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Motivation

In (typed) functional language we are used to manipulating structured data by pattern-
matching on it. We include an illustrative example below.

10

5

1

20

data Tree

= Leaf

| Node Tree Bits8 Tree

sum : Tree -> Nat

sum t = case t of

Leaf => 0

Node l b r =>

let m = sum l

n = sum r

in (m + cast b + n)

Figure 1: Summing the content of a binary tree, in Idris 2

On the left, an example of a binary tree storing bytes in its nodes and nothing at its
leaves. On the right, a small Idris 2 snippet defining the corresponding inductive type
and defining a function summing up all of the nodes’ contents. This function proceeds
by pattern-matching: if the tree is a leaf then we immediately return 0, otherwise we
start by summing up the left and right subtrees, cast the byte to a natural number and
add everything up. Simply by virtue of being accepted by the typechecker, we know
that this function is covering (all the possible patterns have been handled) and total (all
the recursive calls are performed on smaller trees).

At runtime, the tree will quite probably be represented by constructors-as-structs and
substructures-as-pointers: each constructor will be a struct with a tag indicating which
constructor is represented and subsequent fields will store the constructors’ arguments.
Each argument will either be a value (e.g. a byte) or a pointer to either a boxed
value or a substructure. If we were to directly write a function processing a value in
this encoding, proving that a dispatch over a tag is covering, and that the pointer-
chasing is terminating relies on global invariants tying the encoding to the inductive
type. Crucially, the functional language allows us to ignore all of these details and
program at a higher level of abstraction where we can benefit from strong guarantees.

Unfortunately not all data comes structured as inductive values abstracting over a
constructors-as-structs and substructures-as-pointers runtime representation. Data that
is stored in a file or received over the network is typically represented in a contiguous
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Motivation

format. We include below a textual representation of the above tree using node and
leaf constructors and highlighting the data in red.

(node (node (node leaf 1 leaf) 5 leaf) 10 (node leaf 20 leaf))

This looks almost exactly like the list of bytes we get when using a näıve serialisation
format based on a left-to-right in-order traversal of this tree. In the encoding below,
leaves are represented by the byte 00, and nodes by the byte 01 (each byte is represented
by two hexadecimal characters, we have additionally once again highlighted the bytes
corresponding to data stored in the nodes):

01

(node (node leaf 1 leaf) 5 leaf)︷ ︸︸ ︷
01 01 00 01 00︸ ︷︷ ︸

(node leaf 1 leaf)

05 00 0a 01 00 14 00

Figure 2: A list of bytes representing a serialised binary tree

The idiomatic way to process such data in a functional language is to first deserialise
it as an inductive type and then call the sum function we defined above. If we were using
a lower-level language however, we could directly process the serialised data without the
need to fully deserialise it. Even a näıve port of sum to C can indeed work directly over
buffers:

1 int sumAt ( uint8 t buf [ ] , int ∗ ptr ) {
2 uint8 t tag = buf [∗ ptr ] ; (∗ ptr )++;
3 switch ( tag ) {
4 case 0 : return 0 ;
5 case 1 :
6 int m = sumAt( buf , ptr ) ;
7 uint8 t b = buf [∗ ptr ] ; (∗ ptr )++;
8 int n = sumAt( buf , ptr ) ;
9 return (m + ( int ) b + n) ;

10 default : e x i t (−1) ; }}

Figure 3: Summing the content of a serialised binary tree, in C

This function takes a buffer of bytes, and a pointer currently indicating the start of a
tree and returns the corresponding sum. We start (line 2) by reading the byte the pointer
is referencing and immediately move the pointer past it. This is the tag indicating which
constructor is at the root of the tree and so we inspect it (line 3). If the tag is 0 (line
4), the tree is a leaf and so we return 0 as the sum. If the tag is 1 (line 5), then the
tree starts with a node and the rest of the buffer contains first the left subtree, then
the byte stored in the node, and finally the right subtree. We start by summing the left
subtree (line 6), after which the pointer has been moved past its end and is now pointing
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1 Seamless Programming over Serialised Data

at the byte stored in the node. We can therefore dereference the byte and move the
pointer past it (line 7), compute the sum over the right subtree (line 8), and finally add
up all the components, not forgetting to cast the byte to an int (line 9). If the tag is
anything other than 0 or 1 (line 10) then the buffer does not contain a valid tree and so
we immediately exit with an error code.

As we can readily see, this program directly performs pointer arithmetic, explicitly
mentions buffer reads, and relies on undocumented global invariants such as the structure
of the data stored in the buffer, or the fact the pointer is being moved along and points
directly past the end of a subtree once sumAt has finished computing its sum.

Our goal with this work is to completely hide all of these dangerous aspects and offer
the user the ability to program over serialised data just as seamlessly and correctly as
if they were processing inductive values. We will see that Quantitative Type Theory
(QTT) [10, 2] as implemented in Idris 2 [4] empowers us to do just that purely in library
code.

1 Seamless Programming over Serialised Data

Forgetting about correctness for now, this can be summed up by the the following code
snippet in which we compute the sum of the bytes stored in our type of binary trees.

sum : Pointer.Mu Tree _ -> IO Nat

sum ptr = case !(view ptr) of

"Leaf" # _ => pure Z

"Node" # l # b # r =>

do m <- sum l

n <- sum r

pure (m + cast b + n)

We reserve for later our detailed explanations of the concepts used in this snippet
(Pointer.Mu in Section 3.3, view in Section 3.4.4). For now, it is enough to understand
that the function is an IO process inspecting a buffer that contains a tree stored in
serialised format and computing the same sum as the pure function seen in the previous
section. In both cases, if we uncover a leaf ("Leaf" # _) then we return zero, and if we
uncover a node ("Node" # l # b # r) with a left branch l, a stored byte b, and a right
branch r, then we recursively compute the sums for the left and right subtrees, cast the
byte to a natural number and add everything up. Crucially, the two functions look eerily
similar, and the one operating on serialised data does not explicitly perform error-prone
pointer arithmetic, or low-level buffer reads. This is the first way in which our approach
shines.

One major difference between the two functions is that we can easily prove some of
the pure function’s properties by a structural induction on its input whereas we cannot
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Motivation

prove anything about the IO process without first explicitly postulating the IO monad’s
properties. Our second contribution tackles this issue.

2 Correct Programming over Serialised Data

We will see that we can refine that second definition to obtain a correct-by-construction
version of sum, with almost exactly the same code.

sum : Pointer.Mu Tree t ->

IO (Singleton (Data.sum t))

sum ptr = case !(view ptr) of

"Leaf" # _ => pure [| Z |]

"Node" # l # b # r =>

do m <- sum l

n <- sum r

pure [| [| m + [| cast b |] |] + n |]

In the above snippet, we can see that the Pointer.Mu is indexed by a phantom pa-
rameter: a runtime irrelevant t which has type (Data.Mu Tree). And so the return type
can mention the result of the pure computation (Data.sum t). Singleton is, as its name
suggests, a singleton type i.e. the natural number we compute is now proven to be equal
to the one computed by the pure sum function. The implementation itself only differs in
that we had to use idiom brackets [12], something we will explain in Section 1.4.

