
DEPARTMENT OF COMPUTER & INFORMATION SCIENCES

Faculty of Science

Generic Level Polymorphic N-ary Functions

Guillaume ALLAIS

SPLS @ LFCS

June 17, 2019
Guillaume ALLAIS Generic Level Polymorphic N-ary Functions- Jun 17 page 1 of 23

DEPARTMENT OF COMPUTER & INFORMATION SCIENCES

State Of the Art
N-ary Combinators... for N up to 2
Working with Indexed Families

Requirements

Getting Acquainted With the Unifier

Generic Level Polymorphic N-ary Functions
Unification-Friendly Representation
N-ary Combinators

Going Further

Guillaume ALLAIS Generic Level Polymorphic N-ary Functions- Jun 17 page 2 of 23

DEPARTMENT OF COMPUTER & INFORMATION SCIENCES

State Of the Art : N-ary Combinators... for N up to 2

Propositional Equality

Propositional equality as an inductive family:

data _≡_ {A : Set a} (x : A) : A→ Set a where
refl : x ≡ x

Congruence and substitution proven by pattern-matching:

cong : (f : A→ B)→ x ≡ y→ f x ≡ f y
cong f refl = refl

subst : (P : A→ Set p)→ x ≡ y→ P x→ P y
subst P refl px = px

Guillaume ALLAIS Generic Level Polymorphic N-ary Functions- Jun 17 page 3 of 23

DEPARTMENT OF COMPUTER & INFORMATION SCIENCES

State Of the Art : N-ary Combinators... for N up to 2

Binary Versions

Binary congruence and substitution proven by pattern-matching:

cong2 : (f : A→ B→ C)→
x ≡ y→ t ≡ u→ f x t ≡ f y u

cong2 f refl refl = refl

subst2 : (R : A→ B→ Set p)→
x ≡ y→ t ≡ u→ R x t→ R y u

subst2 P refl refl pr = pr

Guillaume ALLAIS Generic Level Polymorphic N-ary Functions- Jun 17 page 4 of 23

DEPARTMENT OF COMPUTER & INFORMATION SCIENCES

State Of the Art : N-ary Combinators... for N up to 2

Wish: N-ary Versions

What we would like to have: n-ary congruence and substitution.

congn : (f : A1 → · · · → An → B)→
a1 ≡ b1 → · · · → an ≡ bn →
f a1 · · · an ≡ f b1 · · · bn

substn : (R : A1 → · · · → An → Set r)→
a1 ≡ b1 → · · · → an ≡ bn →
R a1 · · · an → R b1 · · · bn

Guillaume ALLAIS Generic Level Polymorphic N-ary Functions- Jun 17 page 5 of 23

DEPARTMENT OF COMPUTER & INFORMATION SCIENCES

State Of the Art : Working with Indexed Families

List

Example datatype our families will be indexed over:

data List (A : Set a) : Set a where
[] : List A
:: : A→ List A→ List A

Predicate transformer: P holds of all the values in the list:

data All (P : A→ Set p) : List A→ Set (a t p) where
[] : All P []
:: : P x→ All P xs→ All P (x :: xs)

Guillaume ALLAIS Generic Level Polymorphic N-ary Functions- Jun 17 page 6 of 23

DEPARTMENT OF COMPUTER & INFORMATION SCIENCES

State Of the Art : Working with Indexed Families

Quantifiers

Explicit and implicit universal quantifier:

Π[_] : (I→ Set p)→ Set (i t p)
Π[P] = ∀ i→ P i

∀[_] : (I→ Set p)→ Set (i t p)
∀[P] = ∀ {i}→ P i

Example: if P is universally true, then it holds of all the elements of any list.

replicate : ∀[P]→ Π[All P]
replicate p [] = []
replicate p (x :: xs) = p :: replicate p xs

Guillaume ALLAIS Generic Level Polymorphic N-ary Functions- Jun 17 page 7 of 23

DEPARTMENT OF COMPUTER & INFORMATION SCIENCES

State Of the Art : Working with Indexed Families

Lifting of Type Constructors

Lifting implication between Sets to implication between families:

⇒ : (I→ Set p)→ (I→ Set q)→ (I→ Set (p t q))
(P⇒ Q) i = P i→ Q i

Example: Applicative’s ’ap’ for All:

<?> : ∀[All (P⇒ Q)⇒ All P⇒ All Q]
[] <?> [] = []
(f :: fs) <?> (x :: xs) = f x :: (fs <?> xs)

Guillaume ALLAIS Generic Level Polymorphic N-ary Functions- Jun 17 page 8 of 23

DEPARTMENT OF COMPUTER & INFORMATION SCIENCES

State Of the Art : Working with Indexed Families

Adjustments To The Ambient Index

Updating the index we are talking about:

