive family All is a predicate
transformer making sure a predicate holds of all the element of a list. It is defined in a style
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common in Agda: because All’s constructors are in one to one correspondence with that of
its index type (List A), the same name are reused: [] is the name of the proof that P trivially
holds of all the elements in the empty list []; similarly _::_ is the proof that provided that P
holds of the element a on the one hand and of the elements of the list as on the other then it
holds of all the elements of the list (a :: as).

data All (P : A→ Set) : List A→ Set where
[] : All P []
_::_ : P a→ All P as→ All P (a :: as)

Names : List I→ Set
Names = All (const String)

Raw terms. The definition of WithNames is analogous to Pieces in the previous section:
we expect Names for the newly bound variables. Terms in the raw syntax then leverage
these definitions. They are either a variables or another “layer” of raw terms. Variables ’var
carry a String and potentially some extra information E (typically a position in a file). The
other constructor ’con carries a layer of raw terms where subterms are raw terms equiped
with names for any newly bound variables.

WithNames : (I→ Set)→ List I→ I −Scoped
WithNames T [] j Γ = T j
WithNames T ∆ j Γ = Names ∆ × T j

data Raw (d : Desc I) : Size→ I→ Set where
‘var : E→ String→ Raw d (↑ i) σ
‘con : ~ d � (WithNames (Raw d i)) σ []→ Raw d (↑ i) σ

Error handling. Various things can go wrong during scope checking: evidently a name can
be out of scope but it is also possible that it may be associated to a variable of the wrong
sort. We define an enumerating type covering these two cases. The scope checker will return
a computation in the Monad Fail thus allowing us to fail and return an error, the string that
caused the failure and the extra data of type E that accompanied it.

data Error : Set where
OutOfScope : Error
WrongSort : (σ τ : I)→ σ . τ→ Error

Fail : Set→ Set
Fail A = (Error × E × String) ] A

fail : Error→ E→ String→ Fail A
fail err e str = inj1 (err , e , str)

Equipped with these notions, we can write down the type of toVar which tackles the
core of the problem: variable resolution. The function takes a string and a sort as well the
names and sorts of the variables in the ambient scope. Provided that we have a function
_?

=I_ to decide equality on sorts, we can check whether the string corresponds to an existing
variable and whether that binding is of the right sort. Thus we either fail or return a well
scoped and well sorted Var.

If the ambient scope is empty then we can only fail with an OutOfScope error.
Alternatively, if the variable’s name corresponds to that of the first one in scope we check
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that the sorts match up and either return z or fail with a WrongSort error. Otherwise we
look for the variable further down the scope and use s to lift the result to the full scope.

toVar : E→ String→ ∀ σ Γ→ Names Γ→ Fail (Var σ Γ)
toVar e x σ [] [] = fail OutOfScope e x
toVar e x σ (τ :: Γ) (y :: scp) with x ?

= y | σ ?
=I τ

... | yes _ | yes refl = pure z

... | yes _ | no ¬eq = fail (WrongSort σ τ ¬eq) e x

... | no ¬p | _ = s <$> toVar e x σ Γ scp

Scope checking an entire term then amounts to lifting this action on variables to an action
on terms. The error Monad Fail is by definition an Applicative and by design our terms are
Traversable (Bird and Paterson (1999); Gibbons and d. S. Oliveira (2009)). The action on
term is defined mutually with the action on scopes. As we can see in the second equation
for toScope, thanks to the definition of WithNames, concrete names arrive just in time to
check the subterm with newly bound variables.

toTm : Names Γ→ Raw d i σ→ Fail (Tm d i σ Γ)
toScope : Names Γ→ ∀ ∆ σ→WithNames (Raw d i) ∆ σ []→

Fail (Scope (Tm d i) ∆ σ Γ)

toTm scp (‘var e v) = ‘var <$> toVar e v _ _ scp
toTm scp (‘con b) = ‘con <$> mapA d (toScope scp) b

toScope scp [] σ b = toTm scp b
toScope scp ∆@(_ :: _) σ (bnd , b) = toTm (bnd ++ scp) b

7.3 An algebraic approach to type checking

Following Atkey (2015), we can consider type checking and type inference as a possible
semantics for a bidirectional (Pierce and Turner (2000)) language. We reuse the syntax
introduced in Section 5 and the types introduced for the STLC at the end of Section 2; it
gives us a simply typed bidirectional calculus as a bisorted language using a notion of Mode
to distinguish between terms for which we will be able to Infer the type and the ones for
which we will have to Check a type candidate.

The values stored in the environment of the type checking function attach Type informa-
tion to bound variables whose Mode is Infer, guaranteeing no variable ever uses the Check
mode. In contrast, the generated computations will, depending on the mode, either take a
type candidate and Check it is valid or Infer a type for their argument. These computations
are always potentially failing so we use the Maybe monad. In an actual compiler pipeline
we would naturally use a different error monad and generate helpful error messages pointing
out where the type error occured. The interested reader can see a fine-grained analysis of
type errors in the extended example of a type checker in McBride and McKinna (2004).

data Var- : Mode→ Set where
‘var : Type→ Var- Infer

Type- : Mode→ Set
Type- Check = Type→ Maybe >
Type- Infer = Maybe Type
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A change of direction from inferring to checking will require being able to check that
two types agree so we introduce the function _=?_. Similarly we will sometimes expect a
function type but may be handed anything so we will have to check with isArrow that our
candidate’s head constructor is indeed an arrow, and collect the domain and codomain.

_=?_ : (σ τ : Type)→ Maybe >
α =? α = just tt
(σ ‘→ τ) =? (φ ‘→ ψ) = (σ =? φ) >> (τ =? ψ)
_ =? _ = nothing

isArrow : Type→ Maybe (Type × Type)
isArrow (σ ‘→ τ) = just (σ , τ)
isArrow _ = nothing

We can now define type checking as a Semantics. We describe the algorithm constructor
by constructor; in the Semantics definition (omitted here) the algebra will simply perform
a dispatch and pick the relevant auxiliary lemma. Note that in the following code, _<$_
is, following classic Haskell notations, the function which takes an A and a Maybe B and
returns a Maybe A which has the same structure as its second argument.

Application. When facing an application: infer the type of the function, make sure it is an
arrow type, check the argument at the domain’s type and return the codomain.

app : Type- Infer→ Type- Check→ Type- Infer
app f t = do

arr ← f
(σ , τ)← isArrow arr
τ <$ t σ

λ-abstraction. For a λ-abstraction: check that the input type arr is an arrow type and check
the body b at the codomain type in the extended environment (using bind) where the newly
bound variable is of mode Infer and has the domain’s type.

lam : Kripke (const ◦ Var-) (const ◦ Type-) (Infer :: []) Check Γ→ Type- Check
lam b arr = do

(σ , τ)← isArrow arr
b (bind Infer) (ε • ‘var σ) τ

Embedding of Infer into Check. The change of direction from Inferrable to Checkable is
successful when the inferred type is equal to the expected one.

emb : Type- Infer→ Type- Check
emb t σ = do
τ← t
σ =? τ

Cut: A Check in an Infer position. So far, our bidirectional syntax only permits the
construction of STLC terms in canonical form (Pfenning (2004); Dunfield and Pfenning
(2004)). In order to construct non-normal (redex) terms, whose semantics is given logically
by the ‘cut’ rule, we need to reverse direction. Our final semantic operation, cut, always
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comes with a type candidate against which to check the term and to be returned in case of
success.

cut : Type→ Type- Check→ Type- Infer
cut σ t = σ <$ t σ

We have defined a bidirectional type checker for this simple language by leveraging the
Semantics framework. We can readily run it on closed terms using the closed corollary
defined in Section 6.1 and (defining β to be (α ‘→ α)) infer the type of the expression (λx. x
: β→ β) (λx. x).

type- : ∀ p→ TM Bidi p→ Type- p
type- p = Semantics.closed Typecheck

_ : type- Infer (‘app (‘cut (β ‘→ β) id^B) id^B) ≡ just β
_ = refl

The output of this function is not very informative. As we will see shortly, there is nothing
stopping us from moving away from a simple computation returning a (Maybe Type) to an
evidence-producing function elaborating a term in Bidi to a well scoped and typed term in
STLC.

7.4 An algebraic approach to elaboration

Instead of generating a type or checking that a candidate will do, we can use our language of
Descriptions to define not only an untyped source language but also an intrinsically typed
internal language. During type checking we simultaneously generate an expression’s type
and a well scoped and well typed term of that type. We use STLC (defined in Section 5) as
our internal language.

Before we can jump right in, we need to set the stage: a Semantics for a Bidi term will
involve (Mode −Scoped) notions of values and computations but an STLC term is (Type
−Scoped). We first introduce a Typing associating types to each of the modes in scope,
together with an erasure function x_y extracting the context of types implicitly defined by
such a Typing. We will systematically distinguish contexts of modes (typically named ms)
and their associated typings (typically named Γ).