In other words, our approach also allows us to prove the functional correctness of the
IO procedures processing trees stored in serialised format in a buffer. This is our second
main contribution.

3 Generic Programming over Serialised Data

Last but not least, as Altenkirch and McBride demonstrated [1]: “With dependently
(sic) types, generic programming is just programming: it is not necessary to write a new
compiler each time a useful universe presents itself.”

In this paper we carve out a universe of inductive types that can be uniformly se-
rialised and obtain all of our results by generic programming. In practice this means
that we are not limited to the type of binary trees with bytes stored in the nodes we
used in the examples above. We will for instance be able to implement a generic and
correct-by-construction definition of fold operating on data stored in a buffer whose
type declaration can be seen below (we will explain how it is defined in Section 3.5).
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3 Generic Programming over Serialised Data

fold : {cs : Data nm} -> (alg : Alg cs a) ->

forall t. Pointer.Mu cs t ->

IO (Singleton (Data.fold alg t))

This data-genericity is our third contribution.
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1 Introduction to Idris

Idris 2 is a pure, strict, dependently typed functional language whose syntax is close to
Haskell’s and Agda’s. Let us start with the basics: function and inductive types.

1.1 Basic Functions and Inductive Types

We can add top-level definitions by first declaring a name and its accompanying type
and then giving defining clauses.

id : a -> a

id = \ x => x

(.) : (b -> c) -> (a -> b) -> a -> c

(g . f) x = g (f x)

On the left here we have the identity function, defined as an alias to an anonymous
lambda function taking an argument x and immediately returning it. On the right we
have the infix composition operator; its one defining clause states that applying the
composition of g and f to an input x amounts to apply g to (f x).

Implicit Prenex Polymorphism

Unbound variables are automatically generalised in prenex position at the most
general type possible and at quantity 0. For example, the type of id written (a
-> a) really means (forall a. a -> a) or, equivalently, ({0 a : Type} -> a -> a).

Quantities

Each binding site is annotated with a quantity potentially restricting the usage
of the bound variable.

• 0 means that the value is runtime irrelevant and will be erased during com-
pilation. This is typically useful for types or invariants e.g. a proof that a
value is non-zero.

• 1 means that the value is linear: it needs to be used exactly once. This is
typically useful for resources that get updated destructively e.g. file handles.

• means that the value is unrestricted.

The Empty Type

The empty type has no inhabitant and is therefore an ideal encoding of falsity. In Idris 2,
it is called Void and is defined as an inductive type with no constructor.

1



1 Introduction to Idris

data Void : Type where

Syntax Highlighting

The code in this document is semantically highlighted. Keywords are black, types
are blue, definitions are green, constructors are red, bound variables are purple.

Using Void, we can define what it means for a type to be uninhabited: (Not a) is
provable whenever from the assumption that a holds we can derive a proof of Void. In
other words, whenever we have a function from a to Void

Not : Type -> Type

Not a = a -> Void

Types Are Terms

Declaring a type alias is exactly the same as introducing a new top-level definition.
Types are arbitrary terms of type Type.

It is famously provable that if a holds then its double negation also holds. The converse
is however neither provable nor disprovable in Idris 2.

doubleNeg : a -> Not (Not a)

doubleNeg x = \ f => f x

The Unit Type

The Unit has exactly one inhabitant, and thus is a good representation of things that
are trivially true. It is defined as a record with constructor MkUnit and no field (we will
shortly see a non-trivial record definition in Section 1.1).

record Unit where

constructor MkUnit

We will see in Section 1.3 that it is provably true that all values of type Unit are equal
to each other.

2



1.1 Basic Functions and Inductive Types

The Type of Booleans

We now have our first inductive type with more than one constructor: the type of
boolean values. It offers two constructors: True and False.

data Bool = True | False

We can now define functions by pattern-matching over values of type Bool.

not : Bool -> Bool

not True = False

not False = True

Total Functions

Provided that you included %default total, the mere fact that a recursive func-
tion typechecks tells you that it is

1. covering that is to say its patterns handle all possible inputs

2. terminating that is to say that it is guaranteed to return a value on all
possible inputs

The patterns in pattern matching definition can either be a constructor fully applied
to further patterns (C p1 · · · pn), a catchall pattern , or a binding site b.

and : Bool -> Bool -> Bool

and False _ = False

and _ b = b

Overlapping Patterns

It is perfectly fine to use overlapping patterns to minimise the number of cases
one need to spell out. One should however be aware that this means that all the
equations spelt out by a pattern-matching definition may not hold definitionally:
pattern-matching definitions have a first-match semantics and as long as prior
clauses cannot be dismissed as impossible, the function will not reduce.

The Tuple Type Constructor

We sometimes want to pair two values, in which case it is convenient to have a tuple
type. This our first ‘proper’ record definiton as it has two fields corresponding to each
one of the tuple’s components.
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1 Introduction to Idris

record Tuple (a, b : Type) where

constructor (#)

fst : a

snd : b

Records Are Datatypes

Record declarations are elaborated to a single-constructor data declaration to-
gether with one projection per field. For instance, the definition of Tuple as a
record amounts to the following declarations:

data Tuple : Type -> Type -> Type where

(#) : a -> b -> Tuple a b

fst : Tuple a b -> a

fst (x # y) = x

snd : Tuple a b -> b

snd (x # y) = y

Additionally, Idris 2 offers further syntactic sugar such as postfix dotted projec-
tions (.fst and .snd) and record updates ({ fst := t , snd $= f }).

The Sum Type Constructor

data Either : Type -> Type -> Type where

Left : a -> Either a b

Right : b -> Either a b

The Type of Natural Numbers

For our first recursive type, we define the type of natural number. It is the smallest type
that contains zero (Z) and is closed under successor (S).

data Nat = Z | S Nat

4



1.2 Dependent Types and Indexed Families

Runtime Optimisation of Types

During compilation, all the types whose runtime representation (obtained by eras-
ing all the runtime irrelevant and forced arguments) looks like a primitive type
are mapped directly to their native counterparts.
In particular all the values of type Nat are represented as runtime by a GMP-style
unbounded integer.

The List Type Constructor

data List : Type -> Type where

Nil : List a

(::) : a -> List a -> List a

map : (a -> b) -> List a -> List b

map f [] = []

map f (x :: xs) = f x :: map f xs

1.2 Dependent Types and Indexed Families

The Vec Type Family

data Vec : Nat -> Type -> Type where

Nil : Vec Z a

(::) : a -> Vec n a -> Vec (S n) a

The Fin Type Family

data Fin : Nat -> Type where

Z : Fin (S n)

S : Fin n -> Fin (S n)
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1 Introduction to Idris

lookup : Vec n a -> Fin n -> a

lookup (x :: xs) Z = x

lookup (x :: xs) (S k) = lookup xs k

Dependent Pattern Matching

Large Elimination

Note that we can also declare families by defining a function proceeding by induction
over the index. The (‘is‘) verb takes a type a and a boolean b and returns a type (a
‘is‘ b) stating that a does or does not hold depending on the value of b.

is : Type -> Bool -> Type

a ‘is‘ True = a

a ‘is‘ False = Not a

We can readily use this definition to state that Unit is inhabited and Void is not, and
provide proofs of our claims.