` : (I→ J)→ (J→ Set p)→ (I→ Set p)
(f ` P) i = P (f i)

Example: concat’s action on the predicate transformer All:

concat+ : ∀[All (All P)⇒ concat ` All P]
concat+ [] = []
concat+ ([] :: pxss) = concat+ pxss
concat+ ((px :: pxs) :: pxss) = px :: concat+ (pxs :: pxss)

Guillaume ALLAIS Generic Level Polymorphic N-ary Functions- Jun 17 page 9 of 23

DEPARTMENT OF COMPUTER & INFORMATION SCIENCES

Requirements
Wishes

1. Reified types of n-ary functions (including level polymorphism)

2. Semantics which should be
I computable (including its Set-level)
I invertible (to minimise user input)

3. Applications: generic programs
I congruence, substitution
I combinators for n-ary indexed families

Guillaume ALLAIS Generic Level Polymorphic N-ary Functions- Jun 17 page 10 of 23

DEPARTMENT OF COMPUTER & INFORMATION SCIENCES

Getting Acquainted With the Unifier
Unification

I Use case

Mechanical process to reconstruct missing values:
I Implicit arguments
I Boring details the programmer left out

Principled: the generated solutions (if any) are unique.

I Unification Problems: lhs ≈ rhs

I ?a stands for a metavariable
I e [?a1, · · · ,?an] for expression e mentioning ?a1 to ?an
I c e1 · · · en for a constructor c applied to n expressions

Guillaume ALLAIS Generic Level Polymorphic N-ary Functions- Jun 17 page 11 of 23

DEPARTMENT OF COMPUTER & INFORMATION SCIENCES

Getting Acquainted With the Unifier
Unification Tests

Agda does unification all the time.

It is easy for us to ask Agda to solve unification problems
I Leave out values to create metavariables
I State that two expressions are equal to start a

unification problem

_ : _
_ = _

For instance, (?A→ ?B) ≈ (N→ N) and (?A→ ?A) ≈ (N→ N)

_ : (_→ _) ≡ (N→ N)
_ = refl

_ : let ?A = _ in (?A→ ?A) ≡ (N→ N)
_ = refl

Guillaume ALLAIS Generic Level Polymorphic N-ary Functions- Jun 17 page 12 of 23

DEPARTMENT OF COMPUTER & INFORMATION SCIENCES

Getting Acquainted With the Unifier
Instantiation

Problem: ?a ≈ e [?a1 · · · ?an]

Unifying a meta-variable with an expression.

1. Make sure ?a does not appear in ?a1, · · · , ?an

2. Instantiate ?a to e [?a1 · · · ?an]

3. Discard the problem

Example:

_ : _ ≡ (_ → _)

_ = refl

Guillaume ALLAIS Generic Level Polymorphic N-ary Functions- Jun 17 page 13 of 23

DEPARTMENT OF COMPUTER & INFORMATION SCIENCES

Getting Acquainted With the Unifier
Constructor Headed Problems

Problem: c e1 · · · em ≈ d f1 · · · fn

Unifying two constructor-headed expressions.

1. Make sure the constructors c and d are equal

2. This means m equals n

3. Replace problem with subproblems (e1 ≈ f1) · · · (em ≈ fn)

Example:

_ : (N→ _) ≡ (N→ N)
_ = refl

Guillaume ALLAIS Generic Level Polymorphic N-ary Functions- Jun 17 page 14 of 23

DEPARTMENT OF COMPUTER & INFORMATION SCIENCES

Getting Acquainted With the Unifier
Avoid Computations... Unless (Part I)

Avoid generating unification problems involving recursive functions.

nary : N→ Set→ Set
nary zero A = A
nary (suc n) A = N→ nary n A

_ : nary _ _ ≡ (N→ N)

_ = refl

Unless the recursion goes away in the cases you are interested in.

_ : nary 0 _ ≡ (N→ N)
_ = refl

_ : nary 1 _ ≡ (N→ N)
_ = refl

Guillaume ALLAIS Generic Level Polymorphic N-ary Functions- Jun 17 page 15 of 23

DEPARTMENT OF COMPUTER & INFORMATION SCIENCES

Getting Acquainted With the Unifier
Avoid Computations... Unless (Part I)

Avoid generating unification problems involving recursive functions.

nary : N→ Set→ Set
nary zero A = A
nary (suc n) A = N→ nary n A

_ : nary _ _ ≡ (N→ N)

_ = refl

Unless the recursion goes away in the cases you are interested in.

