Z7U064-05-FPR

main 14 December 2019 147

Under consideration for publication in J. Functional Programming 1

POPLMark Reloaded:
Mechanizing Proofs by Logical Relations
ANDREAS ABEL

Department of Computer Science and Engineering, Gothenburg University, Gothenburg,
Sweden

GUILLAUME ALLAIS
iCIS, Radboud University, Nijmegen, Netherlands

ALIYA HAMEER and BRIGITTE PIENTKA
School of Computer Science, McGill University, Montreal, Canada

ALBERTO MOMIGLIANO
Department of Computer Science, Universita degli Studi di Milano, Milan, Italy

STEVEN SCHAFER and KATHRIN STARK
Saarland Informatics Campus, Saarland University, Saarland, Germany

Abstract

We propose a new collection of benchmark problems in mechanizing the metatheory of programming
languages, in order to compare and push the state of the art of proof assistants. In particular, we focus
on proofs using logical relations and propose establishing strong normalization of a simply-typed
lambda-calculus with a proof by Kripke-style logical relations as a benchmark. We give a modern
view of this well-understood problem by formulating our logical relation on well-typed terms. Using
this case study, we share some of the lessons learned tackling this problem in different dependently-
typed proof environments. In particular, we consider the mechanization in Beluga, a proof environ-
ment that supports higher-order abstract syntax encodings and contrast it to the development and
strategies used in general purpose proof assistants such as Coq and Agda.The goal of this paper is
to engage the community in discussions on what support in proof environments is needed to truly
bring mechanized metatheory to the masses and engage said community in the crafting of future
benchmarks.

1 Introduction

Programming languages (PL) design and implementations are often tricky to get right.
To understand the subtle and complex interactions of language concepts and avoid flaws,
we must rely on rigorous language definitions and on proofs so that we can ensure that
languages are safe, robust, and trustworthy. However, writing such proofs by hand is very
often complicated and error prone, not because of any particularly challenging insights
involved, but simply because of the overhead required in keeping track of all the relevant

Z7U064-05-FPR

main 14 December 2019 147

2 A. Abel et. al.

details and possible cases. These difficulties increase significantly when languages grow
larger and proofs grow correspondingly longer; when working with a real-world program-
ming language, carrying out such proofs by hand becomes unmanageable and in the end
it is rarely done. In principle, proof assistants provide a way of formalizing programming
languages definitions and writing machine-verified proofs about their properties, and they
would seem a promising solution to this problem — and there is by now a ever-extending
list of significant achievements in the area (Klein & Nipkow, 2006} Lee et al., 2007 |Leroy,
2009; Kumar et al., 2014). Note that setting up the necessary infrastructure common to the
design and verification of a PL. model may incur in significant overhead, typically for mod-
eling variables, substitutions, typing contexts, etc. In fact, with the exception of (Lee ef al.,
2007), in all the cited papers, the authors went out of their way to avoid dealing with those
issues and chose to work with “raw” terms, at the cost of losing a-equivalence and capture-
avoiding substitutions, when not being pushed to use techniques such as closure-based
operational semantics. This has arguably hindered the full adoption of this technology
by the working semanticist, as the comments in (Rossberg et al., 2014) further explainE]
Over 10 years ago, Aydemir et al. (2005) proposed as a challenge the mechanization of
part of the metatheory of F.., which featured second-order polymorphism, subtyping, and
records. In order to understand the state of the art in the field, the problems were chosen to
emphasize aspects of programming languages that were known to be difficult to formalize:
in particular, the challenge placed most of its focus on dealing with binding structures,
such as functions, let-expressions, and pattern matching constructs. The challenge allowed
the PL community to survey existing techniques for reasoning about variable bindings and
popularized, to a certain extent, the use of proof assistants in their daily work (Pierce &
‘Weirich, 2012).

We believe the time is ripe to revisit the question: How close are we to a world where
every paper on programming languages is accompanied by an electronic appendix with
machine checked proofs? To do this, we need to go well beyond the original POPLMark
challenge. In this paper, we propose a new collection of benchmark problems in the mech-
anization of the metatheory of programming languages for comparing, understanding, and
especially pushing the state of the art of proof assistants. In particular, we focus on proofs
using logical relations (LR), an elegant and versatile proof technique with applications
ubiquitous in programming languages theory. Initially introduced by Tait (1967), the tech-
nique has been applied to logical problems such as strong normalization (Girard, 1972),
A-definability (Plotkin, 1973), and the semantics of computational type theory (Werner,
1992; |Geuvers, 1995). In recent years, the LR proof technique has become a staple for pro-
gramming languages researchers (see, e.g., Ahmed (2013)). There is also a long tradition
(almost a gold standard) in using proofs by logical relations to showcase the power of a
given proof assistant; for early examples see (Altenkirch, 1993)) and (Coquand, 1993).

The core idea of logical relations is straightforward: say we want to use LR for proving
that all well-typed terms have a property P; then we define, by recursion on types, a rela-
tional model for those types. Thus, for instance, (well-typed) pairs consist of components

' Concerning the use of the locally nameless representation for binders: ‘Out of a total of around
550 lemmas, approximately 400 were tedious “infrastructure” lemmas; only the remainder had
direct relevance to the metatheory of Fy, or elaboration”.

Z7U064-05-FPR

main 14 December 2019 147

POPLMark Reloaded 3

that are related pairwise, while (well-typed) terms at function type take logically related
arguments to related results. Using the relational model for functions, e.g.,in the case
of function application, so requires that (well-typed) logically related arguments indeed
exist. While for unscoped terms, we can always assume a new, free variable, for scoped
or well-typed syntax we have to guarantee that such a variable actually does exist. Here,
Kripke-style LR (Mitchell & Moggi, 1991) come in play: we may think of the context in
which an open term is meaningful as a world and then consider the term in all possible
context/world extensions. In this extended context we can assume the existence of such
a variable. Kripke-style logical relations hence provide a powerful proof technique that
particularly applies to reasoning about open programs.

They also often play an essential role in analyzing the meta-theoretic properties of
dependently typed systems (Urban ef al., 2011;|Abel et al., 2018).

In general LR proofs may be difficult to mechanize as they require a careful set-up
for reasoning about open terms, modeling contexts of assumptions and context exten-
sions, using recursive definitions, and reasoning about (simultaneous) substitutions. As
Altenkirch (1993)) remarked:

“I discovered that the core part of the proof (here proving lemmas about CR

[reducibility candidates]) is fairly straightforward and only requires a good

understanding of the paper version. However, in completing the proof I observed that in

certain places I had to invest much more work than expected, e.g., proving lemmas about

substitution and weakening.”

In practice, developing logical relation proofs for realistic languages can require an
almost heroic mechanization effort in existing general-purpose proof assistants.

We propose the benchmark of establishing strong normalization of the simply-typed A-

calculus (STLC), extended to disjoint sums, with a proof by Kripke-style logical relations.

We make three main contributions:

Contribution 1: A tutorial on strong normalization proof(s) using logical relations
We give a modular tutorial proof of strong normalization for STLC via logical relations.
Following Goguen (1995)), we define reduction in a type-directed manner, as this simplifies
the analysis and eventual formalization of the metatheory and it is a common technique
found in dependently-typed systems.

We motivate our choice of this challenge in Section[2]before moving on to our exposition
of the problem in Section [3| We start (Section by relating the traditional approach of
describing normalization using the accessibility relation, that is the well-founded part of
the reduction relation, with the “modern” view of describing the set of (strongly) normal-
izing terms by rule induction (van Raamsdonk & Severi, 1995} Joachimski & Matthes,
2003). In Section we prove strong normalization of STLC using the latter and then
(Section[3.7) we extend the challenge to disjoint sums and briefly mention other extensions
in Section[3.8] We omit most of the proof details from the main text, but we give the proofs
of all lemmas and theorems in detail in the accompanying appendix.

Contribution 2: Challenge problem(s) These challenge problems seek to highlight var-
ious aspects that commonly arise when mechanizing PL semantics and its metatheory

Z7U064-05-FPR

main 14 December 2019 147

4 A. Abel et. al.

in a proof assistant, only some of which have been covered by the original POPLMark
challenge: What are the costs/benefits of a certain variable binding representation? Do
we represent well-typed terms extrinsically, that is with a separate typing judgment, or
intrinsically, exploiting some form of dependent types in the logical framework? Is there
built-in support for (simultaneous) substitutions and their equational theory? If not, how do
we support working with substitutions? How do we reason about contexts of assumptions
and their structural properties, such as exchange, weakening, and strengthening? Is it con-
venient to use notions such as renaming and weakening substitutions to witness relations
among contexts? What is the support for more sophisticated versions of induction, such
as well-founded or lexicographic? How hard is it to represent well-founded (Noetherian)
inductive definitions such as accessibility relations? Is it problematic to deal with recursive
definitions that are not strictly positive, but are recursively defined based on the structure of
types? The answers to these questions can help us to guide our mechanizations and avoid
some possible pitfalls.

Contribution 3: Lessons learned We have tackled the challenge problem(s) in different
dependently-typed proof environments using a variety of techniques: higher-order abstract
syntax and first-class contexts, substitutions and renamings in Beluga (Section [4.T)); well-
typed de Bruijn encoding in Coq (Section4.2); and well-typed de Bruijn encoding in Agda
using the generic-syntax library of (Allais et al., 2018)) (Section [4.3). The formalizations
can be browsed at https://poplmark-reloaded.github.io|l and downloaded from
https://github.com/poplmark-reloaded/poplmark-reloaded.

In all these systems, we have mechanized the soundness of the inductive definition of
strong normalization with respect to the one in terms of accessibility, and then the strong
normalization proof for STLC. We have also completed the extension to disjoint sums. Just
as a software testing suite only makes the grade if it finds bugs, a benchmark ought to stress
the limitations of the technology underlying current proof assistants, and we comment
for each mechanization on some of the critical lessons learned; in particular, we discuss
how the benchmark highlighted shortcomings in each of the systems we have employed.
Further, we summarize and compare how we deal with some of the key challenges in these
systems (Section[3).

We hope that our benchmark will serve as a baseline for measuring the progress in
developing proof environments and/or libraries, and that others will be motivated to submit
solutions. At the same time, we want to emphasize that this benchmark is but one dimen-
sion along which we can evaluate and compare proof assistants, and there are many other
aspects for which we should aim to craft additional challenges (especially for problems
that deal with resources, state, coinduction, etc.). We will deem this paper a success if we
manage to engage the community in discussing what support proof environments should
provide to truly bring mechanized metatheory to the masses.

2 Motivation

A natural question one might ask upon reading the description of the benchmark is, why
this specific problem? Certainly, starting a conversation about proof assistant support for
mechanizing logical relations proofs is a worthy goal, given their recent ubiquity in pro-

https://poplmark-reloaded.github.io
https://github.com/poplmark-reloaded/poplmark-reloaded

Z7U064-05-FPR

main 14 December 2019 147

POPLMark Reloaded 5

gramming languages research; still, why restrict ourselves to an elementary property such
as strong normalization, and on such a small calculus as the STLC? And why resort to
Kripke LR for its normalization, when, after all, this can be established by more elementary
syntactical means, for example using hereditary substitutions (Watkins et al., 2002)?

We would like to stress that this problem is a benchmark, as opposed to a grand chal-
lenge (Hoare, 2003)), with the aim of providing a common ground for comparison between
current proof assistants while pushing the baseline further than the original POPLMark
challenge. We consider this problem as a first step in evaluating the capabilities of different
proof assistants for mechanizing proofs by logical relations; there is certainly potential for
follow-up problems to be formulated by which to emphasize other categories of logical
relations proofs and related issues. At the same time, strong normalization, even restricted
to the STLC, is trickier than it looks; one can easily get it wrong, especially since there are
no detailed textbook descriptions. With this in mind, we have chosen a challenge problem
that satisfies two major criteria:

e The problem should be easily accessible, while still being worthwhile. In order to
effectively engage the PL community, the challenge problem should be one that is
easily understood and acted upon. It should be small enough in scale that it can
be mechanized in a reasonable amount of time, and ideally it should be doable
by a graduate studentﬂ We would like the problem to be a suitable way to get
acquainted with a particular proof assistant and with mechanizing a particular proof
technique. Strong normalization of the lambda calculus, being a fundamental and
widely-studied problem, fits all these criteria well, and keeping to the STLC keeps
the problem size small while still exhibiting the technical challenges we wish to
emphasize that arise in more complex proofs. This motivates also the use of a Kripke-
style proof, since this a technique that cannot be avoided in other more advanced
settings, such as equivalence checking (Crary, 2005) or more generally studying the
metatheory of dependently typed systems (Abel et al., 2018]).

e The problem should serve as a first step to survey the state of the art, compare
proof assistants, and encourage development to make them more robust. There are,
of course, other problems that may meet (at least partially) our accessibility crite-
rion: for instance proving parametricity properties for System F; or mechanizing
properties of systems where resources play a significant role. And indeed these
problems might serve well as follow-ups to this one in a benchmarks suite. For a
first benchmark in mechanizing proofs by logical relations, however, we feel they
are not as useful. The former requires impredicativity, which would limit the scope
of our comparison; in fact, proof assistants such as Agda and Beluga do not support
it, the former by design, the latter as dictated by its current foundations. Proofs
over resources (as an example see the termination proof in (Ahmed et al., 2007),
where the presented system involves linear types and memory management) involves
reasoning with structures such as heaps, and requires users to implement their own
infrastructure, as existing systems do not typically provide any specific support for

2 In fact, this is exactly what happened with Sebastian Sturm’s master thesis (Sturm, 2018), where
he gives a solution of the benchmark in F*.

Z7U064-05-FPR

main

14 December 2019 147

A. Abel et. al.

heaps. In this case, we would be comparing the user’s cleverness in representing the
relevant structures more than the features of the systems themselves, and this would
provide a less useful basis, we believe, for comparison of the features of existing
proof assistants. By choosing the problem of strong normalization, with contexts
as Kripke worlds, we wish first and foremost to highlight aspects of mechanizing
metatheory that have seen a lot of growth in the past several years, and for which
there exists a variety of different approaches. We discuss possible future benchmarks
that may build upon this one in Section |7}

This paper seeks to pose and hopefully answer the question: How far have we come

since the original POPLMark challenge? In their proposal, Aydemir et al. identified four
key features that they wished their challenge problem to emphasize: binding, complex
inductions, experimentation, and component reuse. We focus here on pushing the baseline
in the first two of these areas:

Binding. A central issue in the POPLMark challenge was reasoning about vari-
able binding. In the past decade, significant progress has been made in implement-
ing libraries and tools for working with binders in general-purpose proof assistants
such as Coq and Agda, (e.g., (Chlipala, 2008; Aydemir & Weirich, 2010; [Felty
& Momigliano, 2012; [Lee ef al., 2012; |Schifer et al., 2014)), exploring different
foundations (see, e.g., (Licata & Harper, 2009} Pouillard & Pottier, 2010)), as well as
extending the power of HOAS-based systems such as Abella and Beluga (e.g., (Cave
& Pientka, 2012} (Cave & Pientka, 2013} |Wang et al., 2013)). Our benchmark aims
to see how these systems fare when presented with a greater variety of issues that
occur in the presence of binders, beyond the mere syntactical representation of the
binding structures: we refer here to context extensions, properties of contexts such
as weakening and exchange, simultaneous substitutions and renamings. And in fact,
the process of mechanizing our benchmark in Agda, Beluga, and Coq has led to
progress in all three of the tested systems and libraries in this regard.

Complex inductions. The POPLMark challenge focused on syntactic inductive proofs,
in particular type soundness. In contrast, our benchmark involves the more challeng-

ing principles of lexicographic induction and induction that is stable under exchange

of variables. The accessibility definition of strong normalization used in the first half

of the challenge requires an inductive type with infinite branching. Finally, formaliz-

ing the logical relation involves a non-strictly positive, yet stratified definition, that

is, a relation defined inductively on one of the indices.