UnitIsTrue : Unit ‘is‘ True

UnitIsTrue = ()

VoidIsFalse : Void ‘is‘ False

VoidIsFalse = \ x => x

The real power of dependent types really shines when the boolean value is not statically
known. In the following example, b is a function input like any other and so the type
(Not a ‘is‘ not b) is stuck. However in each of the function’s defining clauses, b has
been pattern-matched on and so has taken a canonical form. As a consequence the
return type and the types of the other arguments have been refined by substituting
True (respectively False) for b and then evaluating the resulting function calls. This
allows us to prove the statement by appealing to two distinct principles: double negation
of the assumption in one case, and a direct appeal to the assumption in the other. That
last case is accepted because Idris 2 can see that both (a ‘is‘ False) and (Not a ‘is‘

True) evaluate to (Not a) and so they can be used interchangeably.

NotIsNot : (b : Bool) -> a ‘is‘ b -> Not a ‘is‘ not b

NotIsNot True = doubleNeg

NotIsNot False = \ x => x

Arbitrary Computations at Typechecking Time
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1.3 The Equality Relation and Proofs

The So Indexed Family

data So : Bool -> Type where

Oh : So True

SoNotNotSo : So (not b) -> Not (So b)

SoNotNotSo soNot Oh = case soNot of {}

Empty Case Tree

NotSoSoNot : {b : Bool} -> Not (So b) -> So (not b)

NotSoSoNot {b = True} notSo = case notSo Oh of {}
NotSoSoNot {b = False} notSo = Oh

Named Application

1.3 The Equality Relation and Proofs

As we have seen in Section 1.2, some values are seen as equal to each other simply by
computation. This internal notion of equality which is decided automatically by Idris 2
is called judgemental or definitional equality. Users can define a different (but related)
notion of equality

data (===) : {a : Type} -> (x : a) -> a -> Type where

Refl : x === x

Its one data constructor Refl can only ever be used to construct trivial proofs of
equality.

Eta Laws

So called η-laws establish that some types have a unique canonical form.
We can for instance prove that all of the elements of the unit type are equal to each

other.
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1 Introduction to Idris

etaUnit : (x, y : Unit) -> x === y

etaUnit MkUnit MkUnit = Refl

We can also prove that any tuple is equal to the pairing of its first and second projec-
tion.

etaTuple : (p : Tuple a b) -> p === (fst p # snd p)

etaTuple (x # y) = Refl

Proofs by Case Analysis

notInvolutive : (b : Bool) -> not (not b) === b

notInvolutive True = Refl

notInvolutive False = Refl

andAssociative : (a, b, c : Bool) ->

and a (and b c) === and (and a b) c

andAssociative False _ _ = Refl

andAssociative True _ _ = Refl

Proofs by Induction

mapFusion : (g : b -> c) -> (f : a -> b) -> (xs : List a) ->

map g (map f xs) === map (g . f) xs

mapFusion g f [] = Refl

mapFusion g f (x :: xs) = cong (g (f x) ::) (mapFusion g f xs)

1.4 The Singleton Family

The Singleton family has a single constructor which takes an argument x of type a, its
return type is indexed precisely by this x.

data Singleton : {0 a : Type} -> (x : a) -> Type where

MkSingleton : (x : a) -> Singleton x

8



1.4 The Singleton Family

More concretely this means that a value of type (Singleton t) has to be a runtime rel-
evant copy of the term t. Note that Idris 2 performs an optimisation similar to Haskell’s
newtype unwrapping: every data type that has a single non-recursive constructor with
only one non-erased argument is unwrapped during compilation. This means that at
runtime the Singleton / MkSingleton indirections will have disappeared.

We can define some convenient combinators to manipulate singletons. We reuse the
naming conventions typical of applicative functors which will allow us to rely on Idris 2’s
automatic desugaring of idiom brackets [12] into expressions using these combinators.

pure : (x : a) -> Singleton x

pure = MkSingleton

First pure is a simple alias for MkSingleton, it turns a runtime-relevant value x into
a singleton for this value.

(<$>) : (f : a -> b) -> Singleton t -> Singleton (f t)

f <$> MkSingleton t = MkSingleton (f t)

Next, we can ‘map’ a function under a Singleton layer: given a pure function f and
a runtime copy of t we can get a runtime copy of (f t).

(<*>) : Singleton f -> Singleton t -> Singleton (f t)

MkSingleton f <*> MkSingleton t = MkSingleton (f t)

Finally, we can apply a runtime copy of a function f to a runtime copy of an argument
t to get a runtime copy of the result (f t).

As we mentioned earlier, Idris 2 automatically desugars idiom brackets using these
combinators. That is to say that [| x |] will be elaborated to (pure x) while [| f t1

· · · tn |] will become (f <$> t1 <*> · · · <*> tn). This lets us apply Singleton-wrapped
values almost as seamlessly as pure values.

We can for instance write the following function adding three singleton-wrapped nat-
ural numbers:

add3 : {0 m, n, p : Nat} ->

Singleton m -> Singleton n -> Singleton p ->

Singleton (m + n + p)

add3 m n p = [| [| m + n |] + p |]

9



1 Introduction to Idris

1.5 Views

A view in the sense of Wadler [17], and subsequently refined by McBride and McK-
inna [11] for a type T is a type family V indexed by T together with a function which
maps values t of type T to values of type V t. By inspecting the V t values we can learn
something about the t input. The prototypical example is perhaps the ‘snoc‘ (‘cons’
backwards) view of right-nested lists as if they were left-nested. We present the Snoc

family below.

data Snoc : List a -> Type where

Lin : Snoc []

(:<) : (init : List a) -> (last : a) -> Snoc (init ++ [last])

By matching on a value of type (Snoc xs) we get to learn either that xs is empty
(Lin, nil backwards) or that it has an initial segment init and a last element last

(init :< last). The function unsnoc demonstrates that we can always view a List in
a Snoc-manner.

unsnoc : (xs : List a) -> Snoc xs

unsnoc [] = Lin

unsnoc (x :: xs@_) with (unsnoc xs)

_ | [<] = [] :< x

_ | init :< last = (x :: init) :< last

10



2 Generic Programming

If you wish to make apple pie from scratch,
you must first invent the universe

— Carl Sagan

We saw in the previous chapter a number of inductive data types. Had we wanted to,
we could have defined an induction principle for each one of them. We are now going to
see that this can be done once and for all by using generic programming.

In order to talk generically about an entire class of datatypes without needing to
modify the host language we are going to perform a universe construction [3, 14, 8].
That is to say that we are going to introduce an inductive type defining a set of codes
together with an interpretation of these codes as bona fide host-language types. We
will then be able to program generically over the universe of datatypes by performing
induction on the type of codes [15].

2.1 A Universe of Discourse

The key observation driving this approach is that inductive types are defined by listing
the types of each one of their constructors. Intuitively we can think of each constructor
type as the description of the shape of a single “layer” of inductive tree. Some of
these constructors have recursive positions (represented below by puzzle-shaped ports)
in which sub-trees will be inserted while others do not, in which case they serve as base
cases.