_ : nary 0 _ ≡ (N→ N)
_ = refl

_ : nary 1 _ ≡ (N→ N)
_ = refl

Guillaume ALLAIS Generic Level Polymorphic N-ary Functions- Jun 17 page 15 of 23

DEPARTMENT OF COMPUTER & INFORMATION SCIENCES

Getting Acquainted With the Unifier
Avoid Computations... Unless (Part II)

Avoid generating unification problems involving recursive functions.

nary : N→ Set→ Set
nary zero A = A
nary (suc n) A = N→ nary n A

_ : nary _ (N→ N) ≡ (N→ N)

_ = refl

Unless the recursion is trivially invertible.

_ : nary _ N ≡ N
_ = refl

_ : nary _ N ≡ (N→ N)
_ = refl

Guillaume ALLAIS Generic Level Polymorphic N-ary Functions- Jun 17 page 16 of 23

DEPARTMENT OF COMPUTER & INFORMATION SCIENCES

Getting Acquainted With the Unifier
Avoid Computations... Unless (Part II)

Avoid generating unification problems involving recursive functions.

nary : N→ Set→ Set
nary zero A = A
nary (suc n) A = N→ nary n A

_ : nary _ (N→ N) ≡ (N→ N)

_ = refl

Unless the recursion is trivially invertible.

_ : nary _ N ≡ N
_ = refl

_ : nary _ N ≡ (N→ N)
_ = refl

Guillaume ALLAIS Generic Level Polymorphic N-ary Functions- Jun 17 page 16 of 23

DEPARTMENT OF COMPUTER & INFORMATION SCIENCES

Generic Level Polymorphic N-ary Functions
Design Constraints

We want to
I Define representation of n-ary functions
I Give it a semantics (here called J_K)

Such that when faced with constraints involving concrete types, Agda can
easily reconstruct the representation.

Example: recover ?r from J ?r K ≈ (N→ Set)

Guillaume ALLAIS Generic Level Polymorphic N-ary Functions- Jun 17 page 17 of 23

DEPARTMENT OF COMPUTER & INFORMATION SCIENCES

Generic Level Polymorphic N-ary Functions : Unification-Friendly
Representation

Representation

Levels : N→ Set
Levels zero = >
Levels (suc n) = Level × Levels n

⊔
: ∀ n→ Levels n→ Level⊔
zero _ = 0`⊔
(suc n) (l , ls) = l t (

⊔
n ls)

Sets : ∀ n (ls : Levels n)→ Set (Level.suc (
⊔

n ls))
Sets zero _ = Lift _ >
Sets (suc n) (l , ls) = Set l × Sets n ls

Arrows : ∀ n {ls}→ Sets n ls→ Set r→ Set (r t (
⊔

n ls))
Arrows zero _ b = b
Arrows (suc n) (a , as) b = a→ Arrows n as b

Guillaume ALLAIS Generic Level Polymorphic N-ary Functions- Jun 17 page 18 of 23

DEPARTMENT OF COMPUTER & INFORMATION SCIENCES

Generic Level Polymorphic N-ary Functions : Unification-Friendly
Representation

Representation

Levels : N→ Set
Levels zero = >
Levels (suc n) = Level × Levels n

⊔
: ∀ n→ Levels n→ Level⊔
zero _ = 0`⊔
(suc n) (l , ls) = l t (

⊔
n ls)

Sets : ∀ n (ls : Levels n)→ Set (Level.suc (
⊔

n ls))
Sets zero _ = Lift _ >
Sets (suc n) (l , ls) = Set l × Sets n ls

Arrows : ∀ n {ls}→ Sets n ls→ Set r→ Set (r t (
⊔

n ls))
Arrows zero _ b = b
Arrows (suc n) (a , as) b = a→ Arrows n as b

Guillaume ALLAIS Generic Level Polymorphic N-ary Functions- Jun 17 page 18 of 23

DEPARTMENT OF COMPUTER & INFORMATION SCIENCES

Generic Level Polymorphic N-ary Functions : Unification-Friendly
Representation

Representation

Levels : N→ Set
Levels zero = >
Levels (suc n) = Level × Levels n

⊔
: ∀ n→ Levels n→ Level⊔
zero _ = 0`⊔
(suc n) (l , ls) = l t (

⊔
n ls)

Sets : ∀ n (ls : Levels n)→ Set (Level.suc (
⊔

n ls))
Sets zero _ = Lift _ >
Sets (suc n) (l , ls) = Set l × Sets n ls

Arrows : ∀ n {ls}→ Sets n ls→ Set r→ Set (r t (
⊔

n ls))
Arrows zero _ b = b
Arrows (suc n) (a , as) b = a→ Arrows n as b

Guillaume ALLAIS Generic Level Polymorphic N-ary Functions- Jun 17 page 18 of 23

DEPARTMENT OF COMPUTER & INFORMATION SCIENCES

Generic Level Polymorphic N-ary Functions : Unification-Friendly
Representation

Representation

Levels : N→ Set
Levels zero = >
Levels (suc n) = Level × Levels n

⊔
: ∀ n→ Levels n→ Level⊔
zero _ = 0`⊔
(suc n) (l , ls) = l t (

⊔
n ls)