Thus we feel that our choice of challenge problem, while seemingly small and simple,

in fact emphasizes several issues that must be dealt with in order to mechanize the more
complicated logical relations proofs that come up in practice. We seek not to directly
advance the state of the art in PL theory, but instead to stimulate discussion between the
communities for different proof assistants, to encourage sharing of ideas between different
systems, and to make the core of our systems more robust.

Z7U064-05-FPR

main 14 December 2019 147

POPLMark Reloaded 7

'-M:A Term M has type A in the context I'

IxA-M:B x:Ael’ TFM:A=B F'EN:A
T'FAxAM:A=B I'kx:A I'FMN:B
Substitution o maps variables from I to terms in the context I
I'to:T I'-M:A
I'F-:. I'-o,M/x:T,xA

Fig. 1. Typing for STLC, and well-typed substitutions

3 Strong normalization for the A-calculus

Proving (strong) normalization of the A-calculus (STLC) using logical relations is a well-
known result; however, modern tutorials on the subject are largely missing. There are
two textbook resources one might refer to (Pierce, 2002) (Chapter 11) and (Girard et al.,
1989) (Chapter 6), neither of them being satisfactory for our purposes. Pierce (2002) only
discusses weak normalization and on top of it he only considers reductions for closed
terms, i.e., there is no evaluation inside a A-abstraction. Girard et al. (1989) present a high-
level account of proving strong normalization where many of the more subtle issues are
skipped — in fact, it is over in less than five pages.

3.1 Simply typed A-calculus with type-directed reductions

Our challenge problem is centered around the simply-typed A calculus with a base type i.
The grammar for the main syntactical entities are:

Terms M,N == x|AxAM|MN
Types A,B = A=B]|i
Contexts r = -|T,xA
Substitutions o n= -|o,M/x

The typing rules for terms and substitutions are standard, but we include them here for
completeness in Fig.[I] Note that only variables will inhabit the base type.

Since the notion of reducibility is Kripke-based, we will be extra careful about contexts
and operations over them, such as weakening; we have learned the hard way how leaving
such apparently trivial notions under-specified may come back to haunt us during the
mechanization. We view a context as an ordered list without repetitions that grows on
the right (as opposed to at arbitrary positions within the context). Although renamings p
are merely substitutions that map variables to variables, we write I" <, I" for well-typed
renamings instead of I' - p : T. In the case that p is an identity substitution, i.e., maps
variables to themselves, I is an extension of I' modulo reordering. This is one motivation
for our notation I <,, T, the other being the analogy with record subtyping.

We define the application of the simultaneous substitution ¢ to a term M below and
write o/(x) to denote variable lookup. Note that inherent in this definition is that ¢ provides
instantiations for all the free variables in M, as o(x) would otherwise not be defined.

Z7U064-05-FPR

main 14 December 2019 147

8 A. Abel et. al.

Type-directed reduction: |['FM — N : A

I'CAxAM:A=B THFN:A

S-
I'- (Ax:A.M)N — [N/x]M : B P
I'-M—M:A=B T'FN:A I'-M:A=B THFN—N:A
S-APpP-L S-APpP-R
I'-MN— M'N:B I'-MN— MN':B

LxA-M — M :B
IF'FAxAM — AxAM :A=B

Type-directed multi-step reduction: | TFM —* N: A

I'M—N:B TTFN—*M:B
TFM v m.p MRER TFM > M B M-TRANS

S-ABS

Fig. 2. Type-directed reductions

[0](Ax:A.B) = AxA.[o,x/x|M [o]() = -

[c]MN) = [o]M [o]N [o](0", M /x) = [o]o’, [o]M/x

[0](x) = o) [o](lo1]o2) = [[olai]oy
IN/x|([o,x/x]M) = [o,N/x]M

Furthermore, we often silently exploit in this tutorial standard equational properties about
well-typed simultaneous substitutions (which also naturally hold for renamings), such as
composition and application. For convenience, we also use the single substitution operation
[N/x]M, whose definition is the usual capture-avoiding one, and show how single and
simultaneous substitution compose.

We describe single step reductions in Figure Following (Goguen, 1995)), we describe
reductions in a type-directed manner. While types only play an essential role when we
include rules such as m-expansion or in the presence of the unit type, which we do not
consider here, we follow his approach as it scales to defining more complex notions such as
type-directed equivalence (see also Sec.[3.8). There is another, more pedagogical advantage
to the typed view: the scope of variables is made explicit, making them either bound by
lambda-abstraction or in the typing context I'. On top of the single step reduction relation,
we define multi-step reductions.

Our benchmark relies on a number of basic properties about typing and typed reductions
whose proofs are straightforward.

Lemma 3.1 (Reductions Preserve Typing). IfI'-M — N:A, then'EM : A and
I'EN:A

Proof. By induction on the given derivation. O
Lemma 3.2 (Weakening and Exchange for Typing and Typed Substitutions).

o IfT .y A x:A'-M:B, thenT',x:A’,y;A+M : B.
e [fT'-M:B, then',xXA+M :B.
e IfT"+0:T, thenl’,x:A+ o :T.

Proof. By induction on the given derivation; the second property relies on the first.

ZU064-05-FPR main 14 December 2019 147

POPLMark Reloaded 9

Corollary 3.1 (Weakening of Renamings). If I" <, T, then T" , x:A <, I.
Lemma 3.3 (Anti-Renaming of Typing). If I'F [p|M : A and " <, T, then T+ M : A.

Proof. By induction on the given typing derivation taking into account the equational
theory of substitutions. O

Lemma 3.4 (Weakening and Exchange of Typed Reductions).

o fTFM — N:B, then,xxXAF-M — N :B.

o IfT,y:Ax:A'-M — N:B, thenT,x:A',y;A-M — N : B.
Proof. By mutual induction on the given derivation. O
Lemma 3.5 (Substitution Property of Typed Reductions). If T',x:A+M — M’ : B and
I'EN:A thenTH[N/x]M — [N/x]M' : B.

Proof. By induction on the first derivation, using the usual properties of composition of
substitutions as well as weakening and exchange. O

We will also rely on some standard properties about multi-step reduction.
Lemma 3.6 (Properties of Multi-Step Reductions).

IfTEM) —*My:Band T+ M, —* M3 : B, then T' = M} —* M3 : B.
IfTEM —*M :A=BandU+-N:A, thenTHFMN —*M' N :B.
IfTFM:A=BandT-N —*N'":A, thenTFMN —*M N’ : B.
IfU,xA-M —*M' :B, thenT - Ax:A.M —* Ax:AM' : A= B.

5 IfT,xA-M:BandTHN — N': A, thenT = [N /x]M —* [N’ /x]M : B.

bl o

Proof. Properties [T} 2}] and [are proven by induction on the given multi-step rela-
tion. Property [5|is proven by induction on I',x:A - M : B using weakening and exchange
(Lemma [3.4). O

Remark One may choose to formulate the weakening and substitution properties using
simultaneous substitutions—and in fact, we will need those properties in the subsequent
development.

Lemma 3.7 (Closure under Simultaneous Substitution and Renaming). LetI'FM — N :
A.

1. If T'F0:T, thenT' \ [c]M — [O]N : A.
2. If "<, T, then T + [p]M — [p]N : A.

3.2 Defining strong normalization

Classically, a term M is strongly normalizing if there are no infinite reduction sequences
from M. Constructively, we can define strong normalization I' =M : A € sn as an accessi-
bility relation:
YVNTFM —N:A=TFEFN:A€sn
I'EM:A€sn
Since we follow a type-directed reduction strategy, we have added typing information to
accessibility.
We can unwind I' = M : A € sn along a multi-step reduction:

Z7U064-05-FPR

main 14 December 2019 147

10 A. Abel et. al.

Strongly normalizing neutral terms : | T'-M : A € SNe

xAel I'FR:A=Be€SNe T'FM:AeSN
I'-x:A€SNe I'ERM:BeSNe
Strongly normalizing terms : | T M : A € SN
I,x:A-M:BeSN CER:AcSNe LM —gy M :A M :AcSN
I'-Ax:AM:A=BeSN I'FR:A€SN I'EM:AeSN

Strong head reduction : | M —gnN:A |

[FN:AE€SN ToxAFM:B LIrFM-—gyM:A=B TFN:A

'k (Ax:AM)N —g [N/x]M : B IFMN —gyM'N

Fig. 3. Inductive definition of Strong Normalization

Lemma 3.8 (Multi-step Strong Normalization). [fTHM —*M':Aand UM : A € sn,
thenTHM' : A € sn.

Proof. InductiononT'=M —* M’ : A. O

While the above definition is appealing in its simplicity and has been widely used (see for
example (Altenkirch, 1993)), it is not without defects: it involves reasoning about reduction
sequences and positions of terms, so much that “the reduct analysis becomes increasingly
annoying in normalization proofs for more and more complex systems” (Joachimski &
Matthes, 2003)). This applies both to pen-and-paper and mechanized proofs.

As pioneered in (van Raamsdonk & Severi, 1995)) and further developed in (Joachimski
& Matthes, 2003)), we can easily characterize strongly normalizing terms inductively, build-
ing on the standard definitions of normal and neutral terms. Raamsdonk and Severi (1995)
observed that a term M is in the set of (strongly) normalizing terms, if either it is a normal
form or it can be obtained as the result of a series of expansions starting from a normal
form. However, to preserve strong normalization during expansions, we have to be careful
about terms “lost” via substitution for a variable with no occurrence. In particular, strong
normalization of [N /x]M does not imply strong normalization of (Ax:A.M) N or of N, when
x does not occur in M. This motivates the concept of strong head reduction, which is a weak
head reduction (Ax:A.M)NN; ... N, — [N/x]M N ... N, with the extra condition that N
is strongly normalizing. Our inductive definition given in Fig. [3| follows (van Raamsdonk
& Severi, 1995)), augmented to track typing information.

Many proofs, not only those involving normalization, become simpler thanks to the in-
ductive definition, since it allows us to prove properties by structural induction: we reduce
the task of checking all one-step reducts to analyzing no more than one standard reduct
and some subterms. The reduct analysis is localized to the proof that the inductive notion
of normalization entails the accessibility version, a property we refer to as “soundness”

(Theorem [3.1)).

ZU064-05-FPR main 14 December 2019 147

POPLMark Reloaded 11

3.3 Challenge 1a: Properties of sn
To establish soundness, we start with the following:
Lemma 3.9 (Properties of Strongly Normalizing Terms).

1. I'kx:A €sn forall variables x : A € T..

2. If T, xxAF-M:Bé€sn, thenl'HAx:AM:A= B¢csn.

3. f THIN/xXIM :B€snand =N : A, thenT,x:A+-M : B € sn.
4. f TEFMN:Besn, thenI’'FM:A=BcsnandT'HFN:A€sn.

Proof. The first property is immediate, as there are no reductions from variables. Properties
(). @), and (@) are proven by induction on the given derivation. O

Lemma 3.10 (Weak Head Expansion). IfI'-N:A €snand ' [N/x]M : B € sn, then
I'- (Ax:A.M) N : B € sn.

Proof. By lexicographic induction on I' =N : A € sn and I',x:A - M : B € sn (which is
entailed by I' - [N /x]M : B € sn due to Lemma [3.9), analysing the possible reductions of
(Ax:A.M) N. O

Remark We might again generalize Properties [3.9) (3) and in terms of simultaneous
substitutions.

To make the proof of soundness more modular, it is useful to characterize terms that
are “blocked” by a variable, i.e., that are of the form x M| ... M,. Those terms will not
trigger a weak head reduction and correspond intuitively to those characterized by SNe.
We call these terms neutral, following (Altenkirch ef al., 1995); in the normalization proof,
they play a similar role as Girard’s neutrals (Girard et al., 1989). They are defined by the
judgment 'R : A ne:

x:Ael I'FR:A= Bne T'EN:A
I'Fx:Ane T'EFRN:Bne

Now, we can show that neutral terms are forward closed and that if R is neutral and
strongly normalizing together with N being strongly normalizing, then R N is strongly
normalizing.

Lemma 3.11 (Closure Properties of Neutral Terms).

1. fTFR:AneandTFR — R : A, then TR’ : A ne.
2. IfTFR:A=BneandTFR:A=Be€sn,andT'FN:A€sn, thenT' RN :B € sn.

Proof. Property (1)) follows by induction on I' - R : A ne. Property (2)) is proven by lexico-
graphic inductionon ' R:A = Besnand ' N : A € sn, using Property (). O

We further introduce the notion of sn-strong head reduction —,, which is analogous
to (SN-)strong head reduction —gN-

I'N:Aesn T'xA-M:B I'M —M:A=B TFN:A
TF (AxAM)N —e [N/x]M : B TFMN oM N:B

Z7U064-05-FPR

main 14 December 2019 147

12 A. Abel et. al.

Lemma 3.12 (Confluence of sn). IfT-M —, N:Aand T =M — N’ : A then either
N=N'orthere 30 st. THFN —¢, Q:AandTHFN —* Q: A.

Proof. By inductiononI'-M —4, N : A. [
Lemma 3.13 (Backward Closure of sn).

1. fTEN:AcsnTFM:A=BcsnTF-M — M :A=BandT'FM' N :B¢€sn,
thenI'EM N : B € sn.
2. fTEM — M :AandTHM':A€sn, thenT =M : A € sn.

Proof. Property is proven by lexicographic inductionon I'FN:A€snand ' M :
A = B € sn. Property (2) is proven by induction on ' M —, M’ : A, using Property
in the inductive case.

We here sketch the use of the Confluence lemma and lexicographic induction in the
proof of property (I)); the full proof can be found in the electronic appendix.

To show that ' M N : B € sn, we assume ' - M N — Q : B, and establish that
' Q: B &sn. Bycase analysison ' M N — Q : B, two cases remain:

I.IfTHN— N :Aand Q =M N, the claim follows directly with the inductive
hypothesis for ' N’ : A € sn.

2.TFM —M":A= Band Q =M" N, we require confluence to establish any
relation between M’ and M"”: Either M’ = M”, in which case the goal follows directly
from our assumption that T+ M’ N : B € sn; or M’ and M” converge to the same
term P, where we can establish I' = P N : B € sn by Lemmas [3.62)) and [3.8] Then
we require the inductive hypothesis for ['=M" : A = B € sn to establish ' M" N :
B € sn.

Note how a mere structural induction is not enough: the lexicographic induction is
necessary, to later have the particular inductive hypothesis available. O

Challenging aspects Proving confluence about sn (Lemma [3.12] sometimes referred to
as the weak standardization lemma), requires a detailed and tedious case analysis and has
previously not been stated as clearlyE] The introduction of sn-strong head reduction —,,
which mirrors strong head reduction —> g\, helps structure and simplify the proofs. How-
ever, the proofs about backward closure of sn require a detailed analysis of the reduction
relation, for example, in Property (I) of Lemma [3.13] This analysis can be quite tricky as
we rely on simultaneous well-founded induction.

3.4 Challenge 1b: Soundness of inductive definition of strongly normalizing terms

We now have all the properties about sn that are necessary to establish soundness save for
the simple property that all terms inductively characterized by SNe are neutral.

Lemma3.14. [fT'FM:A€ SNe thenT M : A ne.

3 For example, Abel and Vezzosi (2014) state a variant of this lemma that makes some unnecessary
assumptions about strong normalization.

ZU064-05-FPR main 14 December 2019 147

POPLMark Reloaded 13

Proof. By inductionon '+ M : A € SNe. O
Theorem 3.1 (Soundness of SN).

1. f TEM:A€ SN, thenT' EM: A€ sn.
2. f TEM:A € SNe thenTEM:A € sn.
3. IfTEM —gyM :A thenTEM — g M': A

Proof. By mutual structural induction on the given derivations using the closure properties

(Lemmas [3.9] (1), 3.9), B-11] @), B-13] @), B-14). O

Challenging aspects Given our set-up, the final soundness proof is straightforward. This
is largely due to the fact that we have factored out and defined the —, relation in analogy
to the — g\ relation.