10

Figure 2.1: Constructors node and leaf as Layer Shapes
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2 Generic Programming

Multi-Sorted Shapes

In the figure we are using a single puzzle piece to denote both the type of the
overall tree the constructor produces and the type of the possible subtrees.
In a more general setting however we could have multiple puzzle pieces: either
because we are mutually defining multiple inductive types, or because we are
defining an indexed family.

By defining a language to describe the shape of these pieces, we are able to define
arbitrary inductive types. For brevety’s sake we will use a small language of datatype
descriptions throughout. In our setting constructors are essentially arbitrarily nested
tuples of values of type unit, bytes, and recursive substructures.

Desc

data Desc : Type where

None : Desc

Byte : Desc

Pair : (d, e : Desc) -> Desc

Rec : Desc

None is the description of values of type unit. Byte is the description of bytes. Prod

gives us the ability to pair two descriptions together. Last but not least, Rec is a position
for a subtree.
We can immediately give these description a meaning using large elimination: provided

a Type to use for the Rec position, we can return the type of nested tuples associated to
each description.

Meaning : Desc -> Type -> Type

Meaning None x = ()

Meaning Byte x = Bits8

Meaning (Pair d e) x = Tuple (Meaning d x) (Meaning e x)

Meaning Rec x = x

None is interpreted using the unit type, Byte is mapped to the built-in type of bytes
Bits8, Pair gives rise to tuples, and Rec is interpreted using the parameter.

Constructor

We represent a constructor as a record packing together a name for the constructor and
the description of its arguments

12



2.1 A Universe of Discourse

record Constructor where

constructor (::)

name : String

description : Desc

Note that we used (::) as the name of the constructor for records of type Constructor.
This allows us to define constructors by forming an expression reminiscent of Haskell’s
type declarations: name :: type. Returning to our running example, this gives us the
following encodings for leaves that do not store anything and nodes that contain a left
branch, a byte, and a right branch.

Leaf : Constructor

Leaf = "Leaf" :: None

Node : Constructor

Node = "Node" :: Pair Rec (Pair Byte Rec)

Data

A datatype description is given by a number of constructors together with a vector (also
known as a length-indexed list) associating a description to each of these constructors.

record Data where

constructor MkData

{consNumber : Nat}
constructors : Vect consNumber Constructor

We can then encode our running example as a simple Data declaration: a binary tree
whose node stores bytes is described by the choice of either a Leaf or Node, as defined
above.

Tree : Data

Tree = MkData [Leaf, Node]

Syntactic Sugar for Lists

List literals are desugared by selecting, in a type-directed manner, an appropriate
Nil and (::). This allows us to reuse them for List, Vec, and any other user-
defined list-like type.

Now that we know how to declare inductive types, we need to give a semantics for
these declarations.

13
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2.2 Meaning as Trees

We now see descriptions as functors and, correspondingly, datatypes as the initial objects
of the associated functor-algebras. This is a standard construction derived from Mal-
colm’s work [9], itself building on Hagino’s categorically-inspired definition of a lambda
calculus with a generic notion of datatypes [7].

2.2.1 Constructor Choice

Given a datatype description cs, our first goal is to define what it means to pick a
constructor. The Index record is a thin wrapper around a finite natural number known
to be smaller than the number of constructors this type provides.

record Index (cs : Data) where

constructor MkIndex

getIndex : Fin (consNumber cs)

We use this type rather than Fin directly because it plays well with inference. In the
following code snippet, implementing a function returning the description corresponding
to a given index, we use this to our advantage: the cs argument can be left implicit
because it already shows up in the type of the Index and can thus be reconstructed by
unification.

description : {cs : Data} -> Index cs -> Desc

description (MkIndex k) = description (index k (constructors cs))

This type of indices also allows us to provide users with syntactic sugar enabling them
to use the constructors’ names directly rather than confusing numeric indices. The
following function runs a decision procedure isConstructor at the type level in order
to turn any raw string str into the corresponding Index.

fromString : {cs : Data} -> (str : String) ->

{auto 0 _ : IsJust (isConstructor str cs)} ->

Index cs

fromString {cs} str with (isConstructor str cs)

_ | Just k = MkIndex k

If the name is valid then isConstructor will return a valid Index and Idris 2 will be
able to automatically fill-in the implicit proof. If the name is not valid then Idris 2 will
not find the index and will raise a compile time error.

14
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Elaboration of String Literals

String literals are elaborated by selecting, in a type-directed manner, an appro-
priate fromString function in the scope and applying it to the literal.
In particular, this means that the function above can be used to implicitly coerce
patterns of the form "Leaf" or "Node" to the corresponding (Index Tree) pattern,
thus providing (programmable) sugar.

2.2.2 Initial Algebra Semantics

Once equipped with the ability to pick constructors, we can define the type of algebras for
the functor described by a Data description. For each possible constructor, we demand
an algebra for the functor corresponding to the meaning of the constructor’s description.

Alg : Data -> Type -> Type

Alg cs x = (k : Index cs) -> Meaning (description k) x -> x

We can then introduce the fixpoint of data descriptions as the initial algebra, defined
as the following inductive type.

data Mu : Data -> Type where

(#) : Alg cs (assert_total (Mu cs))

Note that here we are forced to use assert_total to convince Idris 2 to accept the
definition. Indeed, unlike Agda, Idris 2 does not (yet!) track whether a function’s
arguments are used in a strictly positive manner. Consequently the positivity checker is
unable to see that the function Meaning uses its second argument in a strictly positive
manner and that this is therefore a legal definition.
Now that we can build trees as fixpoints of the meaning of descriptions, we can define

convenient aliases for the Tree constructors.

leaf : Mu Tree

leaf = "Leaf" # ()

node : Mu Tree -> Bits8 -> Mu Tree -> Mu Tree

node l b r = "Node" # l # b # r

Type-directed Disambiguation

The leftmost (#) used in each definition corresponds to the Mu constructor while
later ones are Tuple constructors. We can use this uniform notation for all of
these pairing notions because all constructor applications (and more generally all
function applications) are disambiguated in a type-directed manner.

This enables us to define our running example as an inductive value:

15
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example : Mu Tree

example = node (node (node leaf 1 leaf) 5 leaf) 10 (node leaf 20 leaf)

2.3 Generic Functions

We claimed that Desc is a description language for a class of strictly positive endofunctors
on Type. The function Meaning gave us their action on objects, and we can now define
by generic programming their action on morphisms. We once again proceed by induction
on the description.

fmap : (d : Desc) -> (x -> y) -> Meaning d x -> Meaning d y

fmap None f v = v

fmap Byte f v = v

fmap (Pair d e) f (v # w) = (fmap d f v # fmap e f w)

fmap Rec f v = f v

All cases but the one for Rec are structural. Verifying that these definitions respect
the functor laws is left as an exercise for the reader.