Typing : List Mode→ Set
Typing = All (const Type)

x_y : Typing ms→ List Type
x [] y = []
x σ :: Γ y = σ :: x Γ y

We can then explain what it means for an elaboration process of type σ in a context
of modes ms to produce a term of the (Type −Scoped) family T: for any typing Γ of this
context of modes, we should get a value of type (T σ x Γ y).

Elab : Type −Scoped→ Type→ (ms : List Mode)→ Typing ms→ Set
Elab T σ _ Γ = T σ x Γ y

Our first example of an elaboration process is our notion of environment values. To each
variable in scope of mode Infer we associate an elaboration function targeting Var. In other
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words: our values are all in scope i.e. provided any typing of the scope of modes, we can
assuredly return a type together with a variable of that type.

data Var- : Mode −Scoped where
‘var : (infer : ∀ Γ→ Σ[ σ ∈ Type ] Elab Var σ ms Γ)→ Var- Infer ms

We can for instance prove that we have such an inference function for a newly bound
variable of mode Infer: given that the context has been extended with a variable of mode
Infer, the Typing must also have been extended with a type σ. We can return that type paired
with the variable z.

var0 : Var- Infer (Infer :: ms)
var0 = ‘var λ where (σ :: _)→ (σ , z)

The computations are a bit more tricky. On the one hand, if we are in checking mode
then we expect that for any typing of the scope of modes and any type candidate we can
Maybe return a term at that type in the induced context. On the other hand, in the inference
mode we expect that given any typing of the scope, we can Maybe return a type together
with a term at that type in the induced context.

Elab- : Mode −Scoped
Elab- Check ms = ∀ Γ→ (σ : Type)→ Maybe (Elab (Tm STLC∞) σ ms Γ)
Elab- Infer ms = ∀ Γ→ Maybe (Σ[ σ ∈ Type ] Elab (Tm STLC∞) σ ms Γ)

Because we are now writing a type checker which returns evidence of its claims, we
need more informative variants of the equality and isArrow checks. In the equality checking
case we want to get a proof of propositional equality but we only care about the successful
path and will happily return nothing when failing. Agda’s support for (dependent!) do-
notation makes writing the check really easy. For the arrow type, we introduce a family
Arrow constraining the shape of its index to be an arrow type and redefine isArrow as a
view targeting this inductive family (Wadler (1987); McBride and McKinna (2004)). We
deliberately overload the constructor of the isArrow family by calling it _‘→_. This means
that the proof that a given type has the shape (σ ‘→ τ) is literally written (σ ‘→ τ). This
allows us to specify in the type whether we want to work with the full set of values in Type
or only the subset corresponding to function types and to then proceed to write the same
programs a Haskell programmers would, with the added confidence that ours are guaranteed
to be total.

_=?_ : (σ τ : Type)→ Maybe (σ ≡ τ)
α =? α = just refl
(σ ‘→ τ) =? (φ ‘→ ψ) = do

refl← σ =? φ
refl← τ =? ψ
return refl

_ =? _ = nothing

data Arrow : Type→ Set where
_‘→_ : ∀ σ τ→ Arrow (σ ‘→ τ)

isArrow : ∀ σ→ Maybe (Arrow σ)
isArrow (σ ‘→ τ) = just (σ ‘→ τ)
isArrow _ = nothing

We now have all the basic pieces and can start writing elaboration code. We will use
lowercase letter for terms in Bidi and uppercase ones for their elaborated counterparts in
STLC. We once more start by dealing with each constructor in isolation before putting
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everything together to get a Semantics. These steps are very similar to the ones in the
previous section.

Application. In the application case, we start by elaborating the function and we get its
type together with its internal representation. We then check that the inferred type is indeed
an Arrow and elaborate the argument using the corresponding domain. We conclude by
returning the codomain together with the internal function applied to the internal argument.

app : ∀[ Elab- Infer⇒ Elab- Check⇒ Elab- Infer ]
app f t Γ = do

(arr , F) ← f Γ

(σ ‘→ τ)← isArrow arr
T ← t Γ σ

return (τ , ‘app F T)

λ-abstraction. For the λ-abstraction case, we start by checking that the type candidate arr
is an Arrow. We can then elaborate the body b of the lambda in a context of modes extended
with one Infer variable, and the corresponding Typing extended with the function’s domain.
From this we get an internal term B corresponding to the body of the λ-abstraction and
conclude by returning it wrapped in a ‘lam constructor.

lam : ∀[ Kripke Var- Elab- (Infer :: []) Check⇒ Elab- Check ]
lam b Γ arr = do

(σ ‘→ τ)← isArrow arr
B ← b (bind Infer) (ε • var0) (σ :: Γ) τ
return (‘lam B)

Cut: A Check in an Infer position. For cut, we start by elaborating the term with the type
annotation provided and return them paired together.

cut : Type→ ∀[ Elab- Check⇒ Elab- Infer ]
cut σ t Γ = (σ ,_) <$> t Γ σ

Embedding of Infer into Check. For the change of direction Emb we not only want to
check that the inferred type and the type candidate are equal: we need to cast the internal
term labelled with the inferred type to match the type candidate. Luckily, Agda’s dependent
do-notation make our job easy once again: when we make the pattern refl explicit, the
equality holds in the rest of the block.

emb : ∀[ Elab- Infer⇒ Elab- Check ]
emb t Γ σ = do

(τ , T)← t Γ

refl ← σ =? τ
return T
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We have almost everything we need to define elaboration as a semantics. Discharging
the th^V constraint is a bit laborious and the proof doesn’t yield any additional insight so
we leave it out here. The semantical counterpart of variables (var) is fairly straightforward:
provided a Typing, we run the inference and touch it up to return a term rather than a mere
variable. Finally we define the algebra (alg) by pattern-matching on the constructor and
using our previous combinators.

Elaborate : Semantics Bidi Var- Elab-
Elaborate .th^V = th^Var-
Elaborate .var = λ where (‘var infer) Γ→ just (map2 ‘var (infer Γ))
Elaborate .alg = λ where

(‘app’ f t) → app f t
(‘lam’ b) → lam b
(‘emb’ t) → emb t
(‘cut’ σ t)→ cut σ t

We can once more define a specialised version of the traversal induced by this Semantics
for closed terms: not only can we give a (trivial) initial environment (using the closed
corollary defined in Section 6.1) but we can also give a (trivial) initial Typing. This leads to
these definitions:

Type- : Mode→ Set
Type- Check = ∀ σ→ Maybe (TM STLC σ)
Type- Infer = Maybe (∃ λ σ→ TM STLC σ)

type- : ∀ p→ TM Bidi p→ Type- p
type- Check t = closed Elaborate t []
type- Infer t = closed Elaborate t []

Revisiting the example introduced in Section 7.3, we can check that elaborating the
expression (λx. x : β→ β) (λx. x) yields the type β together with the term (λx. x) (λx. x)
in internal syntax. Type annotations have disappeared in the internal syntax as all the type
invariants are enforced intrinsically.

_ : type- Infer ( B.‘app (B.‘cut (β ‘→ β) id^B) id^B)
≡ just (β , S.‘app id^S id^S)

_ = refl

7.5 Sugar and desugaring as a semantics

One of the advantages of having a universe of programming language descriptions is
the ability to concisely define an extension of an existing language by using Description
transformers grafting extra constructors à la Swiestra (2008). This is made extremely simple
by the disjoint sum combinator _‘+_ which we defined in Section 5. An example of such an
extension is the addition of let-bindings to an existing language.

let-bindings allow the user to avoid repeating themselves by naming sub-expressions and
then using these names to refer to the associated terms. Preprocessors adding these types
of mechanisms to existing languages (from C to CSS) are rather popular. We introduce a
description Let which can be used to extend any language description d to a language with
let-bindings (d ‘+ Let).
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Let : Desc I
Let = ‘σ (I × I) $ uncurry $ λ σ τ→

‘X [] σ (‘X (σ :: []) τ (‘� τ))

pattern ‘let’_‘in’_ e t = (_ , e , t , refl)
pattern ‘let_‘in_ e t = ‘con (‘let’ e ‘in’ t)

This description states that a let-binding node stores a pair of types σ and τ and two
subterms. First comes the let-bound expression of type σ and second comes the body of the
let which has type τ in a context extended with a fresh variable of type σ. This defines a
term of type τ.

In a dependently typed language, a type may depend on a value which in the presence of
let-bindings may be a variable standing for an expression. The user naturally does not want
it to make any difference whether they used a variable referring to a let-bound expression or
the expression itself. Various type checking strategies can accommodate this expectation:
in Coq (The Coq Development Team (2017)) let-bindings are primitive constructs of the
language and have their own typing and reduction rules whereas in Agda they are elaborated
away to the core language by inlining.

This latter approach to extending a language d with let-bindings by inlining them before
type checking can be implemented generically as a semantics over (d ‘+ Let). For this
semantics values in the environment and computations are both let-free terms. The algebra
of the semantics can be defined by parts thanks to case, the eliminator for _‘+_ defined in
Section 5: the old constructors are kept the same by interpreting them using the generic
substitution algebra (Sub); whilst the let-binder precisely provides the extra value to be
added to the environment.