Additional twist One might want to consider a formulation of neutral terms that relies on
evaluation contexts instead of a predicate. Using evaluation contexts is elegant and might
be advantageous as the language grows. Evaluation contexts are defined inductively as
either a hole or the application of an evaluation context C to a term M.

Evaluation Contexts C = _ |CM

Definition 3.2 (Typing Rules for Evaluation Contexts). We write T | Ag - C : A to state
that the evaluation context C lives in scope I, has a hole of type Ay and gives rise to an
overall expression of type A. This relation is specified by the two following typing rules:
I'AoFC:A=B T'FM:A
['|AgF_: Ao 'Ag)FCM:B

We extend the notion of reduction as usual and of sn (respectively SN) to evaluation
contexts by demanding that all the terms appearing in such a context are sn (respectively
SN). For that, we need the usual notion of filling a hole.

Lemma 3.15 (Properties of Evaluation Contexts).

1. IfT|AgF C:Aand T M : Ag, then T+ C[M] : A,

2. IfT|AoFC:Aesnand x:Ag €T, then T+ C[x] : A € sn.

3. If T M : A € SNe, then there exists Ay, C and x:Ag € T such that M = C|x] and
I'|AgkC:A€ SN,

Proof. (), (2) by induction on C. (3) by induction on ' M : A € SNe. O
Lemma 3.16 (Closure Properties of Strongly Normalizing Evaluation Contexts).

1. If T'|AgF C: B €sn, M is not an abstraction, and T - C[M] — N : B, then
either IM' s.t. N=C[M') andT =M — M’ : Ay
or 3C' s.t. N=C'[M] and YM". T+ CM"] — C'|M"] : B.
2. IfT\xAFM:Apesn TEN:Aesn T |AgFC:Besn, I'-C[[N/x]M]:B € sn
thenTHC[(Ax:A. M)N | : B € sn.
3. f TEM — M :Agand T =C[M']: A €snthenTHC[M] : A € sn.

Z7U064-05-FPR

main 14 December 2019 147

14 A. Abel et. al.

Proof. by induction on C and case analysis on the reduction step. is proven by
lexicographic induction on the sn assumptions, by assuming C[(Ax:A.M)N] steps to a
reduct and using (1)) to decide whether the reduction happens in C, M, N or ((Ax:A.M)N).
Finally (3) is proven by induction on the reduction step either using (2) or growing the
evaluation context. O

Theorem 3.2 (Soundness of SN using Evaluation Contexts).

1. f TEM:A€SN, thenTHM:A € sn.
2. IfT|AgFC:A €SN, thenT |AgF-C: A € sn.
3. IfTEM —gyM :A thenT =M — g, M': A,

Proof. By mutual induction on the respective derivations using[3.15] (3] [T) to deal with the
SNe case to deal with the — g\ case. O

3.5 Challenge 2a: Properties of strong normalization

Before we describe the main proof of strong normalization, we need to establish a number
of properties about the inductive definition of SN.

In particular, we express two key properties about context extensions over strongly nor-
malizing terms in terms of renaming substitutions as witnesses for the context extension.
Lemma [3.17] states that we can transport any well-typed term that is strongly normalizing
in the context I to the extended context I". The second property is the dual and states that
given a well-typed term [p]M in a context extension [we can recover M in the context I.

Lemma 3.17 (Renaming).

1. IfFTEM:AeSNandT" <, T, thenT' - [p]M : A € SN.
2. IfTEM:Aec SNeandT' <, T, thenT" - [p]M : A € SNe.
3. TEM —gyN:Aand T <, T, then T+ [p]M — gpy [PIN - A.

Proof. By mutual induction on the given derivations using the Weakening Lemma |3.2
O

Lemma 3.18 (Anti-Renaming).

L. If T+ [p]M:Ae SNandT" <, T, thenT =M :A € SN

2. IfT'F[p]M:Ae€ SNeandT" <, T, then T'+=M : A € SNe

3. If T'F [p]M — gy N' : Aand T <, T, then there exists N s.t. T=M — gy N : A
and [p]N = N'.

Proof. By mutual induction on the given derivations, in each case exploiting that p is a
renaming. For example, we might encounter that I - [p]M : A € SNe via the application
rule. Since [p]M is an application, we need to conclude that M is also an application to
proceed with the proof.
The proof moreover takes into account several equational properties of substitutions:
Consider for example the case of term abstraction, where we have the premise

'+ Ax:A.lp,x/x]M : A= B €SN

and require weakening (Lemma [3.T) to apply the inductive hypothesis.

Z7U064-05-FPR

main 14 December 2019 147

POPLMark Reloaded 15

Next, in the case of beta reduction for strong head reduction,we have the premise
I+ [p)(Ax:AM) N) —sgy [p. [pIN/x|M : B

and have to handle composition of renamings and substitutions appropriately to proceed.
Full proof details can be found in the appendix. O

This proof challenges support for binders in various ways: For one, it requires the
systems to have an appropriate notion of renamings — the claim is not true for full substi-
tutions. In addition, the proof requires convenient handling of equations for both renamings
and substitutions.

Lastly, we need extensionality of SN for function types, which will be crucial in the
proof of Girard’s property CR1:

Lemma 3.19 (Extensionality of SN). If xA €T andT'-M x:B € SN, thenT-M : A =
B e SN.

Proof. By inductiononI'+M x: B € SN. O

Remark One can also define extensionality of SN as:
IfT'-M:A=BandT',x:A<,TandI",x:AF [p]M x:B €SN, thenT'-M :A= B € SN.

The proof of this formulation of extensionality is similar, but relies more heavily on the
anti-renaming lemma.

Challenging aspects The main issue here is doing case analysis modulo the equational
theory of renamings in the proof for Lemma [3.18 when considering all possible cases for
'+ [p]M: A €SN.

3.6 Challenge 2b: Proving strong normalization with logical relations

We now turn to the definition of our logical predicate. Since we are working with well-
typed terms, we define the semantic interpretation of I' - M € Z4_.p considering all ex-
tensions of I (described by I" <p I) in which we may use M.

o [FMeRiff T M:icSN
o I'FM e Rapiff forall " <, T'such that I N : A, if I" = N € %y, then I -
(lpIM) N € Zp.

Rather than attempt the proof of the main result directly and then extract additional
lemmas one might need about the semantic types, we follow Girard’s technique and char-
acterize some key properties that our logical predicate needs to satisfy.

Theorem 3.3.

I. CRI:IFTFM € %y, then T M : A € SN.

2. CR2:IfTEM —gpny M :AandTHM € Ry, then UM € Ry, i.e., backward
closure.

3. CR3:IfTEM:A € SNe thenT' =M € Zy.

Z7U064-05-FPR

main 14 December 2019 147

16 A. Abel et. al.

Proof. The properties are proven by mutual induction on the structure of A. [

We prove that if a term is well-typed, then it is strongly normalizing in two steps:

Step1 fI'FM € %4, then M : A € SN.
Step2 fT'FM:Aand T+ 0 € Zr, then I F [0]M € %y.

Step 1 is satisfied by the fact that by CR([I]all terms in %4 are strongly normalizing. We
now prove the second step, which is often referred to as the Fundamental Lemma. It states
that if M has type A and we can provide “good” instantiation o, yielding terms which are
themselves normalizing for all the free variables in M, then I' - [0]M € Z4. The definition
of such instantiations o is as follows:

Definition 3.3 (Semantic Substitutions).
I'oc%r I'EMe %y
I'-c% F/I—G,M/xea@rﬁx;A

Lemma 3.20 (Fundamental lemma). If TFM : A and U+ 6 € Zr then T’ \- [0]M € %.
Proof. By induction on I' = M : A using the renaming lemma for I - 6 € Zr. O
Corollary 34. If T'-M: A, thenT' M : A € SN.

Proof. Using the fundamental lemma with the identity substitution I' - id € Zr, we obtain
I'EM e %Z4. By CR1, we know ' M € SN. O

Challenging aspects The definition of the logical predicate is not strictly positive, but
is well-founded as it is defined by recursion on the structure of the type. The proofs of
CRI]through CRB|rely extensively on reasoning about context extensions and in turn about
renamings. Similarly, the fundamental lemma requires a good handling of simultaneous
substitutions.

3.7 Extension: Disjoint sums

How well do our proof method and formal mechanization cope with language extensions?
In this section, we augment our language of terms with the constructors and eliminators
for disjoint sums:

Terms M,N == ---|inlM|inr M |caseMof inlx= N; |inry=N;
Types A,B = ---|A+B

The new reduction rules are given in Figure fi] For reasons of brevity, the congruence
rules for inl, inr and case are omitted; the full set of reduction rules can be found in
the Appendix. We also extend our definitions of SN, SNe, and — g\ (Figure EI) The
extension to the definition of sn-strong head reduction (—,) is analogous to that of strong
head reduction (—>SN), using sn instead of SN, and can also be found in the Appendix.

Disjoint sums add several features that we need to account for in our proofs:

Z7U064-05-FPR

main 14 December 2019 147

POPLMark Reloaded 17

Type-directed reduction : | 'FM — N: A

I'tM:A T,xxXAF-N;:C T,y;>BEN,:C

'k case(inl M)of inlx = Nj |inry = N, — [M/x]N; : C
I'M:B TI')xAFN;:C TL,y:>BFN,:C

I't case(inr M) of inlx = Ny | inry= Ny — [M/y|N, : C

E-CASE-INL

E-CASE-INR

Fig. 4. Type-directed reduction, extended with disjoint sums

Strongly normalizing neutral terms : ['F M : A € SNe

IT'EFM:A+BeSNe T xAEN;:CeSN T,y:BFN,:CeSN
I'tcaseMof inlx = Nj |inry= N, :C € SNe

Strongly normalizing terms : | T M : A € SN

I'EM:AeSN I'-M:BeSN
I'inlM:A+BeSN I'FinrM:A+BeSN

Strong head reduction : | M —gnN:A |
I'EM:AeSN T ,xxXAFN;:CeSN T,y:BEN,:C€SN
[case (inl M) of inlx = Ny |inry = Ny —gN [M/x]Ny : C

I'EM:BeSN T ,xxXAFN;:CeSN T,y:BEN,:C€SN
[case(inr M) of inlx = Ny |inry = Ny —gN [M/x]Ny : C

F}—MHSNM’:AJrB [LxAFEN :C L,y:BEN,:C
'+ caseMof inlx = Ny |inry = Na — g caseM’ of inlx= Ny |inry =N, :C

Fig. 5. Inductive definition of Strong Normalization, extended with disjoint sums

Well-typed terms and reduction rules With the addition of injections and case-expressions
the number of rules for reduction more than doubles. We also need to extend weakening
and exchange for typing (Lemma [3.2)), weakening of typed reductions (Lemma and
substitution properties for typed reductions (Lemma [3.5)), in addition to the proof that
reductions preserve typing (Lemma and anti-renaming of typing (Lemma [3.3). The
new cases are standard, as well as our lemmas about multi-step reductions. In particular,
we need the following:

Lemma 3.21 (Properties of Multi-Step Reductions).

1. f TE-M —*M : A, thenT - inlM —* inIM’ : A+ B.
2. IfT-M —*M':B, thenT'\inrM —* inrM’ : A+B.

3. If T-M —* M’ : A+ B, thenT'\- caseM of inlx=> Ny | inry = N, —* caseM’ of inlx =

Ny |inry= N, :C.

4. If T .x:A-N; —* N : C, thenT'\- caseM of inlx=- N | inry = Ny —* caseM of inlx =

N |inry =N :C.

5. If T,y:BE N, —* N} : C, then T+ caseM of inlx = N | inry = N, —* caseM of inlx =

Ny | inry = N} : C.

Z7U064-05-FPR

main 14 December 2019 147

18 A. Abel et. al.

Neutral terms Following the definition of SNe, neutral terms (Definition contain a
new inhabitant:
I'FM:A+Bne Ix:AFN;:C Iy:BEN,:C

't caseMof inlx = Nj |inry= N, :C ne

This comes with the need for a new closure property for neutral terms, which we will state

shortly in Lemma[3.25]

3.7.1 Extension: Challenge 1

In the previous section, we described our extensions for syntax, reduction, and strong nor-
malization. To prove soundness, we need to extend our repertoire of properties about strong
normalization accordingly. The major statements, i.e. confluence (Lemma[3.12), backward
closure (Lemma[3.13), and soundness, follow immediately from additional helper lemmas
as described in this section.

First, the extended language requires additional subterm properties of strong normaliza-
tion.

Lemma 3.22 (Properties of Strongly Normalizing Terms).

1. fTEM:A€sn thenT'FinlM :A+ B € sn.

2. IfTEM:Begsn, thenl'inrM :A+B € sn.

3. If Tk caseMof inlx= Ny | inry=N,:C€sn, thenTHM:A+B€e€snandT',x:Al
Ny :CéesnandT',y:BEN, :C € sn.

The new reduction rules E-CASE-INL and E-CASE-INR play a similar role to 3-reduction
for abstractions. They thus invoke additional instances of weak head expansion and a new
case of the backward lemma.

Lemma 3.23 (Weak Head Expansion).

LIfTHFM:Aesnand T'H [M/x]N; : C € snand I',y:BF Ny : C € sn, then I' -
case(inl M) of inlx = Ny | inry = N; € sn.

22 IfTEFM:Besnand T,xAFN :Ce€snand T'F [M/y|Ny : C € sn, then T' -
case(inr M) of inlx = Ny | inry = N, € sn.

Lemma 3.24 (Backward Closure of sn). If TFM:A+Besn, I, xXAFN;:Céesn, I',y:B-
Ny:Cesn,T'-M —*M' :A+B, and T+ caseM’ of inlx = Ny | inry = N, € sn, then
' caseM of inlx = Ny | inry = N; € sn.

Together with these extensions, backward closure (Lemma [3.13) follows as before.
While the preservation of neutral terms by reduction (Lemma [3.14] (I))) extends imme-
diately, the corresponding case for the soundness proof requires the following addition to

the closure property (Lemma[3.14] (2)):

Lemma 3.25 (Closure Properties of Neutral Terms). I[f M :A+Besn, I'FM:A+
Bne I''x:XAFEN;:Cé€sn, andT',y:BtF N, :C € sn, then I - caseM of inlx = N | inry =
N, € sn.

The soundness lemma itself (Lemma [3.1)) follows immediately with the previous defini-
tions.

Z7U064-05-FPR

main 14 December 2019 147

POPLMark Reloaded 19

3.7.2 Extension: Challenge 2

Finally, we extend our definition of the logical predicate %4 to disjoint sums. This is not as
simple as it may seem: the naive definition of T'Finl M € Zy, p iff - M € %4 and dual
is insufficient as it fails to satisfy CR2]and CR3] For example, we have y:A b inly € Zap
according to our definition. But although y:A - (Ax:A.inl x) y — inl y : A+ B, our definition
fails to prove that y:A - (Ax:A.inlx) y € Zayp.

To be a reducibility candidate, we thus need to improve upon our definition of the logical
relation such that it satisfies CR2 and CR3. A closure %, of %, ensures exactly this:

T-MeZ, ThHM:AcSNe LFM:Zs LEN-—gyM:A

I'-Me %, T-Me%, T'EN:%,

The logical predicate %, p is then defined as follows:

T-MeRuyp iff TEMe{inlM [TFM €%} U{inrtM' |[TFM € Zg}

Showing that %4 p is a reducibility candidate is straightforward. The latter two prop-
erties are immediate by the definition of the closure. The proof of CR]]|requires an inner
induction on the structure of the closure, which is straightforward from the definitions of
%A+B and SN.

Finally, we need to update the fundamental lemma (Lemma [3.20): The cases involving
inl and inr are straightforward, and the case expression requires an inner induction similar
to the proof of CR[I] See the Appendix for full details.

Overall the approach to defining strong normalization inductively is remarkably modular
and we hope that this extension to disjoint sums provides further evidence of the value of
the inductive definition of strong normalization.