2.3.1 Fold

We claimed that Mu gives us the initial fixpoint for the Data algebras i.e. that given any
other algebra over a type a, from a term of type (Mu cs), we can compute an a. This is
witnessed by the following generic definition of the fold function:

fold : {cs : Data} -> Alg cs a -> Mu cs -> a

fold alg t

= let (k # v) = t in

let rec = assert_total (fmap _ (fold alg) v) in

alg k rec

We first match on the term’s top constructor, use fmap to recursively apply the fold
to all the node’s subterms and finally apply the algebra to the result.
Here we only use assert_total because Idris 2 does not see that fmap only applies

its argument to strict subterms and that the whole definition is therefore total.

2.3.2 Safe Fold by Manual Supercompilation

As we are now going to see, we can easily bypass the need for assert_total by mutually
defining fold together with an inlined and specialised version of (fmap _ (fold alg)).
fold becomes a simple pattern-match on the input’s head constructor followed by an
immediate call to alg on the result of the supercompiled fmapfold function.
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fold : {cs : Data} -> Alg cs a -> Mu cs -> a

fold alg (k # v) = alg k (fmapfold alg _ v)

The implementation of the function fmapfold is unsurprising: it has the structure of
(fmap f) but calls to f have been replaced with recursive calls to fold.

fmapfold : {cs : Data} -> Alg cs a -> (d : Desc) ->

Meaning d (Mu cs) -> Meaning d a

fmapfold alg None v = v

fmapfold alg Byte v = v

fmapfold alg (Pair d e) (v # w) = (fmapfold alg d v # fmapfold alg e w)

fmapfold alg Rec v = fold alg v

Although this is systematically doable, we find it cumbersome and so prefer to use
assert_total in this kind of situation. In an ideal type theory these supercompila-
tion steps, whose sole purpose is to satisfy the totality checker, would be automatically
performed by the compiler [13].

Further generic programming can yield other useful programs e.g. a generic proof that
tree equality is decidable or a generic definition of zippers [8].

2.4 Generic Proofs

To declare a generic induction principle for our inductive types, we need a way to state
that a property already holds true for all of the subtrees of a given constructor.

2.4.1 The Pointwise Lifting of a Predicate

We can compute the predicate lifting corresponding to universal quantification over all
subtrees. It takes a description d, a predicate over a type x and returns a predicate over
meanings of d with x subtrees.

All : (d : Desc) -> (x -> Type) -> Meaning d x -> Type

All None p v = ()

All Byte p v = ()

All (Pair d e) p (v # w) = (All d p v, All e p w)

All Rec p v = p v

The definition proceeds by induction on the description. If the description is None or
Byte then the predicate is trivially true hence the use of the unit type. Faced with a
Pair we demand that the predicate holds true of both components. Last but not least,
Rec marks a subtree position and so we demand that the predicate holds true of the
value of type (Meaning Rec x) i.e. x.

17
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We can readily implement a very simple proof: if a predicate over x is known to be
universally true then we can prove that its lifting holds of all the (Meaning d x). We
once again proceed by induction over the definition.

all : (p : x -> Type) -> (f : (v : x) -> p v) ->

(d : Desc) -> (v : Meaning d x) -> All d p v

all p f None v = ()

all p f Byte v = ()

all p f (Pair d e) (v # w) = (all p f d v, all p f e w)

all p f Rec v = f v

As we are going to see shortly, this will prove useful in our implementation of the
generic induction principle.

2.4.2 The Generic Induction Principle

Let us start by explicitly stating the step case of the induction principle: given a predicate
p over trees, for any choice of constructor k and any corresponding layer v, from the
assumption that p holds true of all of the subtrees contained in v we should be able to
prove that p holds true of the tree (k # v).

InductionStep : {cs : Data} -> (p : Mu cs -> Type) -> Type

InductionStep p

= (k : Index cs) -> (v : Meaning (description k) (Mu cs)) ->

All (description k) p v -> p (k # v)

The induction principle for a datatype described by cs is therefore the function that,
given a proof of the induction step case for cs and predicate p, returns a function proving
that any tree t of type (Mu cs) necessarily satisfies p.

induction : {cs : Data} -> (p : Mu cs -> Type) ->

(step : InductionStep p) -> (t : Mu cs) -> p t

induction p step (k # v)

= step k v $ assert_total

$ all p (induction p step) (description k) v

The implementation is similar to fold’s: we first pattern-match on the tree’s head
constructor, use all to recursively apply (induction p step) to all the subtrees and
then conclude by applying the step function.
We had to, just like in the definition of fold, make use of assert_total. This is

once again due to the fact that the recursive calls performed via a call to a higher-order
function (here the call to all, and in the definition of fold the call to fmap) obfuscates
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the fact that all the recursive calls are perform on strict subterms. We could once again
manually supercompile (all p (induction p step) ) to obtain a pair of definitions that
is seen to be safe by Idris 2. This is left as an exercise for the reader.
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3.1 Revisiting Our Universe Definition

Now that we are specifically focusing on programming over serialised data, we are going
to revisit our universe of descriptions to incorporate some useful invariants.

Desc

Let us start with Desc itself. We have modified it to add three indices corresponding to
three crucial invariants being tracked.

data Desc : (rightmost : Bool) ->

(static : Nat) -> (offsets : Nat) ->

Type

First, an index telling us whether the current description is being used in the rightmost
branch of the overall constructor description. Second, the statically known size of the
described data in the number of bytes it occupies. Third, the number of offsets that
need to be stored to compensate for subterms not having a statically known size. The
reader should think of rightmost as an ‘input’ index (the context in which the descrip-
tion appears tells us whether it is currently the rightmost branch) whereas static and
offsets are ‘output’ indices (the description itself tells us what these sizes are).
Next we define the family proper by giving its four constructors.

data Desc where

None : Desc r 0 0

Byte : Desc r 1 0

Prod : {sl, sr, ol, or : Nat} ->

Desc False sl ol -> Desc r sr or ->

Desc r (sl + sr) (ol + or)

Rec : Desc r 0 (ifThenElse r 0 1)

Each constructor can be used anywhere in a description so their return rightmost

index can be an arbitrary boolean.
None is the description of values of type unit. The static size of these values is zero as

no data is stored in a value of type unit. Similarly, they do not require an offset to be
stored as we statically know their size.
Byte is the description of bytes. Their static size is precisely one byte, and they do

not require an offset to be stored either.
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Prod gives us the ability to pair two descriptions together. Its static size and the
number of offsets are the respective sums of the static sizes and numbers of offsets of
each subdescription. The description of the left element of the pair will never be in
the rightmost branch of the overall constructors description and so its index is False

while the description of the right element of the pair is in the rightmost branch precisely
whenever the whole pair is; hence the propagation of the r arbitrary value from the
return index into the description of the right component.

Last but not least, Rec is a position for a subtree. We cannot know its size in bytes
statically and so we decide to store an offset unless we are in the rightmost branch of
the overall description. Indeed, there are no additional constructor arguments behind
the rightmost one and so we have no reason to skip past the subterm. Consequently we
do not bother recording an offset for it.