UnLet : Semantics (d ‘+ Let) (Tm d∞) (Tm d∞)
Semantics.th^V UnLet = th^Tm
Semantics.var UnLet = id
Semantics.alg UnLet = case (Semantics.alg Sub) $ λ where

(‘let’ e ‘in’ t)→ extract t (ε • e)

The process of removing let-binders is then kickstarted with the placeholder environment
id^Tm = pack ‘var of type (Γ −Env) (Tm d∞) Γ.

unlet : ∀[ Tm (d ‘+ Let)∞ σ⇒ Tm d∞ σ ]
unlet = Semantics.semantics UnLet id^Tm

In less than 10 lines of code we have defined a generic extension of syntaxes with binding
together with a semantics which corresponds to an elaborator translating away this new
construct. In ACMM (2017), we focused on STLC only and showed that it is similarly
possible to implement a Continuation Passing Style transformation as the composition
of two semantics à la Hatcliff and Danvy (1994). The first semantics embeds STLC into
Moggi’s Meta-Language (1991) and thus fixes an evaluation order. The second one translates
Moggi’s ML back into STLC in terms of explicit continuations with a fixed return type.

We have demonstrated how easily one can define extensions and combine them on top
of a base language without having to reimplement common traversals for each one of the
intermediate representations. Moreover, it is possible to define generic transformations
elaborating these added features in terms of lower-level ones. This suggests that this setup
could be a good candidate to implement generic compilation passes and could deal with a
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framework using a wealth of slightly different intermediate languages à la Nanopass (Keep
and Dybvig (2013)).

7.6 Reference counting and inlining as a semantics

Although useful in its own right, desugaring all let-bindings can lead to an exponential
blow-up in code size. Compiler passes typically try to maintain sharing by only inlining
let-bound expressions which appear at most one time. Unused expressions are eliminated as
dead code whilst expressions used exactly one time can be inlined: this transformation is
size preserving and opens up opportunities for additional optimisations.

As we will see shortly, we can implement reference counting and size respecting let-
inlining as a generic transformation over all syntaxes with binding equipped with let-binders.
This two-pass simple transformation takes linear time which may seem surprising given
the results due to Appel and Jim (1997). Our optimisation only inlines let-bound variables
whereas theirs also encompasses the reduction of static β-redexes of (potentially) recursive
function. While we can easily count how often a variable is used in the body of a let-binder,
the interaction between inlining and β-reduction in theirs creates cascading simplification
opportunities thus making the problem much harder.

But first, we need to look at an example demonstrating that this is a slightly subtle matter.
Assuming that expensive takes a long time to evaluate, inlining all of the lets in the first
expression is a really good idea whilst we only want to inline the one binding y in the second
one to avoid duplicating work. That is to say that the contribution of the expression bound
to y in the overall count depends directly on whether y itself appears free in the body of the
let which binds it.

_ = let x = expensive in
let y = (x , x) in
x

_ = let x = expensive in
let y = (x , x) in
y

Our transformation will consist of two passes: the first one will annotate the tree with
accurate count information precisely recording whether let-bound variables are used zero,
one, or many times. The second one will inline precisely the let-binders whose variable is
used at most once.

During the counting phase we need to be particularly careful not to overestimate the
contribution of a let-bound expression. If the let-bound variable is not used then we can
naturally safely ignore the associated count. But if it used many times then we know we
will not inline this let-binding and the count should therefore only contribute once to the
running total. We define the control combinator below precisely to explicitly handle this
subtle case.

The first step is to introduce the Counter additive monoid. Addition will allow us to
combine counts coming from different subterms: if any of the two counters is zero then we
return the other, otherwise we know we have many occurences.

data Counter : Set where
zero : Counter
one : Counter
many : Counter

_+_ : Counter→ Counter→ Counter
zero + n = n
m + zero = m
_ + _ = many
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The syntax extension CLet defined as follows is a variation on the Let syntax extension
of Section 7.5, attaching a Counter to each Let node. The annotation process can then be
described as a function computing a (d ‘+ CLet) term from a (d ‘+ Let) one.

CLet : Desc I
CLet = ‘σ Counter $ λ _→ Let

We keep a tally of the usage information for the variables in scope. This allows us to know
which Counter to attach to each Let node. Following the same strategy as in Section 7.2,
we use the standard library’s All to represent this mapping. We say that a scoped value has
been Counted if it is paired with a Count.

Count : List I→ Set
Count = All (const Counter)

Counted : I −Scoped→ I −Scoped
Counted T i Γ = T i Γ × Count Γ

The two most basic counts are zeros and fromVar: the empty one is zero everywhere and
the one corresponding to a single use of a single variable v which is zero everywhere except
for v where it is one.

zeros : ∀[ Count ]
zeros {[]} = []
zeros {σ :: Γ} = zero :: zeros

fromVar : ∀[ Var σ⇒ Count ]
fromVar z = one :: zeros
fromVar (s v) = zero :: fromVar v

When we collect usage information from different subterms, we need to put the various
counts together. The combinators we now define allow us to easily do so: merge adds up
two counts in a pointwise manner while control uses one Counter to decide whether to
erase an existing Count. This is particularly convenient when computing the contribution of
a let-bound expression to the total tally: the contribution of the let-bound expression will
only matter if the corresponding variable is actually used.

merge : ∀[ Count⇒ Count⇒ Count ]
merge [] [] = []
merge (m :: cs) (n :: ds) =

(m + n) :: merge cs ds

control : Counter→ ∀[ Count⇒ Count ]
control zero cs = zeros
control one cs = cs � inlined

control many cs = cs � not inlined

We can now focus on the core of the annotation phase, defining a Semantics whose
values are variables themselves and whose computations are the pairing of a term in (d ‘+
CLet) together with a Count. The variable case is trivial: provided a variable v, we return
(‘var v) together with the count (fromVar v).

The non-let case is purely structural: we reify the Kripke function space and obtain a
scope together with the corresponding Count. We unceremoniously drop the Counters
associated to the variables bound in this subterm and return the scope together with the tally
for the ambient context.

reify^Count : ∀ ∆ σ→ Kripke Var (Counted (Tm (d ‘+ CLet)∞)) ∆ σ Γ→

Counted (Scope (Tm (d ‘+ CLet)∞) ∆) σ Γ

reify^Count ∆ σ kr = let (scp , c) = reify vl^Var ∆ σ kr in scp , drop ∆ c

The Let-to-CLet case is the most interesting one. We start by reifying the body of the
let-binder which gives us a tally cx for the bound variable and ct for the body’s contribution
to the ambient environment’s Count. We annotate the node with cx and use it as a control to
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decide whether we are going to merge any of the let-bound’s expression contribution ce to
form the overall tally.

clet : ~ Let � (Kripke Var (Counted (Tm (d ‘+ CLet)∞))) σ Γ→

Counted (~ CLet � (Scope (Tm (d ‘+ CLet)∞))) σ Γ

clet (στ , (e , ce) , body , eq) = case body weaken (ε • z) of λ where
(t , cx :: ct)→ (cx , στ , e , t , eq) , merge (control cx ce) ct

Putting all of these things together we obtain the Semantics Annotate. We promptly
specialise it using an environment of placeholder values to obtain the traversal annotate
elaborating raw let-binders into counted ones.

annotate : ∀[ Tm (d ‘+ Let)∞ σ⇒ Tm (d ‘+ CLet)∞ σ ]
annotate t = let (t’ , _) = Semantics.semantics Annotate identity t in t’

Using techniques similar to the ones described in Section 7.5, we can write an Inline
semantics working on (d ‘+ CLet) terms and producing (d ‘+ Let) ones. We make sure
to preserve all the let-binders annotated with many and to inline all the other ones. By
composing Annotate with Inline we obtain a size-preserving generic optimisation pass.

7.7 (Unsafe) Normalisation by evaluation

A key type of traversal we have not studied yet is a language’s evaluator. Our universe of
syntaxes with binding does not impose any typing discipline on the user-defined languages
and as such cannot guarantee their totality. This is embodied by one of our running examples:
the untyped λ-calculus. As a consequence there is no hope for a safe generic framework to
define normalisation functions.

The clear connection between the Kripke functional space characteristic of our semantics
and the one that shows up in normalisation by evaluation suggests we ought to manage to
give an unsafe generic framework for normalisation by evaluation. By temporarily disabling
Agda’s positivity checker, we can define a generic reflexive domain Dm in which to interpret
our syntaxes. It has three constructors corresponding respectively to a free variable, a
constructor’s counterpart where scopes have become Kripke functional spaces on Dm and
an error token because the evaluation of untyped programs may go wrong.