3.8 Further extensions

The current benchmark problem focuses on a unary logical relation (or predicate). A binary
logical relation is typically used to prove decidability of conversion in the presence of type-
directed equality rules, such as in a typed lambda-calculus with 1 for function, product,
and unit types. In this setting, term equality is checked in a type-directed way interleaving
weak-head evaluation with head comparison (Harper & Pfenning, 2005} |Goguen, 2005;
Abel & Scherer, 2012). Crary (Crary, 2005)) explains for the simply-typed lambda-calculus
how to set up a suitable Kripke logical relation to prove that algorithmic equality is com-
plete, in particular, transitive and compatible with application. Formalizing the simply-
typed version by Crary (2005) would be a logical extension of the POPLMark Reloaded
challenge.

4 Solutions

We have completed the challenge problem using different encodings and proof environ-
ments. We will briefly survey them below.

ZU064-05-FPR main 14 December 2019 147

20 A. Abel et. al.

4.1 Solution A: Using higher-order abstract syntax with Beluga

Beluga (Pientka & Dunfield, 2010) is a proof environment built on top of the (contextual)
logical framework LF (Harper ef al., 1993} Nanevski et al., 2008])). Proofs are implemented
as recursive programs based on the Curry-Howard correspondence. The type checker then
verifies that we manipulate well-typed derivations, while the totality checker certifies that
functions cover all cases and are terminating.

Definitions Beluga allows the user to encode well-typed lambda-terms directly using higher-
order abstract syntax (HOAS) where binders in the object language (i.e., in our case STLC)
are represented using the binders in the meta-language (i.e., in our case LF) (Pientka,
2007). Such encodings inherit not only ¢¢-renaming and substitution from the meta-language,
but also weakening/exchange and (single) substitution lemmas. We exploit dependent types
in LF to characterize well-typed terms. Hence typing invariants are tracked implicitly
using the LF type checker. The type family tm is indexed by ty, which describes our
object language types and has two LF constants 1am for STLC abstractions and app for
applications. Note that there is no case for variables — instead we define 1am as taking in
an LF function tm A — tm B as an argument. In other words, we re-use the LF function
space to model the scope of variables in STLC abstractions.

The reduction relation is modelled using the type family step. This is where we take
advantage of HOAS. In encoding the $-reduction rule, we simply step (app (lam M) N)
to (M N). Substitution in STLC is modelled using LF application (M N). Similarly, when
reducing the body of an STLC abstraction, we handle renaming by generating a new LF
variable x and step (M x) to some result (M’ x) (see LF constant rlam).

LFI tbyas:e t?’p: = LF tm : ty — type =
| arr :ty%t | lam : (tm A — tm B) — tm (arr A B)
ﬁty"y Y | app : tm (arr A B) — tm A — tm B;

LF step : tm A — tm A — type =
| rbeta : step (app (lam _ M) N) (M N)
| rlam : (IIx:tm A. step (M x) (M’ x)) — step (lam M) (lam M’)
| rappl : step M M’ — step (app M N) (app M’ N)
| rappr : step N N> — step (app M N) (app M N’);

The encoding of (intrinsically) typed terms and reduction rules is just 19 lines of Beluga
code.

We obtain basic properties about typed reductions (such as Lemma 3.1]), weakening and
exchange properties for well-typed terms (Lemma [3.2), and anti-renaming properties of
well-typed terms (Lemma 3.3) for free. In addition, we obtain also for free the weakening
and exchange property of typed reductions (Lemma [3.4)) and the substitution property for
typed reductions (Lemma[3.5)).

We can model a well-typed term together with its typing context using contextual objects
and contextual types offered by contextual LF (Pientka, 2008)). Contexts, substitutions, and
renamings are also internalized and programmers can work with them directly in Beluga.
Strong normalization as accessibility can then be directly encoded in Beluga using indexed
inductive types (Cave & Pientka, 2012).

Z7U064-05-FPR

main 14 December 2019 147

POPLMark Reloaded 21

schema cxt = tm A;

inductive Sn : (I" : cxt) {M : [- tm A[]1]} type =
| Acc : {I" : cxt}A:[F tyl} M : [’ + tm A[1]}
(M : [F tm A[11} {S : [’ - step M M’1} Sn [T + M’])
— Sn [I" F M]

We write here curly braces for universally quantified variables; we write round parenthe-
ses for implicit arguments in Beluga that merely provide a type annotation to some of the
parameters. As mentioned before, contexts are first-class citizens and we can declare their
“type” by giving a schema definition which in our example simply states that a context of
schema cxt consists of declarations tm A for some type A. The contextual type [[" -
tm A[]] describes terms M that have type A in the context I'. Further, we want to express
that the type A is closed and cannot refer to declarations in I'. We hence associate it with a
weakening substitution (written as A [1), which transports an object from the empty context
to the context I'.

Kripke-style logical relations about well-typed terms are represented using indexed strat-
ified types (Jacob-Rao et al., 2018)), which are recursive types that are defined by well-
founded recursion over an index. Here, we define Red as a stratified type for well-typed
terms based on the type of the term. Context extensions are witnessed by renamings that
have type [I” k& I'] and are again first-class citizens in Beluga.

stratified Red : (I' : cxt) {A : [F ty 1} {M : [[- tm A[]1]} type =
| RBase : SN [- M] — Red [F base] [[C - M]
| RArr : ({TV : cxt} {p : [k& 1} {00 : [F tm A[1]}

Red [A] [I" - NI — Red [+ Bl [I” - app M[pl NI1)
—~Red [F arr AB] [T+ M] ;

Lemmas and proofs The main advantages of supporting well-typed terms, contexts, and
substitutions comes into play when building and type-checking proofs as programs. In
particular, Beluga compares well-typed (contextual) objects not only modulo 1, but also
modulo the equational theory of simultaneous substitutions described on page [§] taking
into account composition, decomposition, and associativity properties of substitutions.
This avoids cluttering our proofs with them and leads to a direct, elegant, and compact
mechanization of the challenge problem. This is particularly evident in the proof of anti-
renaming (Lemma [3.18), which can directly be implemented by pattern matching on the
definition of SN, SNe and — g . We show a few cases illustrating the idea in Fig. @
The type of the Beluga program directly corresponds to the statement of the anti-renaming
Lemma[3.T8]. We leave some arguments such as the type A implicit and do not quantify over
them; Beluga’s type reconstruction algorithm will infer the type. The totality declaration
states that the subsequent program can be viewed as an inductive proof that proceeds over
SN [I” + M[p]]. This is verified by the totality checker. We introduce all the arguments
that are explicitly quantified using curly braces via the keyword mlam; subsequently we
introduce the variable s that stands for SN [+ M[p]]. We then use pattern matching
on s and consider three possible cases: SAbs s’, SNeu s’ and SRed r’ s’. Note that
in the informal proof we took into account the equational theory of renamings; in Beluga,
this is directly incorporated into equivalence checking, unification, and matching. Other-
wise the program proceeds as the informal proof. In the case for SAbs, weakening of the

Z7U064-05-FPR

main 14 December 2019 147

22 A. Abel et. al.

rec anti_renameSN : {[" : cxt}{I” : cxt} {p : [l s TI}{M : [T F tm A[1]}
SN [I” - M[pl]l — SN [T + M] =
/ total s (anti_renameSN ' I" A p M s) /
mlam I, T, p, M = fn s = case s of
| SAbs s’ =
SAbs (anti_renameSN [[, x:tm _1 [TV, x:tm _ 1 [[’, x:tm _ - p[..], x
1 [y, x:tm _ F _] s?)
| SNeu s’ = SNeu (anti_renameSNe [’ - pl [T F M s?)
| SRed r’ s’ =
let SNRed’ [I"] [I1 [+ N1 r = anti_renameSNRed [] [.] [I" + pl [_

F_J1rin
let s’’ = anti_renameSN [I] [I'] [I" F p] [T+ N1 s’ in
SRed r s’

and anti_renameSNe : (I' : cxt) (I : cxt) {p : [l s TIM : [T - tm A
(11}
SNe [’ + M[pl] — SNe [[+ M] =
/ total s (anti_renameSNe ' I" A p M 5) /
mlam p, M = fn s = case s of
| SVar [+ _1 = SVar [_ F _]
| SApp r s =
let r’ = anti_renameSNe [_ - p] [_ F _] r in
let s’ = anti_renameSN [_] [_] [_F p] [_F _] s in
SApp r’ s’

and anti_renameSNRed: ... ;

Fig. 6. Implementation of the anti-renaming lemma in Beluga

renaming p is accomplished by associating p with the weakening substitution written as
[...]. Type reconstruction in Beluga is quite powerful and we can often write an underscore
for arguments that are uniquely determined and can be reconstructed.

Size The encoding of the strong normalization proof (Sec. is 97 lines of Beluga
code; encoding some of the basic properties stated in Sec. takes up 39 LOC out of 75
LOC. The encoding of the soundness proof of the inductive strong normalization definition
(Sec.[3.3]and Sec. is about 192 LOC (see also Fig. [T3).

Scalability As the proofs written in Beluga closely resemble their informal versions, the
significant increase in length for the pen-and-paper proofs resulting from the addition of
several reduction rules for disjoint sums was reflected in the mechanization of the extended
soundness proof. This was particularly evident in the Confluence lemma, which had to be
extended with an additional 13 cases; and several of these were repetitive. The growing
size is also reflected in the size of the soundness proof which is roughly double in size (see
again Fig. [I5). On the other hand, as the proofs using the inductive definition of SN are
quite modular and scale easily without the need for additional lemmas (in particular, they
are completely independent of any new reduction rules), the extension of the proof using
the inductive definition was correspondingly short, taking fewer than 100 additional lines
of code.

Z7U064-05-FPR

main 14 December 2019 147

POPLMark Reloaded 23

Fixpoint Var I" A :=

Inductive tm (I'": ctx) : ty — Type:= match T with

| var A: VarTA— tmT" A

| [] = False
| app AB: tmI"'(A=B)— tmI'A— tmI'B T _ ,
| lam AB: tm (A= T)B — tmT (A = B). 'enﬁ"r = (A=B)+Var[” A

Fig. 7. Type declaration for well-typed de Bruijn in Coq

Lessons learned In general, the Beluga programs correspond directly to the informal
proofs and in fact writing out the Beluga programs helped clarify the overall structure of the
former. The given benchmark problems were instrumental in driving the implementation
and testing of first-class renamings in Beluga. The benchmark also motivated the develop-
ers to generalize the totality checker, which was overly conservative in some places, and
extended it with lexicographic orders following Twelf’s (Pientka, 2005)). However, this
benchmark also outlines some current limitations:

1. The structural subterm ordering employed by Beluga’s totality checker does not
take into account exchange; hence, we cannot certify the mechanized proof of the
substitution property of multi-step reductions (Lemma [3.6] (5)) where exchange is
needed. One might be able to work with a more generalized form of the substitution
lemma; possibly more natural would be to extend the implementation and allow a
more general structural subterm ordering that allows for exchange of variables.

2. From a practical perspective, one would like to have more support for constructing
proofs interactively. This would make it easier for the programmer to tackle larger
mechanizations.

3. Type reconstruction in dependently typed systems is still a challenging and not well-
understood problem; in Beluga this is exacerbated by the need to infer contexts, sub-
stitutions, and renamings. As a consequence, we write out more explicit arguments
than in comparable dependently typed systems.

4.2 Solution B: Using well-typed de Bruijn encoding in Coq

The Coq proof assistant is based on an expressive type theory, but offers no special support
for reasoning about languages with binders. Different encoding strategies exist to represent
variable bindings and the necessary infrastructure ranging from de Bruijn (De Bruijn,

1972), locally nameless (Pollack, 1994; (Charguéraud, 2012)), weak or parametric HOAS (De

speyroux et al., 1995} (Chlipala, 2008)), full HOAS (Felty & Momigliano, 2009; [Felty &
Momigliano, 2012) to named representations (Anand, 2016). Even for de Bruijn, the exact
implementation choices (e.g., substitutions as list or as functions, single-scoped de Bruijn
or parallel substitutions) have to be carefully chosen and later proofs can differ widely.

In the present work, we focus on a well-typed variant of the de Bruijn representa-
tion (Benton ef al., 2012) together with parallel substitutions.

In the well-typed de Bruijn encoding, terms are encoded with an inductive family of
types tm (Figure [7). The type tm I' A stands for terms of type A in context I', where a
context is a list of types. We write Var I" A for the type of positions of type A in the
context I', which is defined by recursion on I'. Unlike in LF, terms have an explicit variable
constructor which lifts positions in the context to the corresponding terms.

Z7U064-05-FPR

main 14 December 2019 147

24 A. Abel et. al.

Inductive step {I'}:V {A},tmT"'A — tmI" A — Prop :=

| step_beta ABM:tm (A:: IN'B)(N: tmI"A):step (app (lam M) N) (M[N/])
| step_abs AB(MM :tm(A:: I)B): step MM — step (lam M) (lam M’)

| step_appL A B sy sy t: step sj sp — step (app s t) (app sz t)

| step_appR ABs tyty:step tty — step(appsty)(app s t2)

Fig. 8. Definition of the step relation in Coq

Fixpoint Red (I": ctx) (A: ty) : tm ' A — Prop :=
match A with
| Base = funM = SNM
| (A= B)= funM =
VI?(:ren'T") (N:tmI” A), Red M — Red (app (M <p>) N)
end.

Fig. 9. Definition of the logical relation in Coq

With these definitions, a (simultaneous) renaming is a function p mapping positions
in one context I to positions in another context I”, i.e., p:V A, VarT' A — VarI” A. A
substitution ¢ is a function mapping context positions to terms in another context, i.e., o:
vV A, VarT' A — tm " A. We write M<p> and M[c] for the (capture avoiding) instantiation
of a term M under a renaming or substitution, respectively.

Their definitions are standard using the primitives suggested in (Abadi et al., 1991),
adapted to a well-typed setting. The primitives suffice to express single substitution, de-
noted as M[N/]. To ensure termination, our implementation requires us to define instantia-
tion of renamings and substitutions separately.

Using these definitions entails a range of additional lemmas stating the connection be-
tween the different primitives; for example lemmas about composition, decomposition, and
associativity of substitutions. These lemmas form a complete (Schifer et al., 2015) and
convergent rewriting system (Curien et al., 1992). As a consequence, all further assumption-
free substitution lemmas of the form s = ¢, where s and ¢ contain term constructors, sub-
stitution, and the substitution primitives, are proven automatically by rewriting based on a
variant of the o-calculus (Abadi et al., 1991).

This approach is specific to de Bruijn representations and typically not available under
other encodings.

Definitions Our definitions are as expected: We implement reduction and strong normal-
ization with inductive types and the logical relation is defined by structural recursion on
types.

In contrast to the Beluga solution, we implement beta-reduction using the defined notion
of substitution (Figure [8)). The logical relation uses the notion of renaming (Figure [J). In
general, cases where renamings or substitutions occur, such as for the logical relation in
the case of a function type, will later require the rewriting system of the o-calculus for the
corresponding proofs.

Having well-typed (or scoped) terms proves incredibly useful for avoiding errors in the
definitions.

Z7U064-05-FPR

main 14 December 2019 147

POPLMark Reloaded 25

Lemmas and proofs The mechanization closely follows the informal proofs. No addi-
tional statements were needed. Whenever a statement holds for names but not for de Bruijn,
we use the equational theory of the o-calculus. Repetitive proofs, like the renaming or
anti-renaming lemmas, are solved by using Coq’s tactic support and writing small scripts
to handle the case analysis.

Similar to Beluga, anti-renaming (Lemma[3.18) requires additional care. As an induction
can only be performed if the arguments are variables, we have to generalize the goal
accordingly. For example, for SN we prove the following equivalent statement:

VIAM:tmIT'A). SNM— VI"M (p:renI”"T'). M=M’<p>— SNM’

This uses an induction relying on several inversion lemmas.

Size Our solution is concise (Figure [I3)), in large part due to Coq’s automation. Setting
up simultaneous renaming and substitution together with the before-mentioned lemmas
requires around 150 lines of technical boilerplate.