Constructors

A constructor description is now represented as a record packing together not only a
name for the constructor, and the description of its arguments (which is, by virtue of
being used at the toplevel, in rightmost position) but also the values of the static and
offsets invariants. The two invariants are stored as implicit fields because their value
is easily reconstructed by Idris 2 using unification and so users do not need to spell them
out explicitly.

record Constructor (nm : Type) where

constructor (::)

name : nm

{static : Nat}
{offsets : Nat}
description : Desc True static offsets

This definition (and the following one for Data) is parametrised over the notion of
constructor name for reasons that will become obvious in Section 3.2

Data

Datatype descriptions are once again given by the pairing of the number of constructors
together with a vector of descriptions for each one of these.

record Data (nm : Type) where

constructor MkData

{consNumber : Nat}
constructors : Vect consNumber (Constructor nm)
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3.2 Choosing a Serialisation Format

Before we can give a meaning to descriptions as pointers into a buffer we need to decide
on a serialisation format. The format we have opted for is split in two parts: a header
containing data that can be used to check that a user’s claim that a given file contains
a serialised tree of a given type is correct, followed by the actual representation of the
tree.
For instance, the following binary snippet is a hex dump of a file containing the

serialised representation of a binary tree belonging to the type we have been using as
our running example. The raw data is semantically highlighted: 8-bytes-long offsets,
a type description of the stored data, some nodes of the tree and the data stored in the
nodes.

87654321 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF

00000000: 07 00 00 00 00 00 00 00 02 00 02 03 02 01 03 01

00000010: 17 00 00 00 00 00 00 00 01 0c 00 00 00 00 00 00

00000020: 00 01 01 00 00 00 00 00 00 00 00 01 00 05 00 0a

00000030: 01 01 00 00 00 00 00 00 00 00 14 00

More specifically, this block is the encoding of the example given in the previous
chapter and, knowing that a leaf is represented here by 00 and a node is represented
by 01 the careful reader can check (modulo ignoring the type description and offsets for
now) that the data is stored in a depth-first, left-to-right traversal of the tree (i.e. we
get exactly the bit pattern we saw in the näıve encoding presented in ?? ).

3.2.1 Header

In our example, the header is as follows:

07 00 00 00 00 00 00 00 02 00 02 03 02 01 03

The header consists of an offset allowing us to jump past it in case we do not care to
inspect it, followed by a binary representation of the Data description of the value stored
in the buffer. This can be useful in a big project where different components produce
and consume such serialised values: if we change the format in one place but forget to
update it in another, we want the program to gracefully fail to load the file using an
unexpected format.

Dependent Type Providers

Various components of a big software project written in potentially different de-
pendently typed languages can be kept in sync by having the serialisation format
be stored in a single configuration file and loaded during typechecking by a de-
pendent type provider [6].
Unfortunately Idris 2 does not yet support Dependent Type Providers like Idris 1
did.
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The encoding of a data description starts with a byte giving us the number of con-
structors, followed by these constructors’ respective descriptions serialised one after the
other. None is represented by 00, Byte is represented by 01, (Prod d e) is represented
by 02 followed by the representation of d and then that of e, and Rec is represented by
03.

Looking once more at the header in the running example, the Data description is
indeed 7 bytes long like the offset states. The Data description starts with 02 meaning
that the type has two constructors. The first one is 00 i.e. None (this is the encoding
of the type of Leaf), and the second one is 02 03 02 01 03 i.e. (Prod Rec (Prod Byte

Rec)) (that is to say the encoding of the type of Node). According to the header, this
file does contain a Tree.

3.2.2 Tree Serialisation

Our main focus in the definition of this format is that we should be able to process any
of a node’s subtrees without having to first traverse the subtrees that come before it.
This will allow us to, for instance, implement a function looking up the value stored in
the rightmost node in our running example type of binary trees in time linear in the
depth of the tree rather than exponential. To this end each node needs to store an offset
measuring the size of the subtrees that are to the left of any relevant information.

If a given tag is associated to a description of type (Desc True s o) then the repre-
sentation in memory of the associated node will look something like the following.

tag o offsets tree1 · · · byte1 · · · treek · · · bytes treeo+1

0 1 1 + 8 ∗ o 8 ∗ o+ s+Σo
i=1oi

On the first line we have a description of the data layout and on the second line we
have the offset of various positions in the block with respect to the tag’s address.

For the data layout, we start with the tag then we have o offsets, and finally we have
a block contiguously storing an interleaving of subtrees and s bytes dictated by the
description. In this example the rightmost value in the description is a subtree and so
even though we have o offsets, we actually have (o+ 1) subtrees stored.

The offsets of the tag with respect to its own address is 0. The tag occupies one byte
and so the offset of the block of offsets is 1. Each offset occupies 8 bytes and so the
constructor’s arguments are stored at offset (1 + 8 ∗ o). Finally each value’s offset can
be computed by adding up the offset of the start of the block of constructor arguments,
the offsets corresponding to all of the subtrees that come before it, and the number of
bytes stored before it; in the case of the last byte that gives 1 + 8 ∗ o + Σo

i=1oi + s − 1
hence the formula included in the diagram.

Going back to our running example, this translates to the following respective data
layouts and offsets for a leaf and a node.
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Leaf

00

0

Node

01 offset left subtree byte right subtree

0 1 9 9 + o1 10 + o1

Now that we understand the format we want, we ought to be able to implement
pointers and the functions manipulating them.

3.3 Meaning as Pointers

Now that we know the serialisation format, we can give a meaning to constructor and
data descriptions as pointers into a buffer.

3.3.1 Tracking Buffer Positions

We start with the definition of the counterpart to Mu for serialised values.

record Mu (cs : Data nm) (t : Data.Mu cs)

The pointer type is parametrised by the Data description of the buffer’s content it
points to, and indexed by a tree representing the value that is stored in serialised format
in the buffer. These tree indices will be erased at runtime and so are only here to be
used in the specification layer of our library.

Indexing a Family by its Meaning

Indexing a complex but efficient representation by its simpler and obviously cor-
rect counterpart is a common technique that allows for the correct-by-construction
implementation of complex programs [5].

For now, it is enough to think of these tree indices as a lightweight version of the ‘points
to’ assertions used in separation logic [16] when reasoning about imperative programs.
The actual definition of the record type is as follows:

record Mu (cs : Data nm) (t : Data.Mu cs) where

constructor MkMu

muBuffer : Buffer

muPosition : Int

muSize : Int

A tree sitting in a buffer is represented by a record packing the buffer, the position at
which the tree’s root node is stored, and the size of the tree. Note that according to our
serialisation format the size is not stored in the file but using the size of the buffer, the
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stored offsets, and the size of the static data we will always be able to compute a value
corresponding to it.

record Meaning (d : Desc r s o) (cs : Data nm)

(t : Data.Meaning d (Data.Mu cs)) where

constructor MkMeaning

subterms : Vect o Int

meaningBuffer : Buffer

meaningPosition : Int

meaningSize : Int

The counterpart to a Meaning stores additional information. For a description of
type (Desc r s o) on top of the buffer, the position at which the root of the meaning
resides, and the size of the layer we additionally have a vector of o offsets that allow us
to efficiently access any value we want.