{-# NO_POSITIVITY_CHECK #-}
data Dm (d : Desc I) : Size→ I −Scoped where

V : ∀[ Var σ⇒ Dm d s σ ]
C : ∀[ ~ d � (Kripke (Dm d s) (Dm d s)) σ⇒ Dm d (↑ s) σ ]
⊥ : ∀[ Dm d (↑ s) σ ]

This data type definition is utterly unsafe. The more conservative user will happily restrict
themselves to particular syntaxes where the typed settings allows for a domain to be defined
as a logical predicate or opt instead for a step-indexed approach.

But this domain does make it possible to define a generic nbe semantics which, given
a term, produces a value in the reflexive domain. Thanks to the fact we have picked a
universe of finitary syntaxes, we can traverse (McBride and Paterson (2008); Gibbons
and d. S. Oliveira (2009)) the functor to define a (potentially failing) reification function
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turning elements of the reflexive domain into terms. By composing them, we obtain the
normalisation function which gives its name to normalisation by evaluation.

The user still has to explicitly pass an interpretation of the various constructors because
there is no way for us to know what the binders are supposed to represent: they may stand
for λ-abstractions, Σ-types, fixpoints, or anything else.

reify^Dm : ∀[ Dm d s σ⇒ Maybe ◦ Tm d∞ σ ]
nbe : Alg d (Dm d∞) (Dm d∞)→ Semantics d (Dm d∞) (Dm d∞)

norm : Alg d (Dm d∞) (Dm d∞)→ ∀[ Tm d∞ σ⇒ Maybe ◦ Tm d∞ σ ]
norm alg = reify^Dm ◦ Semantics.semantics (nbe alg) (base vl^Dm)

Using this setup, we can write a normaliser for the untyped λ-calculus by providing
an algebra. The key observation that allows us to implement this algebra is that we can
turn a Kripke function, f, mapping values of type σ to computations of type τ into an
Agda function from values of type σ to computations of type τ. This is witnessed by the
application function (_$$_): we first use extract, defined in Section 3.1, to obtain a function
taking environments of values to computations. We then use the environment building
combinators defined there to manufacture the singleton environment (ε • t) containing the
value t of type σ.

_$$_ : ∀[ KripkeV C (σ :: []) τ⇒ (V σ⇒ C τ) ]
f $$ t = extract f (ε • t)

We now define two patterns for semantical values: one for application and the other for
lambda abstraction. This should make the case of interest of our algebra (a function applied
to an argument) fairly readable.

pattern LAM f = C (false , f , refl)
pattern APP’ f t = (true , f , t , refl)

We finally define the algebra by case analysis: if the node at hand is an application and
its first component evaluates to a lambda, we can apply the function to its argument using
_$$_. Otherwise we have either a stuck application or a lambda, in other words we already
have a value and can simply return it using C.

norm^LC : ∀[ Tm UTLC∞ tt⇒ Maybe ◦ Tm UTLC∞ tt ]
norm^LC = norm $ λ where

(APP’ (LAM f) t)→ f $$ t � redex

t → C t � value

We have not used the ⊥ constructor so if the evaluation terminates (by disabling totality
checking we have lost all guarantees of the sort) we know we will get a term in normal
form. For instance, we can evaluate an untyped yet normalising term (λx. x) ((λx. x) (λx.
x)) that normalises to (λx. x):

_ : norm^LC (‘app id^U (‘app id^U id^U)) ≡ just id^U
_ = refl
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8 Other opportunities for generic programming

Some generic programs of interest do not fit in the Semantics framework. They can still be
implemented once and for all, and even benefit from the Semantics-based definitions.

We will first explore existing work on representing cyclic structures using a syntax with
binding: a binder is a tree node declaring a pointer giving subtrees the ability to point back
to it, thus forming a cycle. Substitution will naturally play a central role in giving these
finite terms a semantics as their potentially infinite unfolding.

We will then see that many of the standard traversals produced by the “deriving” machin-
ery familiar to Haskell programmers can be implemented on syntaxes too, sometimes with
more informative types.

8.1 Binding as self-reference: representing cyclic structures

Ghani, Hamana, Uustalu and Vene (2006) have demonstrated how Altenkirch and Reus’
type-level de Bruijn indices (1999) can be used to represent potentially cyclic structures
by a finite object. In their representation each bound variable is a pointer to the node that
introduced it. Given that we are, at the top-level, only interested in structures with no
“dangling pointers”, we introduce the notation TM d to mean closed terms (i.e. terms of type
Tm d∞ []).

A basic example of such a structure is a potentially cyclic list which offers a choice of two
constructors: [] which ends the list and _::_ which combines a head and a tail but also acts as
a binder for a self-reference; these pointers can be used by using the var constructor which
we have renamedx (pronounced “backpointer”) to match the domain-specific meaning.
We can see this approach in action in the examples [0, 1] and 01	 (pronounced “0-1-cycle”)
which describe respectively a finite list containing 0 followed by 1 and a cyclic list starting
with 0, then 1, and then repeating the whole list again by referring to the first cons cell
represented here by the de Bruijn variable 1 (i.e. s z).

CListD : Set→ Desc >
CListD A = ‘� tt

‘+ ‘σ A (λ _→ ‘X (tt :: []) tt (‘� tt))

pattern [] = ‘con (true , refl)
pattern _::_ x xs = ‘con (false , x , xs , refl)
patternx_ k = ‘var k

[0,1] : TM (CListD N) tt
01	 : TM (CListD N) tt

[0,1] = 0 :: 1 :: []
01	 = 0 :: 1 ::x s z

These finite representations are interesting in their own right and we can use the generic
semantics framework defined earlier to manipulate them. A basic building block is the unroll
function which takes a closed tree, exposes its top node and unrolls any cycle which has it
as its starting point. We can decompose it using the plug function which, given a closed
and an open term, closes the latter by plugging the former at each free ‘var leaf. Noticing
that plug’s fundamental nature is that of substituting a term for each leaf, it makes sense to
implement it by re-using the Substitution semantics we already have.

plug : TM d tt→ ∀ ∆ i→ Scope (Tm d∞) ∆ i []→ TM d i
plug t ∆ i = Semantics.semantics Sub (pack (λ _→ t))
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unroll : TM d tt→ ~ d � (Const (TM d)) tt []
unroll t@(‘con b) = fmap d (plug t) b

However, one thing still out of our reach with our current tools is the underlying cofinite
trees these finite objects are meant to represent. We start by defining the coinductive type
corresponding to them as the greatest fixpoint of a notion of layer. One layer of a cofinite
tree is precisely given by the meaning of its description where we completely ignore the
binding structure. We show with 01· · · (mutually defined with 10· · · ) the infinite list that
corresponds to the unfolding of the example 01	 given above.

record∞Tm (d : Desc I) (s : Size) (i : I) : Set where
coinductive; constructor ‘con
field force : {s’ : Size< s}→

~ d � (Const (∞Tm d s’)) i []

01· · · :∞Tm (CListD N) i tt
01· · · .force = false , 0 , 10· · · , refl

10· · · :∞Tm (CListD N) i tt
10· · · .force = false , 1 , 01· · · , refl

We can then make the connection between potentially cyclic structures and the cofinite
trees formal by giving an unfold function which, given a closed term, produces its unfolding.
The definition proceeds by unrolling the term’s top layer and co-recursively unfolding all
the subterms.

unfold : TM d tt→∞Tm d s tt
unfold t .force = fmap d (λ _ _→ unfold) (unroll t)

Even if the powerful notion of semantics described in Section 6 cannot encompass all
the traversals we may be interested in, it provides us with reusable building blocks: the
definition of unfold was made very simple by reusing the generic program fmap and the
Substitution semantics whilst the definition of ∞Tm was made easy by reusing ~_�.

8.2 Generic decidable equality for terms

Haskell programmers are used to receiving help from the “deriving” mechanism (Hinze
and Peyton Jones (2000); Magalhães et al. (2010)) to automatically generate common
traversals for every inductive type they define. Recalling that generic programming is
normal programming over a universe in a dependently typed language (Altenkirch and
McBride (2002)), we ought to be able to deliver similar functionalities for syntaxes with
binding.

We will focus in this section on the definition of an equality test. The techniques used
in this concrete example are general enough that they also apply to the definition of an
ordering test, a Show instance, etc. In type theory we can do better than an uninformative
boolean function claiming that two terms are equal: we can implement a decision procedure
for propositional equality (Löh and Magalhães (2011)) which either returns a proof that its
two inputs are equal or a proof that they cannot possibly be.
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The notion of decidability can be neatly formalised by an inductive family with two
constructors: a Set P is decidable if we can either say yes and return a proof of P or no and
provide a proof of the negation of P (here, a proof that P implies the empty type ⊥).

data ⊥ : Set where data Dec (P : Set) : Set where
yes : P → Dec P
no : (P→⊥)→ Dec P

To get acquainted with these new notions we can start by proving variable equality decidable.