Scalability The extension to disjoint sums contains twice as many constructors for both
the inductive term type and reducibility. Still, our approach scales well: The automation
scripts carried over for many lemmas, with at most minor adaptions in the binder cases. Of
course, we still have to prove the additional lemmas and handle more cases. These follow
the informal proofs. The confluence lemma proves tiresome, as the already high number
of cases explodes; maybe evaluation contexts could make these proofs more modular. As
can be seen by the line numbers, the framework and reductions require fewer adaptions,
while the additional lemmas for strong normalization and soundness are responsible for
most additional code.

Variation: Scoped syntax In scoped syntax, terms are N-indexed sets and variables are
numbers bounded by that index (see Fig. [I0). Analogous to well-typed syntax, types
enforce correct scoping, but are weaker in that correct typing is not guaranteed. The scoped
de Bruijn encoding technique is part of the folklore, being already proposed in (Altenkirch,
1993) and used in several case studies, e.g., in Adams’ Coq formalization of pure type
system (Adams, 2006). A second version of the proofs formalises the challenge with this
representation.

In contrast to the well-typed setting, the Autosubst library automatically generates the
required definitions and proofs concerning substitution and renaming. These are generated
automatically from the corresponding HOAS signature of terms (Kaiser et al., 2017) using
the primitives suggested in (Abadi et al., 1991)).

As in many cases the typing judgments are superfluous, the proofs translate almost one-
to-one from well-typed syntax. The only notable difference happens in the Fundamental
lemma (Lemma , where the induction is on I' = M : A and we thus need an explicit
typing statement.

Lessons learned The challenge encouraged us to rethink what a library such as Autosubst
is missing: Is it possible to prove substitutivity lemmas automatically? What about renam-
ing or anti-renaming-lemmas? How can we support more advanced (object) types? The

ZU064-05-FPR main 14 December 2019 147

26 A. Abel et. al.

Fixpoint fin (n: N): Type :=

Inductive tm (n : N): Type := match n with

| var : fin n — tmn

| app: tmn — tmn— tmn |0 = False
pp: | S n = option (fin n)
| lam: tm (S n) — tmn. end

Fig. 10. The declaration for scoped de Bruijn terms in Coq

challenge problem provided the motivation to extend and generalize the Autosubst library
to also support well-typed syntax and proofs of substitution and renaming lemmas. This
will reduce the boilerplate infrastructure we have built manually. It is unclear if one can
also automatically generate proofs of the anti-renaming lemmas, as they do not hold in
general.

Comparison The proofs were developed in parallel with the ones in Beluga. Together
with our self-imposed restriction to similar lemma statements, difficulties arose in the
same places — notwithstanding the different approach to variable binding. We were thus
surprised not by the differences but by the similarities between the solutions in Beluga
and Coq. This similarity might disappear for more complex syntax, where good practices
are less established, as well as for different approaches to binders, such as single-point
substitutions or nominal logic.

4.3 Solution C: Using well-typed de Bruijn encoding in Agda

Agda (Norell, 2009) is a dependently-typed programming language based on Martin-Lof
Type Theory (Martin-Lof, 1982) with inductive families (Dybjer, 1994), induction-recursion (Dy-
bjer & Setzer, 1999), copattern-matching (Abel et al., 2013)) and sized types (Abel, 2010).
It offers no special support for representing syntaxes with binding. However, remembering
that generic programming is everyday programming in type theory (Altenkirch & McBride,
2003 Benke et al., 2003), we can rely on external libraries providing general tools to
represent and manipulate such syntaxes.

In this solution we use the generic-syntax library (Allais ef al., 2018)); this is a
generalisation of the observation that a large class of scope-and-type preserving traversals
can be seen as instances of the same notion of semantics (Allais et al., 2017). Roughly
speaking, this semantics is a scope-aware fold over terms of a syntax. Recalling previous
results on folds (Malcolm, 1990), we know that once this shared structure is exposed,
it can be exploited to state and prove generic lemmas e.g., fusion lemmas, or even the
fundamental lemmas of logical relations.

4.3.1 A syntax for syntaxes with binding

The generic-syntax library offers a description language for the user to specify what
one “layer” of intrinsically scoped and typed syntax with binding looks like. Terms are
then obtained as a fixed point of such a description. This construction is analogous to the
definition of the universe of indexed families in (Chapman ef al., 2010), except that we
now deal with binding.

Z7U064-05-FPR

main 14 December 2019 147

POPLMark Reloaded 27

Specification This description language is directly inspired by the careful analysis of the
structure of syntaxes with binding.

Our first task is to identify what it means for a term to be well scoped and well sorted. We
call I -Scoped a type constructor of kind (/ — List / — Set). The first index characterises
the sort of the overall expression, while the second is the context listing the sorts of the
various variables currently in scope. This will be the kind of our terms.

Our second task is to identify the key aspects which one needs in order to describe a
term in a syntax with binding. We note three fundamental building blocks:

1. the ability to store values, e.g., the type of a let-bound variable cannot be inferred
from the type of the overall expression and thus needs to be stored in the let node;

2. the ability to have substructures that may or may not bind extra variables, e.g.,
the body of a lambda is a substructure with an extra variable in scope while the
function in an application node is a substructure in the same scope as the overall
expression;

3. the ability to enforce that the sort of a term is a given i in I, e.g., a lambda
abstraction will have a function type whilst an application node will have a type
matching its functional argument’s co-domain.

From this specification, we can derive an actual implementation of the description lan-
guage and its semantics.

Implementation We define a datatype Desc of descriptions of well scoped-and-typed
syntaxes with binding. It is parameterised by the set I of the sorts that the variables of
that syntax may have. A description is given a semantics as an endofunction on I —Scoped
(i.e., (I — List I — Set) as defined earlier) by the function [-]. Formally, this corresponds
to the following declarations of an inductive type and a recursive function over it:

data Desc (I : Set) : Set; where [-]:DescI— I-Scoped — I-Scoped

The Desc datatype has three constructors corresponding to the three fundamental build-
ing blocks that we have highlighted above. We introduce each constructor together with its
interpretation.

1. ‘o takes two arguments: a Set A and a family of descriptions d indexed over A.
It corresponds to a X-type and typically uses A as a set of tags marking distinct
language constructs (see e.g., TermC). The scope is unchanged when interpreting
the rest of the description.

‘c:(A:Set)(d:A — Descl) — Descl
['6Ad]XiT=%,, ([da]XiD)

2. ‘X takes three arguments: A a List /, j an I and d a Description. It marks the presence
of a recursive substructure of sort j with extra variables of sort A in scope (see e.g.,
(‘X (A :: []) B) declaring the body of a A-abstraction of type A = B). The argument
d corresponds to the rest of the description and is evaluated in an untouched scope.

‘X :List I —I— DescI— Descl
[XAjd]XiT=XAHDjx[d]XiT

Z7U064-05-FPR

main 14 December 2019 147

28 A. Abel et. al.

3. ‘M takes one argument j of type I. This token finishes the description and enforces
that the current branch is of sort j (see e.g., ‘M (A = B) ensuring that the A-
abstraction branch has a function type). This constraint is translated as an equality
constraint between the sort we are forcing the term to have and the one that comes
as an input.

‘B:]— Descl
['WMj]XiT=i=

Example: Un(i)typed lambda calculus The untyped lambda calculus can be seen as a
well scoped and well sorted calculus where the notion of sort is the unit type T. It has two
constructors of interest: application and lambda-abstraction.

1. An application node has exactly two substructures, each of which living in the same
context as the node itself (hence we use the empty list ([]) as the appropriate notion
of context extension). Using _ as the name of the unique value of type T, this gives
us the description: ‘X [] _ (‘X [] _ (‘W)).

2. A lambda-abstraction node has exactly one substructure with precisely one newly-
bound variables. This translates to this description: ‘X (_:: []) _ (‘W _)

Finally, we can produce the complete definition by storing (using ‘c) a tag of type
Bool allowing us to pick one of the two constructors defined above. We obtain the final
description:

‘c Bool A b — if b
then (X[_ (X[_ (W)
else (X (C=[h_(m))

4.3.2 Terms as free relative monads on descriptions

We have now seen descriptions and their formal semantics as endofunctions on 7 —Scoped.
The endofunctions thus obtained have a lot of structure: they all are strictly positive end-
ofunctors. Their formal definition and study is outside the scope of this paper, but the
practical consequence is that we can take their fixed point.

Terms Concretely, this means that for any description d, we can define the inductive
family of well-scoped and well-sorted terms (Tm d) as follows. The two constructors
witness two alternatives: we can either have a variable, or we can have one ‘layer’ of
term (whose shape is given by [d]) where substructures are terms themselves.

data Tm (d: DescI) (i : I) (T : List I) : Set where
var:ieI'=TmdiTl
‘con:[d](MTmd)iT - Tmdil

Our generic-syntax library defines generic functions acting on (Tm d) such as par-
allel renaming and substitution. It also provides proofs of identity and fusion lemmas for
these traversals.

Z7U064-05-FPR

main 14 December 2019 147

POPLMark Reloaded 29

A categorical detour This fixed point is the free relative monad (Altenkirch et al., 2014;
Altenkirch et al., 2015) with respect to the indexed functor of well scoped-and-typed de
Bruijn indices. Informally, a functor 7 (our terms) is said to be a monad relative to a functor
V (our variables) if we have two well-behaved polymorphic functions return (our ability to
embed variables into terms) and bind (our parallel substitution) with the following types.

return : V(A) — T(A)
bind : (V(A) — T(B)) — T(A) — T(B)

By well-behaved we mean that both an identity and a fusion law should hold. That is to
say that on one hand (bind return) should be equal to the identity function and that on the
other (bind f o bind g) should be equal to (bind (bind f o g)). These are precisely two of the
results provided generically by the library.

The Coq solution (Section f.2) demonstrated that choosing to implement parallel re-
naming and substitution are convenient pragmatic choices for a programmer to make. Here
the choice of these definitions arise naturally from the framework.

Other generic results Our library provides more advanced results such as a generic state-
ment and proof of the fundamental lemma of logical relations. It is implemented in two
steps: we first compute from the syntax description a set of constraints that the relation has
to satisfy and then prove that whenever these constraints are met, the fundamental lemma
holds. It is a real advantage in solving this challenge.

It is important for the reader to keep in mind that all of the results described so far are
obtained by generic programming over the universe of syntaxes with binding and not code
generation. The output of a code generator cannot be trusted: a bug in the generator can
lead it to produce invalid proofs. By contrast, a generic proof is always guaranteed to work.

4.3.3 Our solution to the Challenge

Definitions Now that we have seen how the library is organised, we can define the simply-
typed A-calculus by first giving the datatype of simple types Type and a set of tags cor-
responding to the language’s constructs: Lam represents A-abstraction nodes while App
stands for application; both constructors carry two types.

data Type : Set where data TermC : Set where
a : Type Lam : Type — Type — TermC
_ = :Type — Type — Type App : Type — Type — TermC

Fig. 11. Types and constructor tags for STLC

We then define the (Type x List Type)-indexed functor underlying STLC as an element
of Desc Type. It offers a choice of two constructors (4 and application respectively) by
using a sigma type taking a TermC tag first and a description of the corresponding subterms
second defined by pattern-matching on the TermC value.

In the Lam A B case, we expect a recursive substructure of type B living in a context
extended by a newly-bound variable of type A. This ensures the term thus defined has type
A = B. In the App A B case, we expect two recursive substructures living in the same

Z7U064-05-FPR

main 14 December 2019 147

30 A. Abel et. al.

contexts: one with a function type A = B and one with an argument type A. This gives rise
to a term of type B.

TermD : Desc Type

TermD = ‘o TermC\ where
(LamAB) — 'X(A::[]) B('M (A= B))
(AppAB) = X[] (A= B) (X[]A (‘W B))

Fig. 12. Description of STLC as a syntax with binding

If we write STLC for (Tm TermD) we have, modulo isomorphism, three constructors:

e ‘'var taking proofs that A isin'to STLCAT
e ‘A (lambda abstraction) of type STLCB(A ::T) - STLC(A=B)T
e ‘e (infix application) of type STLC(A = B)I' - STLCAT — STLCBTI

Thanks to Agda’s support for pattern-synonyms (Pickering et al., 2016) that are re-
folded in goal types, the fact that we are using an encoding is practically invisible from
the reader’s point of view. The only troublesome point is the lack of support for interactive
case-analysis based on the defined pattern synonyms: case-splits have to be hand-written.

Lemmas and proofs The formalisation closely follows the informal proofs, always gener-
alising the statements involving single-variable substitutions to parallel substitutions. Most
inductive definitions are indexed by an extra size argument and the related lemmas are
proven to be size preserving, which helps tremendously in getting Agda to check that our
recursive definitions are indeed total.

Compared to Coq, we cannot rely on tactics and have to write all proof terms by hand.
However, the expressiveness of dependently-typed pattern-matching, the power of size-
based termination checking and the consequent library on which we are relying means that
our proofs are just as short as tactics-based ones (cf. section[5.4).

Differently from Beluga and similarly to Coq, the theory of renaming and substitution
is not internalised. This means that we sometimes have to introduce a level of indirection
when stating a lemma so that pattern-matching will not get stuck on unification problems
involving renaming. This is particularly apparent in the anti-renaming lemma that Beluga
tackles head-on (cf. Figure [6), while we have to use a dummy argument, which is then
constrained via an equality, similarly to the Coq solution. We show a few cases below in
Figure[13]to illustrate the problem (we quantify over the unbound variables implicitly and
use the absurd pattern () to dismiss impossible cases).

The type theory that Agda implements supports large elimination, which means that the
definition of the logical predicate for the proof of strong normalization is a run-of-the-mill
recursive function.

Our biggest departure from the other formalisations is in the soundness proof, where
we opted for evaluation context-based proofs (see Section [3.4] for a description of the
twist); this allows us to avoid proving confluence of the reduction relations. Evaluation
contexts are especially useful for the proof-term-driven Agda or Beluga, as they make
the description of reductions and the corresponding proofs more compact and fewer cases
need to be written. However, this additional abstraction makes less of a difference in a

Z7U064-05-FPR

main 14 December 2019 147

POPLMark Reloaded 31

th'!"SN:YMp =M =renpM —-AFSNASM —THFSNAS M
th"1~SN M peq (neupr)=neu (th"1~SNe M p eq pr)
th"L*SN (‘"N M) prefl (lam pr) =lam (th"1"SN M _ refl pr)
th"1~SN (‘'varx) p () (lam pr)
th"'*SN (M ‘eN) p () (lam pr)
th 1 ~SN M p refl (red rpr) =

let (M ,eq,r”)=th1"~SNMp rinred ¥ (th"1~SN M’ p eq pr)

th'1"SNe:YMp =M =renp M — A+FSNeASM —T+FSNeA>M
th"1~SNe (‘varx) prefl (var) =varx
th"1~SNe (M ‘e N) p refl (app p ¢) = app (th"1~SNe M p refl p) (th"2~SN N p refl g)

th'1*«SN:VMp - AFASrenp M~SNN - 3INN—-N =renp NxTFASM~SNN

Fig. 13. Implementation of the anti-Renaming lemma in Agda

F#Z > VI'A—=Term AT — Set
I'%z o SM=TFSNa>M
TFZA=B>M=Y{A}p{N} 2 AFZASN—A+-Z#B>renpM'e N

Fig. 14. Logical predicate for Strong Normalization

tactic-driven proof assistant like Coq where additional cases can be discharged (mostly)
automatically.

Size The proof relies on generic-syntax that is approximately 1600 lines of code, as
well as (a small part of) the standard library most notably for the definition and properties
of the reflexive transitive closure of a relation. The mechanization of the main challenge
problems (STLC) is then only 425 LOC (excluding comments and blank lines) as we can
take advantage of some of the generic properties established in the library. The mechaniza-
tion of the challenge extended with disjoint sums (STLC+) is 784 LOC. Both solutions
include not only the soundness but also the completeness of the inductive definition of
strongly normalizing terms. Figure [I5] shows a breakdown section-by-section of the cost
of the formalization effort.