3.3.2 Writing a Tree To a File

Once we have a pointer to a tree in a buffer, we can easily write it to a file be it for
safekeeping or sending over the network.

writeToFile : {cs : Data nm} -> FilePath ->

forall t. Pointer.Mu cs t -> IO ()

writeToFile fp (MkMu buf pos size) = do

desc <- getInt buf 0

let start = 8 + desc

let bufSize = 8 + desc + size

buf <- if pos == start then pure buf else do

Just newbuf <- newBuffer bufSize

| Nothing => failWith "\{__LOC__} Couldn’t allocate buffer"

copyData buf 0 start newbuf 0

copyData buf pos size newbuf start

pure buf

Right () <- writeBufferToFile fp buf bufSize

| Left (err, _) => failWith (show err)

pure ()

We first start by reading the size of the header stored in the buffer. This allows us to
compute both the start of the data block as well as the size of the buffer (bufSize) that
will contain the header followed by the tree we want to write to a file. We then check
whether the position of the pointer is exactly the beginning of the data block. If it is
then we are pointing to the whole tree and the current buffer can be written to a file as
is. Otherwise we are pointing to a subtree and need to separate it from its surrounding
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context first. To do so we allocate a new buffer of the right size and use the standard
library’s copyData primitive to copy the raw bytes corresponding to the header first,
and the tree of interest second. We can then write the buffer we have picked to a file
and happily succeed.

Pattern-Matching Bind

3.3.3 Reading a Tree From a File

Just like we can write trees to files, we can also read trees from files. The function
readFromFile takes a data description and a filepath and returns a pointer to the root
of the tree contained in the file (if any).

readFromFile : {default True safe : Bool} ->

(cs : Data nm) -> String ->

IO (Exists (Pointer.Mu cs))

readFromFile cs fp

= do Right buf <- createBufferFromFile fp

| Left err => failWith (show err)

skip <- getInt buf 0

when safe $ do

cs’ <- getData buf 8

unless (eqData cs cs’) $ failWith $ unlines

[ "Description mismatch:"

, "expected:"

, show cs

, "but got:"

, show cs’

]

let pos = skip + 8

pure (Evidence t (MkMu buf pos (!(rawSize buf) - pos)))

where 0 t : Data.Mu cs -- postulated as an abstract value

The first step is to attempt to load the file as a buffer of raw bytes. Once that’s
done, we decode the offset corresponding to the header size and, provided that the
function was called in safe mode, decode the data description contained in the header
and compare it to the data description the user wants to load the file’s content as.
Finally, we manufacture a pointer pointing immediately past the header i.e. at the start
of the data block. Note that the pointer is indexed over an arbitrary runtime irrelevant
tree t that we happily postulate because one ought to exist if the file is indeed valid.
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Default Values

Implicit arguments marked default can be assigned a default value. If the caller
does not explicitly sets a value for this argument then the default value is used.

3.4 Inspecting a Buffer’s Content

Now that we have pointers and can save and load the tree they are standing for, we are
only missing the ability to look at the content they are pointing to.

We are going to define the most basic of building blocks (poke and out), combine them
to derive useful higher-level combinators (layer and view), and ultimately use these
to implement the following generic correct-by-construction version of fold operating
over trees stored in a buffer (cf. Section 3.5) that looks almost exactly like its pure
counterpart.

fold : {cs : Data nm} -> (alg : Alg cs a) ->

forall t. Pointer.Mu cs t ->

IO (Singleton (Data.fold alg t))

fold alg ptr

= do k # t <- out ptr

rec <- assert_total (fmap _ _ (fold alg) t)

pure (alg k <$> rec)

3.4.1 Poking the Buffer

Our most basic operation consists in poking the buffer to unfold the description by
exactly one step. The type of the function is as follows: provided a pointer for a meaning
t, we return an IO process computing the one step unfolding of the meaning.

poke : {0 cs : Data nm} -> {d : Desc r s o} ->

forall t. Pointer.Meaning d cs t ->

IO (Poke d cs t)

The result type of this operation is defined by case-analysis on the description. In
order to keep the notations user-friendly, we mutually define a recursive function Poke

interpreting the straightforward type constructors and an inductive family Poke’ with
interesting return indices.
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Poke : (d : Desc r s o) -> (cs : Data nm) ->

Data.Meaning d (Data.Mu cs) -> Type

Poke None _ t = ()

Poke Byte cs t = Singleton t

Poke Rec cs t = Pointer.Mu cs t

Poke d@(Prod _ _) cs t = Poke’ d cs t

Poking a buffer containing None will return a value of the unit type as no information
whatsoever is stored there.
If we access a Byte then we expect that inspecting the buffer will yield a runtime-

relevant copy of the type-level byte we have for reference. Hence the use of Singleton.
If the description is Rec this means we have a substructure. In this case we simply

demand a pointer to it.
Last but not least, if we access a Prod of two descriptions then the type-level term

better be a pair and we better be able to obtain a Pointer.Meaning for each of the
sub-meanings. Because Idris 2 does not currently support definitional eta equality for
records, it will be more ergonomic for users if we introduce Poke’ rather than yielding a
Tuple of values. By matching on Poke’ at the value level, they will see the pair at the
type level also reduced to a constructor-headed tuple.

data Poke’ : (d : Desc r s o) -> (cs : Data nm) ->

Data.Meaning d (Data.Mu cs) -> Type where

(#) : Pointer.Meaning d cs t ->

Pointer.Meaning e cs u ->

Poke’ (Prod d e) cs (t # u)

The implementation of this operation proceeds by case analysis on the description.
As we are going to see shortly, it is necessarily somewhat unsafe as we claim to be able
to connect a type-level value to whatever it is that we read from the buffer. Let us go
through each case one-by-one.

poke {d = None} el = pure ()

If the description is None we do not need to fetch any information from the buffer and
can immediately return ().

poke {d = Byte} el = do

bs <- getBits8 (meaningBuffer el) (meaningPosition el)

pure (unsafeMkSingleton bs)

If the description is Byte then we read a byte at the determined position. The only way
we can connect this value we just read to the type index is to use the unsafe combinator

29



3 Programming Over Serialised Data

unsafeMkSingleton to manufacture a value of type (Singleton t) instead of the value of
type (Singleton bs) we would expect from wrapping bs in the MkSingleton constructor.

poke {d = Prod {sl, ol} d e} {t} (MkMeaning sub buf pos size) = do

let (subl, subr) = splitAt ol sub

let sizel = sum subl + cast sl

let left = MkMeaning subl buf pos sizel

let posr = pos + sizel

let right = MkMeaning subr buf posr (size - sizel)

pure (rewrite etaTuple t in left # right)

If the description is the product of two sub-descriptions then we want to compute the
Pointer.Meaning corresponding to each of them. We start by splitting the vector of
offsets to distribute them between the left and right subtrees.