8.2.1 Deciding variable equality

The type of the decision procedure for equality of variables is as follows: given any two
variables (of the same type, in the same context), the set of equality proofs between them is
Decidable.

eq^Var : (v w : Var σ Γ)→ Dec (v ≡ w)

We can easily dismiss two trivial cases: if the two variables have distinct head constructors
then they cannot possibly be equal. Agda allows us to dismiss the impossible premise of the
function stored in the no contructor by using an absurd pattern ().

eq^Var z (s w) = no (λ ())
eq^Var (s v) z = no (λ ())

Otherwise if the two head constructors agree we can be in one of two situations. If they
are both z then we can conclude that the two variables are indeed equal to each other.

eq^Var z z = yes refl

Finally if the two variables are (s v) and (s w) respectively then we need to check
recursively whether v is equal to w. If it is the case we can conclude by invoking the
congruence rule for s. If v and w are not equal then a proof that (s v) and (s w) are will lead
to a direct contradiction by injectivity of the constructor s.

eq^Var (s v) (s w) with eq^Var v w
... | yes p = yes (cong s p)
... | no ¬p = no λ where refl→ ¬p refl

8.2.2 Deciding term equality

The constructor ‘σ for descriptions gives us the ability to store values of any Set in terms.
For some of these Sets (e.g. (N→ N)), equality is not decidable. As a consequence our
decision procedure will be conditioned to the satisfaction of a certain set of Constraints
which we can compute from the Desc itself. We demand that we are able to decide equality
for all of the Sets mentioned in a description.

Constraints : Desc I→ Set
Constraints (‘σ A d) = ((a b : A)→ Dec (a ≡ b)) × (∀ a→ Constraints (d a))
Constraints (‘X _ _ d) = Constraints d
Constraints (‘� _) = >
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Remembering that our descriptions are given a semantics as a big right-nested product
terminated by an equality constraint, we realise that proving decidable equality will entail
proving equality between proofs of equality. We are happy to assume Streicher’s axiom
K (Hofmann and Streicher (1994)) to easily dismiss this case. A more conservative approach
would be to demand that equality is decidable on the index type I and to then use the classic
Hedberg construction (Hedberg (1998)) to recover uniqueness of identity proofs for I.

Assuming that the constraints computed by (Constraints d) are satisfied, we define
the decision procedure for equality of terms together with its equivalent for bodies. The
function eq^Tm is a straightforward case analysis dismissing trivially impossible cases
where terms have distinct head constructors (‘var vs. ‘con) and using either eq^Var or eq^~�
otherwise. The latter is defined by induction over e. The somewhat verbose definitions are
not enlightening so we leave them out here.

eq^Tm : (t u : Tm d i σ Γ)→ Dec (t ≡ u)
eq^~� : ∀ e→ Constraints e→ (b c : ~ e � (Scope (Tm d i)) σ Γ)→ Dec (b ≡ c)

We now have an informative decision procedure for equality between terms provided that
the syntax they belong to satisfies a set of constraints. Other generic functions and decision
procedures can be defined following the same approach: implement a similar function for
variables first, compute a set of constraints, and demonstrate that they are sufficient to
handle any input term.

9 Building generic proofs about generic programs

In ACMM (2017) we have already shown that, for the simply typed λ-calculus, introducing
an abstract notion of Semantics not only reveals the shared structure of common traversals,
it also allows us to give abstract proof frameworks for simulation or fusion lemmas. This
idea naturally extends to our generic presentation of semantics for all syntaxes.

9.1 Relations and relation transformers

In our exploration of generic proofs about the behaviour of various Semantics, we are
going to need to manipulate relations between distinct notions of values or computations. In
this section, we introduce the notion of relation we are going to use as well as these two key
relation transformers.

In Section 3.1 we introduced a generic notion of well typed and scoped environment as a
function from variables to values. Its formal definition is given as a record type. This record
wrapper helps Agda’s type inference reconstruct the type family of values whenever it is
passed an environment.

For the same reason, we will use a record wrapper for the concrete implementation of
our notion of relation over (I −Scoped) families. A Relation between two such families T
and U is a function which to any σ and Γ associates a relation between (T σ Γ) and (U σ Γ).
Our first example of such a relation is EqR the equality relation between an (I−Scoped)
family T and itself.
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record Rel (T U : I −Scoped) : Set1 where
constructor mkRel
field rel : ∀ σ→ ∀[ T σ⇒ U σ⇒ const Set ]

EqR : Rel T T
rel EqR i = _≡_

Once we know what relations are, we are going to have to lift relations on values and
computations to relations on environments, Kripke function spaces or on d-shaped terms
whose subterms have been evaluated already. This is what the rest of this section focuses on.

Environment relator. Provided a relationVR for notions of valuesVA andVB, by point-
wise lifting we can define a relation (AllVR Γ) on Γ-environments of valuesVA andVB

respectively. We once more use a record wrapper simply to facilitate Agda’s job when
reconstructing implicit arguments.

record All (VR : RelVA VB) (Γ : List I)
(ρA : (Γ −Env)VA ∆) (ρB : (Γ −Env)VB ∆) : Set where

constructor packR

field lookupR : ∀ k→ relVR σ (lookup ρA k) (lookup ρB k)

The first example of two environment being related is reflR that, to any environment ρ
associates a trivial proof of the statement (All EqR Γ ρ ρ). The combinators we introduced
in Section 3.1 to build environments (ε, _•_, etc.) have natural relational counterparts. We
reuse the same names for them, simply appending an R suffix.

Kripke relator. We assume that we have two types of values VA and VB as well as a
relation VR for pairs of such values, and two types of computations CA and CB whose
notion of relatedness is given by CR. We can define KripkeR relating Kripke functions of type
(KripkeVA CA) and (KripkeVB CB) respectively by stating that they send related inputs to
related outputs. We use the relation transformer All defined in the previous paragraph.

KripkeR : ∀ ∆ i→ ∀[ KripkeVA CA ∆ i⇒ KripkeVB CB ∆ i⇒ const Set ]
KripkeR [] σ kA kB = rel CR σ kA kB

KripkeR ∆@(_ :: _) σ kA kB = ∀ {Θ} (ρ : Thinning _ Θ) {vsA vsB}→
AllVR ∆ vsA vsB → rel CR σ (kA ρ vsA) (kB ρ vsB)

Desc relator. The relator (~ d �R) is a relation transformer which characterises structurally
equal layers such that their substructures are themselves related by the relation it is passed as
an argument. It inherits a lot of its relational arguments’ properties: whenever R is reflexive
(respectively symmetric or transitive) so is (~ d �R R).

It is defined by induction on the description and case analysis on the two layers which
are meant to be equal:

• In the stop token case ‘� i, the two layers are considered to be trivially equal (i.e. the
constraint generated is the unit type)

• When facing a recursive position ‘X ∆ j d, we demand that the two substructures are
related by R ∆ j and that the rest of the layers are related by (~ d �R R)

• Two nodes of type ‘σ A d will be related if they both carry the same payload a of
type A and if the rest of the layers are related by (~ d a �R R)
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~_�R : (d : Desc I)→ (∀ ∆ σ→ ∀[ X ∆ σ⇒ Y ∆ σ⇒ const Set ])
→ ∀[ ~ d � X σ⇒ ~ d � Y σ⇒ const Set ]

~ ‘� j �R R x y = >
~ ‘X ∆ j d �R R (r , x) (r’ , y) = R ∆ j r r’ × ~ d �R R x y
~ ‘σ A d �R R (a , x) (a’ , y) = Σ (a’ ≡ a) (λ where refl→ ~ d a �R R x y)

If we were to take a fixpoint of ~_�R, we could obtain a structural notion of equality for
terms which we could prove equivalent to propositional equality. Although interesting in its
own right, this section will focus on more advanced use cases.

9.2 Simulation lemma

A constraint mentioning all three relation transformers appears naturally when we want
to say that a semantics can simulate another one. For instance, renaming is simulated by
substitution: we simply have to restrict ourselves to environments mapping variables to
terms which happen to be variables. More generally, given a semantics SA with valuesVA

and computations CA and a semantics SB with valuesVB and computations CB, we want
to establish the constraints under which these two semantics yield related computations
provided they were called with environments of related values.