Scalability Between STLC and STLC+, the number of constructors in the language more
than doubled and the total size of solution is slightly less than twice as big.

To keep things tractable in STLC+ we were forced to introduce new abstractions to
structure the completeness proof nicely.

Lessons learned While attempting to solve the challenge, we had to implement new
generic results in generic-syntax that we had overlooked because of how “boring” the
results are (e.g., renaming with the identity is the identity).

This formalisation effort has also revealed some possible extensions of our library:
congruence closure of a relation ought to be a generic operation derived from a language’s
syntax and we ought to be able to prove it well-behaved with respect to (anti-)renaming
and (anti-)substitution as long as the original relation is. Similarly the notions of evaluation

Z7U064-05-FPR

main 14 December 2019 147

32 A. Abel et. al.

contexts and term plugging should be defined once and for all by building on the work
studying the derivatives of regular types (Abbott ef al., 2005).

5 Critical summary and comparison

Our three mechanizations are remarkably similar in the overall structure, although this may
be a factor of referring to a very detailed common informal proof. We will hereby discuss
some of the key points among these different solutions.

5.1 Representation of well-typed terms

We explored two different representations of bindings in our mechanizations, one based
on HOAS, the other modeled via (well-typed) de Bruijn representations. The HOAS rep-
resentation is, perhaps not surprisingly, the most compact one; it only requires 19 resp. 30
LOC for defining well-typed terms and well-typed reductions.

In our Coq solution we use well-typed de Bruijn terms. The definition of the inductive
type itself is concise, but establishing renaming and substitution (see the next subsection)
require approx. 120 LOC for the basic definition of STLC and approx. 150 LOC for the
extension with disjoint sums. Here, we can (potentially) exploit code generation via the
Autosubst framework to ease the definition of the initial infrastructure. In fact, contextual
objects may be viewed as an abstraction of well-typed de Bruijn encodings (Hofmann,
1999) and can actually be compiled to well-typed de Bruijn (Ferreira et al., 2013)). Thus one
could approximate some of Beluga’s features through code generation (Kaiser et al., 2017)
and Coq’s rewriting facilities. Conversely, this case study can be seen as a step towards
understanding how to support HOAS via code generation and generic programming.

In the Coq solution based on scoped terms we use a separate typing judgment (extrinsic
typing). In this case, the differences in the proof structure are negligible and the develop-
ments are very similar — of course, we have to prove preservation of typing. However,
this similarity may depend on this proof in particular, or on the fact that we have ported
it from the typed to the untyped setting, rather than starting one from scratch. Or it can
be a factor of the SN proof itself, since anecdotal evidence, e.g., (Momigliano, 2012),
suggests otherwise: in that case study roughly 1/4 of the theorems involved maintaining
type invariants.

We feel that the jury is still out regarding the intrinsic vs. extrinsic types encoding debate:
on one hand, the intrinsic type discipline when it works — and recent results ((Poulsen
et al., 2018))) shows that it applies outside the usual suspects — yields very compact
and economic encodings. On the other, extrinsic typing scales more easily to dependent
types (Danielsson, 2007; |Chapman, 2009; |Altenkirch & Kaposi, 2016) and see, e.g., the
Agda formalization in (Abel et al., 2018)).

Our Agda solution uses a library (Allais ef al., 2018)) that provides us with a universe
of well scoped-and-typed syntaxes with binding in which to encode our languages. The
definition of STLC takes 10 LOC while that of STLC extended with disjoint sums takes 15
LOC. From these definitions we get renaming, substitution as well as (among other things)
identity and fusion lemmas. Previous projects like GMeta (Lee et al., 2012) expected users
to define their own inductive types and then deploy isomorphisms to embed them into

Z7U064-05-FPR

main 14 December 2019 147

POPLMark Reloaded 33

the universe the generic programs are defined over; we instead expect users to use the
universe directly. Agda supports pattern synonyms thus allowing us to hide the encoding.
The following example defines a pattern synonym for a A-abstraction constructor. Agda
de-sugars the synonyms we write and re-sugars the ones it prints in goal buffers.

pattern ‘X b = ‘con (Lam _ b, refl)

We add 9 LOC (resp. 15 LOC) of Agda’s pattern synonyms and display pragmas make
the user experience nicer. The only downside to working directly in the encoded syntax is
that Agda does not yet offer a way to configure its automated case-splitting machinery to
generate patterns using a set of pattern synonyms. We currently have to write our pattern-
matching definitions by hand.

5.2 Renamings and substitutions

In Beluga, (simultaneous) substitution and renamings are built into the underlying type-
theoretic foundation. Checking whether two objects are convertible or unifiable is done
modulo the equational theory of substitutions. Thus, weakening and anti-renaming proper-
ties such as Lemma [3.2] and [3.3] come for free: the first inherited from LF, the latter from
Beluga’s theory of substitutions.

In the Coq solution, we use simultaneous substitution as an operation where we imple-
ment substitutions as functions that maps variables to terms. Renamings are represented
as functions from variables to variables. Coq’s rewriting facilities take care of solving
equational properties of substitutions automatically.

In the Agda solution, a general notion of scoped-and-typed ¥ -valued environments
inherited from (Allais ez al., 2018) supersedes both renaming and substitution. Given an
I -Scoped relation ¥/, a ¥ -environment from context I" to context A, associates to each
variable x:0 in I" a value of type ¥ o A.

Taking 7 to be de Bruijn variables yields renamings while using terms yields substitu-
tions. This is a generalisation of (McBride, 2006), which shows how to combine renaming
and substitution into a single parametrized operation, cutting down on the boilerplate
proofs: instead of four composition lemmata for renamings and substitutions, there is a
single parameterized one. However, proofs of weakening and anti-renaming tend to be
more tedious than in Beluga, requiring the use of inversion lemmas. A caveat: The use of
proper functions requires function extensionality in the meta theory, which is by default
absent in the intensional type theories of Agda and Coq. Alternatively, a special pointwise
equality can be defined for substitutions.

To support matching on terms under a renaming, both our Coq and Agda solution rely
on equality constraints. An alternative is to use an inductive relation between the renaming
P, aterm M and a term M’ s.t. [p]M = M’. This allows us to reason by induction on this
relation, as suggested e.g., in (Abel & Vezzosi, 2014). We can show that this inductive
relation is equivalent to the algorithmic (functional) specification.

ZU064-05-FPR main 14 December 2019 147

34 A. Abel et. al.

5.3 Induction and recursive definitions

While in the strong normalization proof we only need fairly straightforward arguments by
(mutual) structural induction, the proofs of results such as weak head expansion (Lemma[3.10)
and backward closure of sn (Lemma [3.13)) require lexicographic induction. This resulted
in the extension of the totality checker in Beluga to verify termination for such proofs.

In Coq, the user decides via tactics in which order inductions are done (and deals
with the consequences). For mutually recursive types (e.g., for the soundness proof), we
had to replace the standard induction principle with an (automatically generated) mutual
induction principle.

In Agda, we rely on sized types or on structural subterm ordering. Agda will infer a
suitable termination measure, if possible.

The proofs of substitution properties for typed reductions (Lemma [3.5) and multi-step
reductions (Lemma (3)), formulated using single substitutions, require an induction
principle that takes into account exchange of variables. As Beluga’s totality checker only
considers direct subterms, it is currently unable to verify such proofs. This, again, could
motivate further extensions to Beluga’s totality checker. The Coq and Agda mechanizations
instead generalize these lemmas to simultaneous substitutions, which avoids the need to
reason about exchange.

The accessibility relation, while being an infinitary inductive definition, does not pose
any problem to its encoding via inductive types in any of the considered systems. The
logical predicate definition can be encoded in Agda and Coq using a recursive type; in
Beluga, we use a stratified type; both are ways to define predicates (relations) inductively
on one of the indices. In contrast to inductive definitions, such definitions do not give rise
to induction principles.

5.4 Lines of code

We summarize in Fig. [I3] the lines of code (LOC) necessary to implement the challenge
problems considering the definitions and lemmas from each section in Sec. [3] Of course
we are well aware that such comparisons are only partially meaningful — especially since
in Coq we use proof scripts to construct proofs and in Beluga and Agda we write proofs as
programs. Even between Beluga and Agda there are some fundamental differences: Agda
supports simultaneous pattern matching similar to Haskell, while in Beluga we usually
split on one variable at a time following more the OCaml tradition and the pen-and-paper
development of a proof. These different styles in writing proofs impact the LOC count.
However, the LOC counts illustrate some fundamental points: proving the main chal-
lenges seems rather similar in size and scale: the main difference lies in how we support
the definition of binding syntax. Since Beluga supports binding, contexts, substitutions,
renamings, etc. intrinsically, it requires no additional lemmas w.r.t. syntax representation
and has therefore the leanest set up. In Coq, we need to support all the above when setting
up typed terms, together with the substitution statements of the o-calculus. The size of
the set-up is thus up to three times larger than in Beluga. The generic syntax library is,
compared to the rest of the mechanization, huge — it is 2 to 4 times the size of the code
necessary to solve the actual challenge problem(s). This is partly due to the fact that it

Z7U064-05-FPR

main 14 December 2019 147

POPLMark Reloaded 35
Beluga Coq (Scoped) Agda

STLC STLC+ STLC STLC+|STLC STLC+
Library (generic-syntax) 1600 1600
Generated Code 0(167) 0(Q218)
Sec|3.1f Typed Terms & Reduction 75 174 202 (74) 265 (132) 85 144
Sec Defining Strong Norm. 30 48| 22(22) 30(30) 34 47
Twist: Evaluation Contexts 38 57
Sec Properties of sn 163 355 97.(97) 214 (212) 97 219
Sec Soundness of SN 29 501 17(17) 24 (24) 12 18
Sec Properties of SN 69 136| 43 @47) 67(71) 42 65
Sec|3.6f SN proof using a Log. Pred. 80 155 55(72) 115 (136) 70 134
Total 446 918446 (329) 715 (605)| 378 684

Fig. 15. Lines of code for Challenge problem 1 and 2

provides more than is necessary for the discussed challenge problems and, of course, it is
an effort for which you pay only once.

6 Related work

Normalization proofs by logical relations (Tait, 1967; |Friedman, 1975) have been used
early in the design and implementation of proof assistants to demonstrate the power of a
given system (Coquand, 1993). In fact there is a wide range of approaches and implemen-
tations — they all differ from our benchmark.

Altenkirch (1993) presented the first and very influential published encoding of strong
normalization, namely for System F in Lego following (Girard et al., 1989)’s proof. Given
the lack of inductive types in Lego at the time he had to encode them using recursors. He
restricts to untyped lambda terms represented by standard de Bruijn indices — a choice he
later in the paper regrets and calls “actually a little bit of cheating” in the accompanying
technical report (Altenkirch, 1992), where he also mentions intrinsically-typed represen-
tations. System F types are represented with scoped terms. He introduces the accessibility
definition of strong normalization and defines reducibility candidates on untyped terms.

Barras (1997) revisited the problem for the Calculus of Constructions and adapted Al-
tenkirch’s proof. Girard’s strong normalization proof has been also implemented in AT-
S/LF (X1, 2004) and translated to Abella (Gacek, 2010). The mechanization introduces a
constant inhabiting any type to avoid working with open terms, bringing in lemmas that
have no correspondence in the informal proof. This is arguably a shortcut that made sense
for ATS/LF (which is constitutionally incapable to reason about open terms), but much less
for Abella (which in principle shines in this regard). This trick is in fact absent from the
encoding of the same proof in Isabelle Nominal (Group, 2009).

Berger et al. (2006) present formalizations in Minlog, Coq and Isabelle/HOL of a Tait-
style proof with an emphasis on extracting variants of the normalization-by-evaluation
algorithm. Only the Coq formalization is reported complete, based on a de Bruijn encoding
and recursively defining (closed) reducibility by strong elimination.

Abel and Vezzosi (2014) show strong normalization in a more complex setting, namely
a simply-typed lambda calculus with guarded recursive types; the Agda mechanization
uses intrinsically well-typed terms over coinductively defined object types and unifies

Z7U064-05-FPR

main 14 December 2019 147

36 A. Abel et. al.

renaming and substitution following (McBride, 2006). The operational semantics is based
on evaluation contexts, and the Kripke-style logical relation takes into account context
extensions and antitonicity of the recursion depth. From this formalization, a solution of
the POPLMark Reloaded challenge can be extracted.

There are also a number of mechanizations of weak normalization using reducibility
candidates, such as the one in Beluga (Cave & Pientka, 2015;|Cave & Pientka, 2018), which
also uses a Kripke-style logical relation via context extensions. Another example is (Abel
et al., 2018), which covers also dependent types, but with extrinsic typing. Intrinsically
well-typed terms are used by (Altenkirch & Kaposi, 2017)) in form of a quotient inductive-
inductive type.

Further, there are formalizations of normalization following the combinatorial proof
in (Joachimski & Matthes, 2003). One such example is the mechanization in Isabelle by
Berghofer (2004)); another is Abel’s (2008) in Twelf. Using the inductive definition of
normalization one can in fact avoid using logical predicates at all and prove normalization
by elementary means. However, this proof technique does not scale to strong normalization
in a proof-theoretically weak system such as Twelf. In fact, we cannot directly represent
the accessibility relation: a way to circumvent this problem is to follow Schiirmann and
Sarnat (2008))’s approach of building an intermediate logic where to express the logical
predicate, see also (Rasmussen & Filinski, 2013)). This, to our knowledge, has not been
done yet.

Last, there have been mechanizations of the meta-theory of equivalence checking in the
simply-typed lambda calculus and in LF (Narboux & Urban, 2008; |Cave & Pientka, 2018}
Urban et al., 2011} |Cheney & Momigliano, 2017), in particular showing completeness of
the type-directed equivalence algorithm relying on a Kripke-logical relation in Nominal
Isabelle and Beluga. The mechanization of this problem in Beluga follows to a large extent
the same ideas highlighted in the solution for the strong normalization proof.

As far as other benchmarks for PL theory, Felty et al. (2015} 2018) recently presented
some benchmarks emphasizing the all important and often neglected issue of reasoning
within a context of assumptions, and the role that properties such as weakening, ordering,
subsumption play in formal proofs.

7 Conclusion and future work

From our perspective, the proposed challenge problem has already been a success: it has led
to a more modern tutorial-style presentation of proving strong normalization using Kripke-
style logical relations. It has brought together different communities and developers: those
working on logical frameworks, those building libraries for mechanizing meta-theory, and
those who use a code generation approach to handling syntax and binding. It has stimulated
progress in each of these systems and communities: for example, it has led to extensions
to renamings and generalizations of the totality checker in Beluga. It has motivated future
revisions in the design of Autosubst and it has led to the implementation of new results in
the generic-syntax library that were previously overlooked. Last but not least, it has also
helped us better understand the similarities and differences in each of the approaches and
we hope there will be more cross-fertilization in the future.

Z7U064-05-FPR

main 14 December 2019 147

POPLMark Reloaded 37

Towards future benchmarks for mechanized metatheory This benchmark is one di-
mension along which we can compare proof assistants and there are many other aspects
where existing proof technology remains ad-hoc and few abstractions exist. We mention
a few areas where new benchmarks could and should be crafted. This is by no means an
exhaustive enumeration.

One direction of interest is capturing in a direct way more exotic bindings (Cheney,
2005; |Weirich et al., 2011} Keuchel ez al., 2016;[Urban & Kaliszyk, 2012)). An obvious first
step would be n-ary bindings, i.e. the binding of an arbitrary, previously unknown number
of variables, which are needed to express nested pattern matching or mutual recursive let
constructions, see for a recent example (Rizkallah ez al., 2018)). In the context of pattern
matching, these were already part of the less-known and even less tackled part B of the first
POPLMark challenge. Strong normalization for a language with arbitrarily nested pattern
matching would push the boundaries of existing binding techniques.