Sets : ∀ n (ls : Levels n)→ Set (Level.suc (
⊔

n ls))
Sets zero _ = Lift _ >
Sets (suc n) (l , ls) = Set l × Sets n ls

Arrows : ∀ n {ls}→ Sets n ls→ Set r→ Set (r t (
⊔

n ls))
Arrows zero _ b = b
Arrows (suc n) (a , as) b = a→ Arrows n as b

Guillaume ALLAIS Generic Level Polymorphic N-ary Functions- Jun 17 page 18 of 23

DEPARTMENT OF COMPUTER & INFORMATION SCIENCES

Generic Level Polymorphic N-ary Functions : N-ary Combinators

Congruence

Congn : ∀ n {ls} {as : Sets n ls} {R : Set r}→
(f g : Arrows n as R)→ Set (r t (

⊔
n ls))

Congn zero f g = f ≡ g
Congn (suc n) f g = ∀ {x y}→ x ≡ y→ Congn n (f x) (g y)

congn : ∀ n {ls} {as : Sets n ls} {R : Set r}→
(f : Arrows n as R)→ Congn n f f

congn zero f = refl
congn (suc n) f refl = congn n (f _)

Guillaume ALLAIS Generic Level Polymorphic N-ary Functions- Jun 17 page 19 of 23

DEPARTMENT OF COMPUTER & INFORMATION SCIENCES

Generic Level Polymorphic N-ary Functions : N-ary Combinators

Lifting of Type Constructors

lift2 : ∀ n {ls} {as : Sets n ls}→ (A→ B→ C)→
Arrows n as A→ Arrows n as B→ Arrows n as C

lift2 zero op f g = op f g
lift2 (suc n) op f g = λ x→ lift2 n op (f x) (g x)

⇒ : Arrows n {ls} as (Set r)→ Arrows n as (Set s)→
Arrows n as (Set (r t s))

⇒ = lift2 _ (λ A B→ (A→ B))

Guillaume ALLAIS Generic Level Polymorphic N-ary Functions- Jun 17 page 20 of 23

DEPARTMENT OF COMPUTER & INFORMATION SCIENCES

Generic Level Polymorphic N-ary Functions : N-ary Combinators

Adjustments To The Ambient Index

%=`_ : ∀ n {ls} {as : Sets n ls}→ (I→ J)→
Arrows n as (J→ B)→ Arrows n as (I→ B)

zero %= f ` g = g ◦ f
suc n %= f ` g = (n %= f `_) ◦ g

Guillaume ALLAIS Generic Level Polymorphic N-ary Functions- Jun 17 page 21 of 23

DEPARTMENT OF COMPUTER & INFORMATION SCIENCES

Going Further
Results

Draft: https://gallais.github.io/pdf/tyde19_draft.pdf

I Already merged in the standard library:
I Unification-friendly representation of n-ary functions and products
I Proofs of n-ary congruence and substitution
I Combinators for n-ary relations and functions
I Direct style printf

I Coming up:
I n-ary version of zipWith & friends

I Future work:
I Dependent n-ary functions and products

Guillaume ALLAIS Generic Level Polymorphic N-ary Functions- Jun 17 page 22 of 23

https://gallais.github.io/pdf/tyde19_draft.pdf

DEPARTMENT OF COMPUTER & INFORMATION SCIENCES

Appendix
Printf

data Chunk : Set where
Nat : Chunk
Raw : String→ Chunk

Format : Set
Format = List Chunk

format : (fmt : Format)→ Sets (size fmt) 0`s
format [] = _
format (Nat :: f) = N , format f
format (Raw _ :: f) = format f

assemble : ∀ fmt→ Product _ (format fmt)→ List String
assemble [] vs = []
assemble (Nat :: fmt) (n , vs) = show n :: assemble fmt vs
assemble (Raw s :: fmt) vs = s :: assemble fmt vs

printf : ∀ fmt→ Arrows _ (format fmt) String
printf fmt = curryn (size fmt) (concat ◦ assemble fmt)

Guillaume ALLAIS Generic Level Polymorphic N-ary Functions- Jun 17 page 23 of 23

	State Of the Art
	N-ary Combinators... for N up to 2
	Working with Indexed Families

	Requirements
	Getting Acquainted With the Unifier
	Generic Level Polymorphic N-ary Functions
	Unification-Friendly Representation
	N-ary Combinators

	Going Further
	Appendix