These constraints are packaged in a record type called Simulation and parametrised over
the semantics as well as the notion of relatedness used for values (given by a relationVR)
and computations (given by a relation CR).

record Simulation (d : Desc I)
(SA : Semantics dVA CA) (SB : Semantics dVB CB)
(VR : RelVA VB) (CR : Rel CA CB) : Set where

The two first constraints are self-explanatory: the operations th^V and var defined by
each semantics should be compatible with the notions of relatedness used for values and
computations.

thR : (ρ : Thinning Γ ∆)→ relVR σ vA vB → relVR σ (SA.th^V vA ρ) (SB.th^V vB ρ)

varR : relVR σ vA vB → rel CR σ (SA.var vA) (SB.var vB)

The third constraint is similarly simple: the algebras (alg) should take related recursively
evaluated subterms of respective types ~ d � (KripkeVA CA) and ~ d � (KripkeVB CB) to
related computations. The difficuly is in defining an appropriate notion of relatedness bodyR

for these recursively evaluated subterms.

algR : (b : ~ d � (Scope (Tm d s)) σ Γ)→ AllVR Γ ρA ρB →

let vA = fmap d (SA.body ρA) b
vB = fmap d (SB.body ρB) b

in bodyR vA vB → rel CR σ (SA.alg vA) (SB.alg vB)

We can combine ~_�R and KripkeR to express the idea that two recursively evaluated
subterms are related whenever they have an equal shape (which means their Kripke functions
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can be grouped in pairs) and that all the pairs of Kripke function spaces take related inputs
to related outputs.

bodyR : ~ d � (KripkeVA CA) σ ∆→ ~ d � (KripkeVB CB) σ ∆→ Set
bodyR vA vB = ~ d �R (KripkeR VR CR) vA vB

The fundamental lemma of simulations is a generic theorem showing that for each pair
of Semantics respecting the Simulation constraint, we get related computations given
environments of related input values. This theorem is once more mutually proven with a
statement about Scopes, and Sizes play a crucial role in ensuring that the function is indeed
total.

sim : AllVR Γ ρA ρB → (t : Tm d s σ Γ)→
rel CR σ (SA.semantics ρA t) (SB.semantics ρB t)

body : AllVR Γ ρA ρB → ∀ ∆ j→ (t : Scope (Tm d s) ∆ j Γ)→
KripkeR VR CR ∆ j (SA.body ρA ∆ j t) (SB.body ρB ∆ j t)

sim ρR (‘var k) = varR (lookupR ρR k)
sim ρR (‘con t) = algR t ρR (liftR d (body ρR) t)

body ρR [] i t = sim ρR t
body ρR (_ :: _) i t = λ σ vsR → sim (vsR >>R (thR σ <$>R ρR)) t

Instantiating this generic simulation lemma, we can for instance prove that renaming is a
special case of substitution, or that renaming and substitution are extensional, that is, that
given environments equal in a pointwise manner they produce syntactically equal terms. Of
course these results are not new but having them generically over all syntaxes with binding
is convenient. The first author experienced this first hand when tackling the POPLMark
Reloaded challenge (2017) where rensub was actually needed.

rensub : (ρ : Thinning Γ ∆) (t : Tm d∞ σ Γ)→ ren ρ t ≡ sub (‘var <$> ρ) t
rensub ρ = Simulation.sim RenSub (packR λ _→ refl)

RenSub : Simulation d Ren Sub VarTmR EqR

When studying specific languages, new opportunities to deploy the fundamental lemma
of simulations arise. The first author’s solution to the POPLMark Reloaded challenge (2019)
for instance describes the fact that (sub ρ t) reduces to (sub ρ’ t) whenever for all v, ρ(v)
reduces to ρ’(v) as a Simulation. The main theorem (strong normalisation of STLC via a
logical relation) is itself an instance of (the unary version of) the simulation lemma.

The Simulation proof framework is the simplest example of the abstract proof frameworks
introduced in ACMM (2017). We also explain how a similar framework can be defined
for fusion lemmas and deploy it for the renaming-substitution interactions but also their
respective interactions with normalisation by evaluation. Now that we are familiarised with
the techniques at hand, we can tackle this more complex example for all syntaxes definable
in our framework.
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9.3 Fusion lemma

Results that can be reformulated as the ability to fuse two traversals obtained as Semantics
into one abound. When claiming that Tm is a Functor, we have to prove that two successive
renamings can be fused into a single renaming where the Thinnings have been composed.
Similarly, demonstrating that Tm is a relative Monad (Altenkirch et al. (2014)) implies
proving that two consecutive substitutions can be merged into a single one whose environ-
ment is the first one, where the second one has been applied in a pointwise manner. The
Substitution Lemma central to most model constructions (Mitchell and Moggi (1991)) states
that a syntactic substitution followed by the evaluation of the resulting term into the model
is equivalent to the evaluation of the original term with an environment corresponding to
the evaluated substitution.

A direct application of these results is the first author’s entry (2019) to the POPLMark
Reloaded challenge (2017). Using a Desc-based representation of intrinsically well typed
and well scoped terms we directly inherit not only renaming and substitution but also all
four fusion lemmas as corollaries of our generic results. This allows us to remove the usual
boilerplate and go straight to the point. As all of these statements have precisely the same
structure, we can once more devise a framework which will, provided that its constraints
are satisfied, prove a generic fusion lemma.

Fusion is more involved than simulation; we will once more step through each one of the
constraints individually, trying to give the reader an intuition for why they are shaped the
way they are.

9.3.1 The fusion constraints

The notion of fusion is defined for a triple of Semantics; each Si being defined for values in
Vi and computations in Ci. The fundamental lemma associated to such a set of constraints
will state that running SB after SA is equivalent to running SAB only.

The definition of fusion is parametrised by three relations: ER relates triples of environ-
ments of values in (Γ −Env) VA ∆, (∆ −Env) VB Θ and (Γ −Env) VAB Θ respectively;
VR relates pairs of valuesVB andVAB; and CR, our notion of equivalence for evaluation
results, relates pairs of computation in CB and CAB.

record Fusion (d : Desc I) (SA : Semantics dVA CA) (SB : Semantics dVB CB)
(SAB : Semantics dVAB CAB)
(ER : ∀ Γ ∆ {Θ}→ (Γ −Env)VA ∆→ (∆ −Env)VB Θ→ (Γ −Env)VAB Θ→ Set)
(VR : RelVB VAB) (CR : Rel CB CAB) : Set where

The first obstacle we face is the formal definition of “runningSB afterSA”: for this statement
to make sense, the result of running SA ought to be a term. Or rather, we ought to be able
to extract a term from a CA. Hence the first constraint: the existence of a reifyA function,
which we supply as a field of the record Fusion. When dealing with syntactic semantics
such as renaming or substitution this function will be the identity. Nothing prevents proofs,
such as the idempotence of NbE, which use a bona fide reification function that extracts
terms from model values.

reifyA : ∀ σ→ ∀[ CA σ⇒ Tm d∞ σ ]
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Then, we have to think about what happens when going under a binder: SA will produce a
Kripke function space where a syntactic value is required. Provided thatVA is VarLike, we
can make use of reify to get a Scope back. Hence the second constraint is:

vl^VA : VarLikeVA

Still thinking about going under binders: if three evaluation environments ρA in (Γ −Env)
VA ∆, ρB in (∆ −Env) VB Θ, and ρAB in (Γ −Env) VAB Θ are related by ER and we are
given a thinning σ from Θ to Ω then ρA, the thinned ρB and the thinned ρAB should still be
related.

th^ER : ER Γ ∆ ρA ρB ρAB → (ρ : Thinning Θ Ω)→
ER Γ ∆ ρA (th^Env SB.th^V ρB ρ) (th^Env SAB.th^V ρAB ρ)

Remembering that _>>_ is used in the definition of body (Section 6.1) to combine two
disjoint environments (Γ −Env)V Θ and (∆ −Env)V Θ into one of type ((Γ ++ ∆) −Env)V
Θ), we mechanically need a constraint stating that _>>_ is compatible with ER. We demand
as an extra precondition that the values ρB and ρAB are extended with are related according
toVR. Lastly, for all the types to match up, ρA has to be extended with placeholder variables
which is possible because we have already insisted onVA being VarLike.

_>>R_ : ER Γ ∆ ρA ρB ρAB → AllVR Θ vsB vsAB →

let id>>ρA = freshl vl^VA ∆ >> th^Env SA.th^V ρA (freshr vl^Var Θ)
in ER (Θ ++ Γ) (Θ ++ ∆) id>>ρA (vsB >> ρB) (vsAB >> ρAB)

We finally arrive at the constraints focusing on the semantical counterparts of the terms’
constructors. Each constraint essentially states that evaluating a term with SA, reifying the
result and running SB is equivalent to using SAB straight away. This can be made formal by
defining the following relation R.