Reasoning with state and concurrency plays of course a prominent role in programming
languages theory and therefore in related formalizations, which have mostly been carried
out with ad-hoc methods. In fact, the development of sub-structural logical frameworks
or libraries supporting reasoning with resources is lagging behind, with the very notable
exception of Iris (https://iris-project.org/). The few case studies addressed in the
literature (Cervesato & Pfenning, 2002; [Mahmoud & Felty, 2019) concern issues akin to
the first POPLMark challenge, i.e., type preservation. It is important to craft benchmarks
that are not overly complex. As such, two suitable options are logical relations for mutable
state (Ahmed, 2004) or topics in the meta-theory of session types such as (Pérez ef al.,
2014).

Finally, another area that deserves new benchmarks is coinductive reasoning. While
this has been a staple in proof assistants since the late 90’s, most case studies regarded
properties of bisimlarity in process and lambda-calculi, to name just a few recent pa-
pers (Tiu & Miller, 2010; [Momigliano et al., 2019} Bengtson et al., 2016 Lenglet &
Schmitt, 2018)). These turned (a posteriori) not so challenging, since those coinductive
proofs can be carried out more or less with the limited technology of guarded induction.
Now that new approaches to the theory and implementation of coinduction have emerged,
such as parametrized coinduction (Hur er al., 2013), copatterns (Abel et al., 2013) and
AmiCo (Blanchette ef al., 2017), we seek new benchmarks, possibly something along the
lines of (Abel & Chapman, 2014).

We often are driven by proving the next result about a given system, rather than reflecting
upon the way we proved a given result. Developing benchmarks is not an easy task, but
it enriches our understanding and helps us to develop better foundations and more robust
tools for the future.

References

Abadi, Martin, Cardelli, Luca, Curien, Pierre-Louis, & Lévy, Jean-Jacques. (1991). Explicit
substitutions. Journal of functional programming, 1(4), 375-416.

Abbott, Michael, Altenkirch, Thorsten, McBride, Conor, & Ghani, Neil. (2005). ¢ for data:
Differentiating data structures. Fundamenta informaticae, 65(1-2), 1-28.

https://iris-project.org/

Z7U064-05-FPR

main 14 December 2019 147

38 A. Abel et. al.

Abel, Andreas. (2008). Normalization for the simply-typed lambda-calculus in Twelf. Pages 3—16 of:
Schiirmann, Carsten (ed), Logical Frameworks and Metalanguages (LFM 04). Electronic Notes
in Theoretical Computer Science, vol. 199. Elsevier.

Abel, Andreas. (2010). MiniAgda: Integrating sized and dependent types. Pages 14-28 of: Bove,
Ana, Komendantskaya, Ekaterina, & Niqui, Milad (eds), Proceedings Workshop on Partiality and
Recursion in Interactive Theorem Provers, PAR 2010, Edinburgh, UK, 15th July 2010. EPTCS,
vol. 43.

Abel, Andreas, & Chapman, James. (2014). Normalization by evaluation in the delay monad: A case
study for coinduction via copatterns and sized types. Pages 51-67 of: MSFP. EPTCS, vol. 153.

Abel, Andreas, & Scherer, Gabriel. (2012). On irrelevance and algorithmic equality in predicative
type theory. Logical methods in computer science, 8(1:29), 1-36. TYPES’10 special issue.

Abel, Andreas, & Vezzosi, Andrea. (2014). A formalized proof of strong normalization for guarded
recursive types. Pages 140158 of: Garrigue, Jacques (ed), Programming Languages and Systems
- 12th Asian Symposium, APLAS 2014, Singapore, November 17-19, 2014, Proceedings. Lecture
Notes in Computer Science, vol. 8858. Springer.

Abel, Andreas, Pientka, Brigitte, Thibodeau, David, & Setzer, Anton. (2013). Copatterns:
Programming infinite structures by observations. Pages 27-38 of: Giacobazzi, Roberto, &
Cousot, Radhia (eds), The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL’13, Rome, Italy, January 23 - 25, 2013. ACM Press.

Abel, Andreas, Ohman, Joakim, & Vezzosi, Andrea. (2018). Decidability of conversion for type
theory in type theory. Proceedings of the ACM on programming languages, 2(POPL), 23:1-23:29.

Adams, Robin. (2006). Formalized metatheory with terms represented by an indexed family of types.
Pages 1-16 of: Filliatre, Jean-Christophe, Paulin-Mohring, Christine, & Werner, Benjamin (eds),
Types for Proofs and Programs. Berlin, Heidelberg: Springer Berlin Heidelberg.

Ahmed, Amal. (2004). Semantics of types for mutable state. Ph.D. thesis, Princeton University.

Ahmed, Amal. (2013). Logical relations. Oregon Programming Languages Summer School
(OPLSS).

Ahmed, Amal, Fluet, Matthew, & Morrisett, Greg. (2007). L3: A linear language with locations.
Fundam. inform., 77(4), 397-449.

Allais, Guillaume, Chapman, James, McBride, Conor, & McKinna, James. (2017). Type-and-scope
safe programs and their proofs. Pages 195-207 of: Proceedings of the 6th ACM SIGPLAN
Conference on Certified Programs and Proofs. CPP 2017. New York, NY, USA: ACM.

Allais, Guillaume, Atkey, Robert, Chapman, James, McBride, Conor, & McKinna, James. (2018). A
type and scope safe universe of syntaxes with binding: Their semantics and proofs. Proc. ACM
program. lang., 2(ICFP), 90:1-90:30.

Altenkirch, Thorsten. (1992). Brewing strong normalization proof with LEGO. Tech. rept. 92-
230. LFCS, Edinburgh. http://www.lfcs.inf.ed.ac.uk/reports/92/ECS-LFCS-92-230/ECS-LFCS-
92-230.pdf.

Altenkirch, Thorsten. (1993). A formalization of the strong normalization proof for System F in
LEGO. Pages 13-28 of: Bezem, Marc, & Groote, Jan Friso (eds), Typed Lambda Calculi and
Applications, International Conference on Typed Lambda Calculi and Applications, TLCA 93,
Utrecht, The Netherlands, March 16-18, 1993, Proceedings. Lecture Notes in Computer Science,
vol. 664. Springer.

Altenkirch, Thorsten, & Kaposi, Ambrus. (2016). Type theory in type theory using quotient inductive
types. Pages 18-29 of: Bodik, Rastislav, & Majumdar, Rupak (eds), Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2016, St. Petersburg, FL, USA, January 20 - 22, 2016. ACM Press.

Altenkirch, Thorsten, & Kaposi, Ambrus. (2017). Normalisation by evaluation for type theory, in
type theory. Logical methods in computer science, 13(4:1)(Oct.), 1-26.

ZU064-05-FPR main 14 December 2019 147

POPLMark Reloaded 39

Altenkirch, Thorsten, & McBride, Conor. (2003). Generic programming within dependently typed
programming. Pages 1-20 of: Proceedings of the IFIP TC2/WG2.1 Working Conference on
Generic Programming. Deventer, The Netherlands, The Netherlands: Kluwer, B.V.

Altenkirch, Thorsten, Hofmann, Martin, & Streicher, Thomas. (1995). Categorical reconstruction
of a reduction free normalization proof. Pages 182—199 of: Pitt, David H., Rydeheard, David E.,
& Johnstone, Peter (eds), Category Theory and Computer Science, 6th International Conference,
CTCS °95, Cambridge, UK, August 7-11, 1995, Proceedings. Lecture Notes in Computer Science,
vol. 953. Springer.

Altenkirch, Thorsten, Chapman, James, & Uustalu, Tarmo. (2014). Relative monads formalised.
Journal of Formalized Reasoning, 7(1), 1-43.

Altenkirch, Thorsten, Chapman, James, & Uustalu, Tarmo. (2015). Monads need not be
endofunctors. Logical methods in computer science, 11(1).

Anand, Abishek. (2016). Exploiting uniformity in substitution: The Nuprl term model. The 5th
International Congress on Mathematical Software (ICMS 2016).

Aydemir, B., Bohannon, A., Fairbairn, M., Foster, J., Pierce, B., Sewell, P., Vytiniotis, D., Washburn,
G., Weirich, S., & Zdancewic, S. (2005). Mechanized metatheory for the masses: The POPLmark
challenge. Pages 50-65 of: Hurd, Joe, & Melham, Thomas F. (eds), Eighteenth International
Conference on Theorem Proving in Higher Order Logics (TPHOLs). Lecture Notes in Computer
Science, vol. 3603. Springer.

Aydemir, Brian, & Weirich, Stephanie. (2010). LNgen: Tool support for locally nameless
representations. Tech. rept. MS-CIS-10-24. University of Pennsylvania.

Barras, Bruno, & Werner, Benjamin. (1997). Coq in Coq. 30 pages, unpublished.

Bengtson, Jesper, Parrow, Joachim, & Weber, Tjark. (2016). Psi-calculi in isabelle. Journal of
automated reasoning, 56(1), 1-47.

Benke, Marcin, Dybjer, Peter, & Jansson, Patrik. (2003). Universes for generic programs and proofs
in dependent type theory. Nordic j. of computing, 10(4), 265-289.

Benton, Nick, Hur, Chung-Kil, Kennedy, Andrew, & McBride, Conor. (2012). Strongly typed term
representations in Coq. Journal of Automated Reasoning, 49(2), 141-159.

Berger, Ulrich, Berghofer, Stefan, Letouzey, Pierre, & Schwichtenberg, Helmut. (2006). Program
extraction from normalization proofs. Studia logica, 82(1), 25-49.

Berghofer, Stefan. (2004). Extracting a normalization algorithm in Isabelle/HOL. Pages 50-65 of:
TYPES. Lecture Notes in Computer Science, vol. 3839. Springer.

Blanchette, Jasmin Christian, Bouzy, Aymeric, Lochbihler, Andreas, Popescu, Andrei, & Traytel,
Dmitriy. (2017). Friends with benefits. Pages 111-140 of: Proceedings of the 26th European
Symposium on Programming Languages and Systems - Volume 10201. New York, NY, USA:
Springer-Verlag New York, Inc.

Cave, Andrew, & Pientka, Brigitte. (2012). Programming with binders and indexed data-types. Pages
413-424 of: Field, John, & Hicks, Michael (eds), Proceedings of the 39th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2012, Philadelphia, Pennsylvania,
USA, January 22-28, 2012. ACM Press.

Cave, Andrew, & Pientka, Brigitte. (2013). First-class substitutions in contextual type theory.
Pages 15-24 of: 8th ACM SIGPLAN International Workshop on Logical Frameworks and Meta-
Languages: Theory and Practice (LFMTP’13). ACM Press.

Cave, Andrew, & Pientka, Brigitte. (2015). A case study on logical relations using contextual types.
Pages 33—45 of: Cervesato, Iliano, & Chaudhuri, Kaustuv (eds), Proceedings Tenth International
Workshop on Logical Frameworks and Meta Languages: Theory and Practice, LEFMTP 2015,
Berlin, Germany, 1 August 2015. EPTCS, vol. 185.

Cave, Andrew, & Pientka, Brigitte. (2018). Mechanizing proofs with logical relations — Kripke-style.
Mathematical structures in computer science, 28(9), 1606—1638.

Z7U064-05-FPR

main 14 December 2019 147

40 A. Abel et. al.

Cervesato, I., & Pfenning, F. (2002). A linear logical framework. Information and computation,
179(1), 19-75. cited By 52.

Chapman, James. (2009). Type theory should eat itself. Electronic notes in theoretical computer
science, 228, 21-36. Proceedings of the International Workshop on Logical Frameworks and
Metalanguages: Theory and Practice (LFMTP 2008).

Chapman, James, Dagand, Pierre-Evariste, McBride, Conor, & Morris, Peter. (2010). The gentle art
of levitation. Sigplan not., 45(9), 3-14.

Charguéraud, Arthur. (2012). The locally nameless representation. Journal of automated reasoning,
49(3), 363-408.

Cheney, James. (2005). Toward a general theory of names: binding and scope. Pages 33—40
of> Momigliano, Alberto, & Pollack, Randy (eds), ACM SIGPLAN International Conference on
Functional Programming, Workshop on Mechanized reasoning about languages with variable
binding, MERLIN 2005, Tallinn, Estonia, September 30, 2005. ACM.

Cheney, James, & Momigliano, Alberto. (2017). cccheck: A mechanized metatheory model checker.
TPLP,17(3),311-352.

Chlipala, Adam. (2008). Parametric higher-order abstract syntax for mechanized semantics. Pages
143-156 of: ACM Sigplan Notices, vol. 43. ACM.

Coquand, Catarina. (1993). From semantics to rules: A machine assisted analysis. Pages 91-105
of: Borger, Egon, Gurevich, Yuri, & Meinke, Karl (eds), Computer Science Logic, 7th Workshop,
CSL ’93, Swansea, United Kingdom, September 13-17, 1993, Selected Papers. Lecture Notes in
Computer Science, vol. 832. Springer.

Crary, Karl. (2005). Logical relations and a case study in equivalence checking. Pierce, Bejamin C.
(ed), Advanced Topics in Types and Programming Languages. The MIT Press.

Curien, Pierre-Louis, Hardin, Thérese, & Rios, Alejandro. (1992). Strong normalization of
substitutions. Pages 209-217 of: Havel, Ivan M., & Koubek, Viclav (eds), Mathematical
Foundations of Computer Science 1992, 17th International Symposium, MFCS’92, Prague,
Czechoslovakia, August 24-28, 1992, Proceedings. Lecture Notes in Computer Science, vol. 629.
Springer.

Danielsson, Nils Anders. (2007). A formalisation of a dependently typed language as an inductive-
recursive family. Pages 93—109 of: Altenkirch, Thorsten, & McBride, Conor (eds), Types for
Proofs and Programs, International Workshop, TYPES 2006, Nottingham, UK, April 18-21, 2006,
Revised Selected Papers. Lecture Notes in Computer Science, vol. 4502. Springer.

De Bruijn, Nicolaas Govert. (1972). Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the church-rosser theorem. Pages 381-392
of: Indagationes Mathematicae (Proceedings), vol. 75. Elsevier.

Despeyroux, Joélle, Felty, Amy P., & Hirschowitz, André. (1995). Higher-order abstract syntax in
coq. Pages 124-138 of: Dezani-Ciancaglini, Mariangiola, & Plotkin, Gordon D. (eds), Typed
Lambda Calculi and Applications, Second International Conference on Typed Lambda Calculi
and Applications, TLCA ’95, Edinburgh, UK, April 10-12, 1995, Proceedings. Lecture Notes in
Computer Science, vol. 902. Springer.

Dybjer, Peter. (1994). Inductive families. Formal aspects of computing, 6(4), 440—465.

Dybjer, Peter, & Setzer, Anton. (1999). A finite axiomatization of inductive-recursive definitions.
Pages 129-146 of: Girard, Jean-Yves (ed), Typed Lambda Calculi and Applications, 4th
International Conference, TLCA’99, L’Aquila, Italy, April 7-9, 1999, Proceedings. Lecture Notes
in Computer Science, vol. 1581. Springer.

Felty, Amy, & Momigliano, Alberto. (2012). Hybrid: A definitional two-level approach to reasoning
with higher-order abstract syntax. Journal of automated reasoning, 48(1), 43-105.

Felty, Amy P., & Momigliano, Alberto. (2009). Reasoning with hypothetical judgments and open
terms in Hybrid. Pages 83-92 of: 11th ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming (PPDP ’09). New York, NY, USA: ACM.

ZU064-05-FPR main 14 December 2019 147

POPLMark Reloaded 41

Felty, Amy P., Momigliano, Alberto, & Pientka, Brigitte. (2015). The next 700 challenge problems
for reasoning with higher-order abstract syntax representations - part 2 - A survey. J. autom.
reasoning, 55(4), 307-372.

Felty, Amy P., Momigliano, Alberto, & Pientka, Brigitte. (2018). Benchmarks for reasoning with
syntax trees containing binders and contexts of assumptions. Mathematical structures in computer
science, 28(9), 1507-1540.