R : ∀ σ→ (Γ −Env)VA ∆→ (∆ −Env)VB Θ→ (Γ −Env)VAB Θ→

Tm d s σ Γ→ Set
R σ ρA ρB ρAB t = rel CR σ (evalB ρB (reifyA σ (evalA ρA t))) (evalAB ρAB t)

When evaluating a variable, on the one hand SA will look up its meaning in the evaluation
environment, turn the resulting value into a computation which will get reified and then the
result will be evaluated with SB. Provided that all three evaluation environments are related
by ER this should be equivalent to looking up the value in SAB’s environment and turning it
into a computation. Hence the constraint varR:

varR : ER Γ ∆ ρA ρB ρAB → ∀ v→ R σ ρA ρB ρAB (‘var v)

The case of the algebra follows a similar idea albeit being more complex: a term gets
evaluated using SA and to be able to run SB afterwards we need to recover a piece of syntax.
This is possible if the Kripke functional spaces are reified by being fed placeholder VA

arguments (which can be manufactured thanks to the vlˆVA we mentioned before) and then
quoted. Provided that the result of running SB on that term is related via ~ d �R (KripkeR

VR CR) to the result of running SAB on the original term, the algR constraint states that the
two evaluations yield related computations.
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algR : ER Γ ∆ ρA ρB ρAB → (b : ~ d � (Scope (Tm d s)) σ Γ)→
let bA : ~ d � (KripkeVA CA) _ _

bA = fmap d (SA.body ρA) b
bB = fmap d (λ ∆ i→ SB.body ρB ∆ i ◦ quoteA ∆ i) bA

bAB = fmap d (SAB.body ρAB) b
in ~ d �R (KripkeR VR CR) bB bAB → R σ ρA ρB ρAB (‘con b)

9.3.2 The fundamental lemma of fusion

This set of constraints is enough to prove a fundamental lemma of Fusion stating that from
a triple of related environments, one gets a pair of related computations: the composition of
SA and SB on one hand and SAB on the other. This lemma is once again proven mutually
with its counterpart for Semantics’s body’s action on Scopes.

fusion : ER Γ ∆ ρA ρB ρAB → (t : Tm d s σ Γ)→ R σ ρA ρB ρAB t

9.3.3 Instances of fusion

A direct consequence of this result is the four lemmas collectively stating that any pair of
renamings and / or substitutions can be fused together to produce either a renaming (in the
renaming-renaming interaction case) or a substitution (in all the other cases). One such
example is the fusion of substitution followed by renaming into a single substitution where
the renaming has been applied to the environment.

subren : (t : Tm d i σ Γ) (ρ1 : (Γ −Env) (Tm d∞) ∆) (ρ2 : Thinning ∆ Θ)→
ren ρ2 (sub ρ1 t) ≡ sub (ren ρ2 <$> ρ1) t

Another corollary of the fundamental lemma of fusion is the observation that Kaiser,
Schäfer, and Stark (2018) make: assuming functional extensionality, all the ACMM (2017)
traversals are compatible with variable renaming. We reproduced this result generically
for all syntaxes (see accompanying code). The need for functional extensionality arises in
the proof when dealing with subterms which have extra bound variables. These terms are
interpreted as Kripke functional spaces in the host language and we can only prove that
they take equal inputs to equal outputs. An intensional notion of equality will simply not
do here. As a consequence, we refrain from using the generic result in practice when an
axiom-free alternative is provable. Kaiser, Schäfer and Stark’s observation naturally raises
the question of whether the same semantics are also stable under substitution. Our semantics
implementing printing with names is a clear counterexample.

9.4 Definition of bisimilarity for cofinite objects

Although we were able to use propositional equality when studying syntactic traversals
working on terms, it is not the appropriate notion of equality for cofinite trees. What we
want is a generic coinductive notion of bisimilarity for all cofinite tree types obtained as the
unfolding of a description. Two trees are bisimilar if their top layers have the same shape
and their substructures are themselves bisimilar. This is precisely the type of relation ~_�R

was defined to express. Hence the following coinductive relation.
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record ≈^∞Tm (d : Desc I) (s : Size) (i : I) (t u :∞Tm d s i) : Set where
coinductive
field force : {s′ : Size< s}→ ~ d �R (λ _ i→ ≈^∞Tm d s′ i) (t .force) (u .force)

We can then prove by coinduction that this generic definition always gives rise to an
equivalence relation using the relator’s stability properties (if R is reflexive / symmetric /

transitive then so is (~ d �R R) mentioned in Section 9.1.

refl : ≈^∞Tm d s i t t
sym : ≈^∞Tm d s i t u→ ≈^∞Tm d s i u t
trans : ≈^∞Tm d s i t u→ ≈^∞Tm d s i u v→ ≈^∞Tm d s i t v

This definition can be readily deployed to prove, for example, that the unfolding of 01	
defined in Section 8.1 is indeed bisimilar to 01· · · which was defined in direct style. The
proof is straightforward due to the simplicity of this example: the first refl witnesses the fact
that both definitions pick the same constructor (a cons cell), the second that they carry the
same natural number, and we can conclude by an appeal to the coinduction hypothesis.

eq-01 : ∀ {i}→ ≈^∞Tm (CListD N) i tt 01· · · (unfold 01	)
eq-10 : ∀ {i}→ ≈^∞Tm (CListD N) i tt 10· · · (unfold (1 :: 0 :: 1 ::x s z))

eq-01 .force = refl , refl , eq-10 , tt
eq-10 .force = refl , refl , eq-01 , tt

10 Related work

10.1 Variable binding

The representation of variable binding in formal systems has been a hot topic for decades.
Part of the purpose of the first POPLMark challenge (2005) was to explore and compare
various methods.

Having based our work on a de Bruijn encoding of variables, and thus a canonical
treatment of α-equivalence classes, our work has no direct comparison with permutation-
based treatments such as those of Pitts’ and Gabbay’s nominal syntax (2002).

Our generic universe of syntax is based on scoped and typed de Bruijn indices (de Bruijn
(1972)) but it is not a necessity. It is for instance possible to give an interpretation of
Descriptions corresponding to Chlipala’s Parametric Higher-Order Abstract Syntax (2008)
and we would be interested to see what the appropriate notion of Semantics is for this
representation.

10.2 Alternative binding structures

The binding structure we present here is based on a flat, lexical scoping strategy. There are
other strategies and it would be interesting to see whether our approach could be reused in
these cases.

Weirich, Yorgey, and Sheard’s work (2011) encompassing a large array of patterns
(nested, recursive, telescopic, and n-ary) can inform our design. They do not enforce scoping
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invariants internally which forces them to introduce separate constructors for a simple binder,
a recursive one, or a telescopic pattern. They recover guarantees by giving their syntaxes
a nominal semantics thus bolting down the precise meaning of each combinator and then
proving that users may only generate well formed terms.

Bach Poulsen, Rouvoet, Tolmach, Krebbers and Visser (2018) introduce notions of
scope graphs and frames to scale the techniques typical of well scoped and typed deep
embeddings to imperative languages. They showcase the core ideas of their work using
STLC extended with references and then demonstrate that they can already handle a large
subset of Middleweight Java. We have demonstrated that our framework could be used
to define effectful semantics by choosing an appropriate monad stack (Moggi (1991)).
This suggests we should be able to model STLC+Ref. It is however clear that the scoping
structures handled by scope graphs and frames are, in their full generality, out of reach for
our framework. In constrast, our work shines by its generality: we define an entire universe
of syntaxes and provide users with traversals and lemmas implemented once and for all.

Many other opportunities to enrich the notion of binder in our library are highlighted by
Cheney (2005). As we have demonstrated in Sections 7.5 and 7.6 we can already handle
let-bindings generically for all syntaxes. We are currently considering the modification of
our system to handle deeply nested patterns by removing the constraint that the binders’ and
variables’ sorts are identical. A notion of binding corresponding to hierarchical namespaces
would be an exciting addition.

We have demonstrated how to write generic programs over the potentially cyclic structures
of Ghani, Hamana, Uustalu and Vene (2006). Further work by Hamana (2009) yielded a
different presentation of cyclic structures which preserves sharing: pointers can not only
refer to nodes above them but also across from them in the cyclic tree. Capturing this class
of inductive types as a set of syntaxes with binding and writing generic programs over them
is still an open problem.

10.3 Semantics of syntaxes with binding

An early foundational study of a general semantic framework for signatures with binding,
algebras for such signatures, and initiality of the term algebra, giving rise to a categorical
“program” for substitution and proofs of its properties, was given by Fiore, Plotkin and
Turi (Fiore et al. (1999)). They worked in the category of presheaves over renamings, (a
skeleton of) the category of finite sets. The presheaf condition corresponds to our notion of
being Thinnable. Exhibiting algebras based on both de Bruijn level and index encodings,
their approach isolates the usual (abstract) arithmetic required of such encodings.

By contrast, we are working in an implemented type theory where the encoding can be
understood as its own foundation without appeal to an external mathematical semantics. We
are able to go further in developing machine-checked such implementations and proofs,
themselves generic with respect to an abstract syntax Desc of syntaxes with binding.
Moreover, the usual source of implementation anxiety, namely concrete arithmetic on de
Bruijn indices, has been successfully encapsulated via the � coalgebra structure. It is perhaps
noteworthy that our type-theoretic constructions, by contrast with their categorical ones,
appear to make fewer commitments as to functoriality, thinnability, etc. in our specification
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of semantics, with such properties typically being provable as a further instance of our
framework.

10.4 Meta-theory automation via tactics and code generation

The tediousness of repeatedly proving similar statements has unsurprisingly led to various
attempts at automating the pain away via either code generation or the definition of tactics.
These solutions can be seen as untrusted oracles driving the interactive theorem prover.

Polonowski’s DBGen (2013) takes as input a raw syntax with comments annotating
binding sites. It generates a module defining lifting, substitution as well as a raw syntax
using names and a validation function transforming named terms into de Bruijn ones; we
refrain from calling it a scope checker as terms are not statically proven to be well scoped.

Kaiser, Schäfer, and Stark (2018) build on our previous paper to draft possible theoretical
foundations for Autosubst, a so-far untrusted set of tactics. The paper is based on a specific
syntax: well scoped call-by-value System F. In contrast, our effort has been here to carve out
a precise universe of syntaxes with binding and give a systematic account of these syntaxes’
semantics and proofs.

Keuchel, Weirich, and Schrijvers’ Needle (2016) is a code generator written in Haskell
producing syntax-specific Coq modules implementing common traversals and lemmas about
them.

10.5 Universes of syntaxes with binding

Keeping in mind Altenkirch and McBride’s observation that generic programming is every-
day programming in dependently typed languages (2002), we can naturally expect generic,
provably sound, treatments of these notions in tools such as Agda or Coq.

Keuchel (2011) together with Jeuring (2012) define a universe of syntaxes with binding
with a rich notion of binding patterns closed under products but also sums as long as the dis-
joint patterns bind the same variables. They give their universe two distinct semantics: a first
one based on well scoped de Bruijn indices and a second one based on Parametric Higher-
Order Abstract Syntax (PHOAS) (Chlipala (2008)) together with a generic conversion
function from the de Bruijn syntax to the PHOAS one. Following McBride’s unpublished
2005 manuscript, which emerged as (Benton et al. (2012)), they implement both renaming
and substitution in one fell swoop. They leave other opportunities for generic programming
and proving to future work.

Keuchel, Weirich, and Schrijvers’ Knot (2016) implements as a set of generic programs
the traversals and lemmas generated in specialised forms by their Needle program. They see
Needle as a pragmatic choice: working directly with the free monadic terms over finitary
containers would be too cumbersome. In the first author’s experience solving the POPLMark
Reloaded challenge, Agda’s pattern synonyms make working with an encoded definition
almost seamless.

The GMeta generic framework (2012) provides a universe of syntaxes and offers various
binding conventions (locally nameless (Charguéraud (2012)) or de Bruijn indices). It also
generically implements common traversals (e.g. computing the sets of free variables, shifting
de Bruijn indices or substituting terms for parameters) as well as common predicates (e.g.
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being a closed term) and provides generic lemmas proving that they are well behaved. It
does not offer a generic framework for defining new well scoped-and-typed semantics and
proving their properties.

Érdi (2018) defines a universe inspired by a first draft of this paper and gives three
different interpretations (raw, scoped and typed syntax) related via erasure. He provides
type- and scope-preserving renaming and substitution as well as various generic proofs that
they are well behaved but offers neither a generic notion of semantics, nor generic proof
frameworks.

Copello (2017) works with named binders and defines nominal techniques (e.g. name
swapping) and ultimately α-equivalence over a universe of regular trees with binders
inspired by Morris’ (2006).

10.6 Fusion of successive traversals

The careful characterisation of the successive recursive traversals which can be fused
together into a single pass in a semantics-preserving way is not new. This transformation is
a much needed optimisation principle in a high-level functional language.

Through the careful study of the recursion operator associated to each strictly positive
data type, Malcolm (1990) defined optimising fusion proof principles. Other optimisations
such as deforestation (Wadler (1990)) or the compilation of a recursive definition into an
equivalent abstract machine-based tail-recursive program (Cortiñas and Swierstra (2018))
rely on similar generic proofs that these transformations are meaning-preserving.

11 Conclusion and future work

Recalling our earlier work (2017) we have started from an example of a type- and scope-
safe language (the simply typed λ-calculus), have studied common invariant preserving
traversals and noticed their similarity. After introducing a notion of semantics and refactoring
these traversals as instances of the same fundamental lemma, we have observed the tight
connection between the abstract definition of semantics and the shape of the language.

By extending a universe of data type descriptions to support a notion of binding, we
have given a generic presentation of syntaxes with binding. We then described a large
class of type- and scope-safe generic programs acting on all of them. We started with
syntactic traversals such as renaming and substitution. We then demonstrated how to write a
small compiler pipeline: scope checking, type checking and elaboration to a core language,
desugaring of new constructors added by a language transformer, dead code elimination
and inlining, partial evaluation, and printing with names.

We have seen how to construct generic proofs about these generic programs. We first
introduced a Simulation relation showing what it means for two semantics to yield related
outputs whenever they are fed related input environments. We then built on our experience to
tackle a more involved case: identifying a set of constraints guaranteeing that two semantics
run consecutively can be subsumed by a single pass of a third one.

We have put all of these results into practice using them to solve the POPLMark Reloaded
challenge (2019) which consists of formalising strong normalisation for the simply typed
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λ-calculus via a logical relation argument. This also gave us the opportunity to try our
framework on larger languages by tackling the challenge’s extensions to sum types and
Gödel’s System T.

Finally, we have demonstrated that this formalisation can be reused in other domains
by seeing our syntaxes with binding as potentially cyclic terms. Their unfolding is a non-
standard semantics and we provide the user with a generic notion of bisimilarity to reason
about them.

11.1 Limitations of the current framework

Although quite versatile already our current framework has some limitations which sug-
gest avenues for future work. We list these limitations from easiest to hardest to resolve.
Remember that each modification to the universe of syntaxes needs to be given an
appropriate semantics.

Closure under products. Our current universe of descriptions is closed under sums as
demonstrated in Section 5. It is however not closed under products: two arbitrary right-
nested products conforming to a description may disagree on the sort of the term they are
constructing. An approach where the sort is an input from which the description of allowed
constructors is computed (à la Dagand (2013) where, for instance, the ‘lam constructor is
only offered if the input sort is a function type) would not suffer from this limitation.

Unrestricted variables. Our current notion of variable can be used to form a term of any
sort. We remarked in Sections 7.3 and 7.4 that in some languages we want to restrict this
ability to one sort in particular. In that case, we wanted users to only be able to use variables
at the sort Infer of our bidirectional language. For the time-being we made do by restricting
the environment values our Semantics use to a subset of the sorts: terms with variables of
the wrong sort will not be given a semantics.

Flat binding structure. Our current set-up limits us to flat binding structures: variables and
binders share the same sorts. This prevents us from representing languages with binding
patterns, for instance pattern-matching let-binders which can have arbitrarily nested patterns
taking pairs apart.

Closure under derivation. One-hole contexts play a major role in the theory of program-
ming languages. Just like the one-hole context of a data type is a data type (Abbott et al.
(2005)), we would like our universe to be closed under derivatives so that the formalisation
of, for example, evaluation contexts could benefit directly from the existing machinery.

Closure under closures. Jander’s work on formalising and certifying continuation-passing
style transformations (Jander (2019)) highlighted the need for a notion of syntaxes with
closures. Recalling that our notion of Semantics is always compatible with precomposition
with a renaming (Kaiser et al. (2018)) but not necessarily precomposition with a substitu-
tion (printing is, for instance, not stable under substitution), accommodating terms with
suspended substitutions is a real challenge. Preliminary experiments show that a drastic
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modification of the type of the fundamental lemma of Semantics makes dealing with such
closures possible. Whether the resulting traversal has good properties that can be proven
generically is still an open problem.

11.2 Future work

The diverse influences leading to this work suggest many opportunities for future research.

• Our example of elaborating an enriched language to a core one, ACMM’s implemen-
tation of a continuation-passing style conversion function, and Jander’s work (2019)
on the certification of a intrinsically typed CPS transformation raises the question of
how many such common compilation passes can be implemented generically.

• Our universe only includes syntaxes that allow unrestricted variable use. Variables
may be used multiple times or never, with no restriction. We are interested in repre-
senting syntaxes that only allow single use of variables, such as term calculi for linear
logic (Benton et al. (1993); Barber (1996)), or that annotate variables with usage
information (Brunel et al. (2014); Ghica and Smith (2014); Petricek et al. (2014);
Atkey and Wood (2018)), or arrange variables into non-list-like structures such as
bunches (O’Hearn (2003)), or arbitrary algebraic structures (Licata et al. (2017)), and
in investigating what form a generic semantics for these syntaxes takes.

• An extension of Dagand and McBride’s theory of ornaments (2014) could provide an
appropriate framework to formalise and mechanise the connection between various
languages, some being seen as refinements of others. This is particularly evident
when considering the informative type checker (see the accompanying code) which
given a scoped term produces a scoped-and-typed term by type checking or type
inference.

• The first author’s work on the POPLMark Reloaded challenge highlights a need for
generic notions of congruence closure which would come with guarantees (if the
original relation is stable under renaming and substitution so should the closure).
Similarly, the “evaluation contexts” corresponding to a syntax could be derived auto-
matically by building on the work of Huet (1997) and Abbott, Altenkirch, McBride
and Ghani (2005), allowing us to revisit previous work based on concrete instances
of ACMM such as McLaughlin, McKinna and Stark (2018).

We now know how to generically describe syntaxes and their well behaved semantics. We
can now start asking what it means to define well behaved judgments. Why stop at helping
the user write their specific language’s meta-theory when we could study meta-meta-theory?
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