Ferreira, Francisco, Monnier, Stefan, & Pientka, Brigitte. (2013). Compiling contextual objects:
bringing higher-order abstract syntax to programmers. Pages 13-24 of: Proceedings of the 7th
workshop on Programming languages meets program verification. ACM.

Friedman, Harvey. (1975). Equality between functionals. Pages 22-37 of: Parikh, R. (ed), Logic
Collogquium. Lecture Notes in Mathematics, vol. 453. Springer.

Gacek, Andrew. (2010). Girard’s proof of strong normalization of the simply-typed lambda-calculus
calculus. http://abella-prover.org/examples/lambda-calculus/normalization/
stlc-strong-norm.html,

Geuvers, Herman. (1995). A short and flexible proof of strong normalization for the calculus of
constructions. Pages 14-38 of: Selected Papers from the International Workshop on Types for
Proofs and Programs. TYPES ’94. London, UK, UK: Springer-Verlag.

Girard, J. Y. (1972). Interprétation fonctionnelle et elimination des coupures de I’arithmétique
d’ordre supérieur. These d’état, Université de Paris 7.

Girard, Jean-Yves, Lafont, Yves, & Taylor, Paul. (1989). Proofs and Types. Cambridge Tracts in
Theoretical Computer Science, vol. 7. Cambridge University Press.

Goguen, Healfdene. (1995). Typed operational semantics. Pages 186—200 of: Dezani-Ciancaglini,
Mariangiola, & Plotkin, Gordon (eds), 2nd International Conference on Typed Lambda Calculi
and Applications (TLCA’95). Lecture Notes in Computer Science (LNCS 902). Springer.

Goguen, Healfdene. (2005). Justifying algorithms for 1 conversion. Pages 410—424 of: Sassone,
Vladimiro (ed), Foundations of Software Science and Computational Structures, 8th International
Conference, FoSSaCS 2005, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005, Proceedings. Lecture Notes
in Computer Science, vol. 3441. Springer.

Group, Nominal Methods. (2009). Strong normalization for the simply typed lambda calculus.
https://isabelle.in.tum.de/dist/library/HOL/HOL-Nominal-Examples/SN.htmll

Harper, Robert, & Pfenning, Frank. (2005). On equivalence and canonical forms in the LF type
theory. ACM transactions on computational logic, 6(1), 61-101.

Harper, Robert, Honsell, Furio, & Plotkin, Gordon D. (1993). A framework for defining logics.
Journal of the association of computing machinery, 40(1), 143-184.

Hoare, Tony. (2003). The verifying compiler: A grand challenge for computing research. Pages 25—
35 of: Boszorményi, Laszlo, & Schojer, Peter (eds), Modular Programming Languages. Berlin,
Heidelberg: Springer Berlin Heidelberg.

Hofmann, Martin. (1999). Semantical analysis of higher-order abstract syntax. Pages 204-213 of:
Logic in Computer Science, 1999. Proceedings. 14th Symposium on. IEEE.

Hur, Chung-Kil, Neis, Georg, Dreyer, Derek, & Vafeiadis, Viktor. (2013). The power of
parameterization in coinductive proof. Pages 193-206 of: POPL ’13. NY, USA: ACM.

Jacob-Rao, Rohan, Pientka, Brigitte, & Thibodeau, David. (2018). Index-stratified types. Pages
19:1-19:17 of: Kirchner, Hélene (ed), 3rd International Conference on Formal Structures for
Computation and Deduction, FSCD 2018, July 9-12, 2018, Oxford, UK. LIPIcs, vol. 108. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik.

Joachimski, Felix, & Matthes, Ralph. (2003). Short proofs of normalization for the simply-typed
lambda-calculus, permutative conversions and Godel’s T. Archive of mathematical logic, 42(1),
59-87.

http://abella-prover.org/examples/lambda-calculus/normalization/stlc-strong-norm.html
http://abella-prover.org/examples/lambda-calculus/normalization/stlc-strong-norm.html
https://isabelle.in.tum.de/dist/library/HOL/HOL-Nominal-Examples/SN.html

Z7U064-05-FPR

main 14 December 2019 147

42 A. Abel et. al.

Kaiser, Jonas, Schifer, Steven, & Stark, Kathrin. (2017). Autosubst 2: Towards reasoning with multi-
sorted de Bruijn terms and vector substitutions. Pages 10—14 of: Proceedings of the Workshop on
Logical Frameworks and Meta-Languages: Theory and Practice. LFMTP *17. New York, NY,
USA: ACM.

Keuchel, Steven, Weirich, Stephanie, & Schrijvers, Tom. (2016). Needle & Knot: Binder boilerplate
tied up. Pages 419445 of: European Symposium on Programming. Springer.

Klein, Gerwin, & Nipkow, Tobias. (2006). A machine-checked model for a Java-like language,
virtual machine, and compiler. ACM trans. program. lang. syst., 28(4), 619-695.

Kumar, Ramana, Myreen, Magnus O., Norrish, Michael, & Owens, Scott. (2014). CakeML: a verified
implementation of ML. Pages 179-192 of: Jagannathan, Suresh, & Sewell, Peter (eds), The 41st
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’14, San Diego, CA, USA, January 20-21, 2014. ACM Press.

Lee, Daniel K., Crary, Karl, & Harper, Robert. (2007). Towards a mechanized metatheory of standard
ML. Pages 173—184 of: Hofmann, Martin, & Felleisen, Matthias (eds), Proceedings of the 34th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2007,
Nice, France, January 17-19, 2007. ACM Press.

Lee, Gyesik, d. S. Oliveira, Bruno C., Cho, Sungkeun, & Yi, Kwangkeun. (2012). GMeta: A generic
formal metatheory framework for first-order representations. Pages 436—455 of: Seidl, Helmut
(ed), Programming Languages and Systems - 21st European Symposium on Programming, ESOP
2012, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2012, Tallinn, Estonia, March 24 - April 1, 2012. Proceedings. Lecture Notes in Computer
Science, vol. 7211. Springer.

Lenglet, Serguei, & Schmitt, Alan. (2018). Hox in Coq. Pages 252-265 of: Proceedings of the 7th
ACM SIGPLAN International Conference on Certified Programs and Proofs. CPP 2018. New
York, NY, USA: ACM.

Leroy, Xavier. (2009). Formal verification of a realistic compiler. Communications of the ACM,
52(7), 107-115.

Licata, Daniel R, & Harper, Robert. (2009). A universe of binding and computation. Pages 123—134
of: ACM Sigplan Notices, vol. 44. ACM.

Mahmoud, Mohamed Yousri, & Felty, Amy P. (2019). Formalization of metatheory of the quipper
quantum programming language in a linear logic. J. autom. reasoning, 63(4), 967-1002.

Malcolm, Grant. (1990). Data structures and program transformation. Sci. comput. program., 14(2-
3), 255-279.

Martin-Lof, Per. (1982). Constructive mathematics and computer programming. Studies in logic and
the foundations of mathematics, 104, 153—175.

McBride, Conor. (2006). Type-preserving renaming and substitution. Unpublished draft.

Mitchell, John C., & Moggi, Eugenio. (1991). Kripke-style models for typed lambda calculus. Ann.
pure appl. logic, 51(1-2), 99-124.

Monmigliano, Alberto. (2012). A supposedly fun thing I may have to do again: A HOAS encoding of
Howe’s method. Pages 33—42 of: Proceedings of the Seventh International Workshop on Logical
Frameworks and Meta-languages, Theory and Practice. LEFMTP *12. New York, NY, USA: ACM.

Momigliano, Alberto, Pientka, Brigitte, & Thibodeau, David. (2019). A case study in programming

coinductive proofs: Howe’s method. Mathematical structures in computer science, 29(8),
1309-1343.

Nanevski, Aleksandar, Pfenning, Frank, & Pientka, Brigitte. (2008). Contextual modal type theory.
ACM transactions on computational logic, 9(3), 1-49.

Narboux, Julien, & Urban, Christian. (2008). Formalising in Nominal Isabelle Crary’s completeness
proof for equivalence checking. Electronic notes in theoretical computer science, 196, 3 — 18.
Proceedings of the Second International Workshop on Logical Frameworks and Meta-Languages:
Theory and Practice (LEMTP 2007).

ZU064-05-FPR main 14 December 2019 147

POPLMark Reloaded 43

Norell, Ulf. (2009). Dependently typed programming in Agda. Pages 230-266 of: AFP Summer
School. Springer.

Pérez, Jorge A., Caires, Luis, Pfenning, Frank, & Toninho, Bernardo. (2014). Linear logical relations
and observational equivalences for session-based concurrency. Inf. comput., 239, 254-302.

Pickering, Matthew, Erdi, Gergo, Peyton Jones, Simon, & Eisenberg, Richard A. (2016). Pattern
synonyms. Pages 80-91 of: Proceedings of the 9th International Symposium on Haskell. Haskell
2016. New York, NY, USA: ACM.

Pientka, Brigitte. (2005). Verifying termination and reduction properties about higher-order logic
programs. Journal of Automated Reasoning, 34(2), 179-207.

Pientka, Brigitte. (2007). Proof pearl: The power of higher-order encodings in the logical framework
LF. Pages 246-261 of: Schneider, Klaus, & Brandt, Jens (eds), Theorem Proving in Higher Order
Logics, 20th International Conference, TPHOLs 2007, Kaiserslautern, Germany, September 10-
13, 2007, Proceedings. Lecture Notes in Computer Science, vol. 4732. Springer.

Pientka, Brigitte. (2008). A type-theoretic foundation for programming with higher-order abstract
syntax and first-class substitutions. Pages 371-382 of: Necula, George C., & Wadler, Philip
(eds), Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2008, San Francisco, California, USA, January 7-12, 2008. ACM Press.

Pientka, Brigitte, & Dunfield, Joshua. (2010). Beluga: a framework for programming and reasoning
with deductive systems (System Description). Pages 15-21 of: Giesl, Jiirgen, & Haehnle, Reiner
(eds), 5th International Joint Conference on Automated Reasoning (IJCAR’10). Lecture Notes in
Artificial Intelligence (LNAI 6173). Springer.

Pierce, Benjamin C. (2002). Types and programming languages. MIT Press.

Pierce, Benjamin C., & Weirich, Stephanie. (2012). Introduction to the special issue on the
POPLMark Challenge. Journal of Automated Reasoning, 49(3), 301-302.

Plotkin, Gordon. (1973). Lambda-definability and logical relations. Memorandum sai-rm-4.
University of Edinburgh.

Pollack, Robert. (1994). Closure under alpha-conversion. Pages 313—-332 of: Barendregt, Henk,
& Nipkow, Tobias (eds), Types for Proofs and Programs, International Workshop TYPES’93,
Nijmegen, The Netherlands, May 24-28, 1993, Selected Papers. Lecture Notes in Computer
Science, vol. 806. Springer.

Pouillard, Nicolas, & Pottier, Francois. (2010). A fresh look at programming with names and binders.
Pages 217-228 of: ACM Sigplan Notices, vol. 45. ACM.

Poulsen, Casper Bach, Rouvoet, Arjen, Tolmach, Andrew, Krebbers, Robbert, & Visser, Eelco.
(2018). Intrinsically-typed definitional interpreters for imperative languages. PACMPL, 2(POPL),
16:1-16:34.

Rasmussen, Ulrik, & Filinski, Andrzej. (2013). Structural logical relations with case analysis and
equality reasoning. Pages 43-54 of: Momigliano, Alberto, Pientka, Brigitte, & Pollack, Randy
(eds), Proceedings of the Eighth ACM SIGPLAN International Workshop on Logical Frameworks
& Meta-languages: Theory & Practice, LEFMTP 2013, Boston, Massachusetts, USA, September
23, 2013. ACM.

Rizkallah, Christine, Garbuzov, Dmitri, & Zdancewic, Steve. (2018). A formal equational theory for
call-by-push-value. Pages 523-541 of: International Conference on Interactive Theorem Proving.
Springer.

Rossberg, Andreas, Russo, Claudio, & Dreyer, Derek. (2014). F-ing modules. Journal of functional
programming, 24(5), 529-607.

Schifer, Steven, Tebbi, Tobias, & Smolka, Gert. (2014). Autosubst: Automation for de Bruijn
substitutions. 6th Coq Workshop (July 2014).

Schifer, Steven, Smolka, Gert, & Tebbi, Tobias. (2015). Completeness and decidability of de Bruijn
substitution algebra in Coq. Pages 67-73 of: Proceedings of the 2015 Conference on Certified

Z7U064-05-FPR

main 14 December 2019 147

44 A. Abel et. al.

Programs and Proofs, CPP 2015, Mumbai, India, January 15-17, 2015. Berlin, Heidelberg:
Springer-Verlag.

Schiirmann, Carsten, & Sarnat, Jeffrey. (2008). Structural logical relations. Pages 69-80 of:
Pfenning, Frank (ed), Proceedings of the Twenty-Third Annual IEEE Symposium on Logic in
Computer Science, LICS 2008, 24-27 June 2008, Pittsburgh, PA, USA. 1EEE Computer Society
Press.

Sturm, Sebastian. (2018). Verification and theorem proving in F*. M.Phil. thesis, LMU. https:
//github.com/sturmsebastian/Fstar-master-thesis-codel

Tait, William W. (1967). Intensional interpretations of functionals of finite type I. The Journal of
Symbolic Logic, 32(2), 198-212.

Tiu, Alwen, & Miller, Dale. (2010). Proof search specifications of bisimulation and modal logics for
the pi-calculus. ACM trans. comput. log., 11(2), 13:1-13:35.

Urban, Christian, & Kaliszyk, Cezary. (2012). General bindings and alpha-equivalence in nominal
isabelle. Logical methods in computer science, 8(2).

Urban, Christian, Cheney, James, & Berghofer, Stefan. (2011). Mechanizing the metatheory of LF.
ACM transactions on computational logic, 12(2), 15:1-15:42.

van Raamsdonk, Femke, & Severi, Paula. (1995). On normalisation. Tech. rept. 95/20. Technische
Universiteit Eindhoven.

Wang, Yuting, Chaudhuri, Kaustuv, Gacek, Andrew, & Nadathur, Gopalan. (2013). Reasoning about
higher-order relational specifications. Pages 157—168 of: Proceedings of the 15th Symposium on
Principles and Practice of Declarative Programming. ACM.

Watkins, Kevin, Cervesato, Iliano, Pfenning, Frank, & Walker, David. (2002). A concurrent logical
framework I: Judgments and properties. Tech. rept. CMU-CS-02-101. Department of Computer
Science, Carnegie Mellon University.

Weirich, Stephanie, Yorgey, Brent A, & Sheard, Tim. (2011). Binders unbound. Pages 333-345 of:
ACM SIGPLAN Notices, vol. 46. ACM.

Werner, Benjamin. (1992). A normalization proof for an impredicative type system with large
elimination over integers. Pages 341-357 of: International Workshop on Types for Proofs and
Programs (TYPES).

Xi, Hongwei. (2004). Applied type system. Pages 394—408 of: TYPES 2003. Lecture Notes in
Computer Science, vol. 3085. Springer.

https://github.com/sturmsebastian/Fstar-master-thesis-code
https://github.com/sturmsebastian/Fstar-master-thesis-code

	Introduction
	Motivation
	Strong normalization for the -calculus
	Simply typed -calculus with type-directed reductions
	Defining strong normalization
	Challenge 1a: Properties of sn
	Challenge 1b: Soundness of inductive definition of strongly normalizing terms
	Challenge 2a: Properties of strong normalization
	Challenge 2b: Proving strong normalization with logical relations
	Extension: Disjoint sums
	Further extensions

	Solutions
	Solution A: Using higher-order abstract syntax with Beluga
	Solution B: Using well-typed de Bruijn encoding in Coq
	Solution C: Using well-typed de Bruijn encoding in Agda

	Critical summary and comparison
	Representation of well-typed terms
	Renamings and substitutions
	Induction and recursive definitions
	Lines of code

	Related work
	Conclusion and future work
	References