We can readily build the pointer for the left subdescription: it takes the left offsets,
the buffer, and has the same starting position as the whole description of the product as
the submeanings are stored one after the other. Its size (sizel) is the sum of the space
reserved by all of the left offsets (sum subl) as well as the static size occupied by the
rest of the content (sl).
We then compute the starting position of the right subdescription: we need to move

past the whole of the left subdescription, that is to say that the starting position is the
sum of the starting position for the whole product and sizel. The size of the right
subdescription is then easily computed by subtracting sizel from the overall size of
the paired subdescriptions.
We can finally use the lemma etaTuple saying that a tuple is equal to the pairing of

its respective projections in order to turn t into (fst t # snd t) which lets us use the
Poke’ constructor (#) to return our pair of pointers.

poke {d = Rec} (MkMeaning _ buf pos size) = pure (MkMu buf pos size)

Lastly, when we reach a Rec description, we can discard the vector of offsets and return
a Pointer.Mu with the same buffer, starting position and size as our input pointer.

3.4.2 Extracting One Layer

By repeatedly poking the buffer, we can unfold a full layer. This operation’s result is
defined by induction on the description. It is identical to the definition of Poke except
for the Prod case: instead of being content with a pointer for each of the subdescriptions,
we demand a Layer for them too.
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Layer : (d : Desc r s o) -> (cs : Data nm) ->

Data.Meaning d (Data.Mu cs) -> Type

Layer None _ _ = ()

Layer Byte _ t = Singleton t

Layer Rec cs t = Pointer.Mu cs t

Layer d@(Prod _ _) cs t = Layer’ d cs t

data Layer’ : (d : Desc r s o) -> (cs : Data nm) ->

Data.Meaning d (Data.Mu cs) -> Type where

(#) : Layer d cs t -> Layer e cs u -> Layer’ (Prod d e) cs (t # u)

This function can easily be implemented by induction on the description and repeat-
edly calling poke to expose the values one by one.

layer : {0 cs : Data nm} -> {d : Desc r s o} ->

forall t. Pointer.Meaning d cs t -> IO (Layer d cs t)

layer el = poke el >>= go d where

go : forall r, s, o. (d : Desc r s o) ->

forall t. Poke d cs t -> IO (Layer d cs t)

go None p = pure ()

go Byte p = pure p

go (Prod d e) (p # q) = [| layer p # layer q |]

go Rec p = pure p

3.4.3 Exposing the Top Constructor

Now that we can deserialise an entire layer of Meaning, the only thing we are missing
to be able to generically manipulate trees is the ability to expose the top constructor
of a tree stored at a Pointer.Mu position. Remembering the data layout detailed in
Section 3.2.2 and repeated below, this will amount to inspecting the tag used by the
node and then deserialising the offsets stored immediately after it.

tag o offsets tree1 · · · byte1 · · · treek · · · bytes treeo+1

0 1 1 + 8 ∗ o 8 ∗ o+ s+Σo
i=1oi

The Out family describes the typed point of view: to get your hands on the index
of a tree’s constructor means obtaining an Index, and a Pointer.Meaning to the con-
structor’s arguments (remember that these high-level ‘pointers’ store a vector of offsets).
The family’s index (k # t) ensures that the structure of the runtime irrelevant tree is
adequately described by the index (k) and the Data.Meaning (t) the Pointer.Meaning
is for.
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data Out : (cs : Data nm) -> (t : Data.Mu cs) -> Type where

(#) : (k : Index cs) ->

forall t. Pointer.Meaning (description k) cs t ->

Out cs (k # t)

As a first step, we can define the function getIndex to get our hands on the index of
the head constructor. We obtain a byte by calling getBits8, cast it to a natural number
and then make sure that it is in the range [0 · · · consNumber cs[ using natToFin.

getIndex : {cs : Data nm} -> forall t. Pointer.Mu cs t -> IO (Index cs)

getIndex mu = do

tag <- getBits8 (muBuffer mu) (muPosition mu)

let Just k = natToFin (cast tag) (consNumber cs)

| _ => failWith "Invalid representation"

pure (MkIndex k)

The out function type states that given a pointer to a tree t of type cs we can get
a value of type (Out cs t) i.e. we can get a view revealing what the index of the tree’s
head constructor is.

out : {cs : Data nm} -> forall t. Pointer.Mu cs t -> IO (Out cs t)

The implementation is fairly straightforward except for another unsafe step meant to
reconcile the information we read in the buffer with the runtime-irrelevant tree index.

out {t} mu = do

k <- getIndex mu

let 0 sub = unfoldAs k t

val <- (k #) <$> getConstructor k {t = sub.fst}
(rewrite sym sub.snd in mu)

pure (rewrite sub.snd in val)

We start by reading the tag k corresponding to the constructor choice. We then use
the unsafe unfoldAs postulate to step the type-level t to something of the form (k #

val).

%unsafe

0 unfoldAs :

(k : Index cs) -> (0 t : Data.Mu cs) ->

(val : Data.Meaning (description k) (Data.Mu cs)

** t === (k # val))
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The declaration of unfoldAs is marked as runtime irrelevant because it cannot possibly
be implemented (t is runtime irrelevant and so cannot be inspected) and so its output
should not be relied upon in runtime-relevant computations. Its type states that there
exists a Meaning called val such that t is equal to (k # val)
Now that we know the head constructor we want to deserialise and that we have the

ability to step the runtime irrelevant tree to match the actual content of the buffer, we
can use getConstructor to build such a value.

getConstructor : (k : Index cs) ->

forall t. Pointer.Mu cs (k # t) ->

IO (Pointer.Meaning (description k) cs t)

getConstructor (MkIndex k) mu

= let offs : Nat; offs = offsets (index k $ constructors cs) in

getOffsets (muBuffer mu) (1 + muPosition mu) offs

$ let size = muSize mu - 1 - cast (8 * offs) in

\ subterms, pos => MkMeaning subterms (muBuffer mu) pos size

To get a constructor, we start by getting the vector of offsets stored immediately after
the tag. We then compute the size of the remaining Meaning description: it is the size
of the overall tree, minus 1 (for the tag) and 8 times the number of offsets (because
each offset is stored as an 8 bytes number). We can then use the record constructor
MkMeaning to pack together the vector of offsets, the buffer, the position past the offsets
and the size we just computed.

getOffsets : Buffer -> (pos : Int) ->

(n : Nat) ->

forall t. (Vect n Int -> Int -> Pointer.Meaning d cs t) ->

IO (Pointer.Meaning d cs t)

getOffsets buf pos 0 k = pure (k [] pos)

getOffsets buf pos (S n) k = do

off <- getInt buf pos

getOffsets buf (8 + pos) n (k . (off ::))

The implementation of getOffsets is straightforward: given a continuation that ex-
pect n offsets as well as the position past the last of these offsets, we read the 8-bytes-long
offsets one by one and pass them to the continuation, making sure that we move the
current position accordingly before every recursive call.

3.4.4 Offering a Convenient View

We can combine out and layer to obtain the view function we used in our motivating
examples in Section 1. A (View cs t) value gives us access to the (Index cs) of t’s top
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constructor together with the corresponding Layer of deserialised values and pointers to
subtrees.

data View : (cs : Data nm) -> (t : Data.Mu cs) -> Type where

(#) : (k : Index cs) ->

forall t. Layer (description k) cs t ->

View cs (k # t)

The implementation of view is unsurprising: we use out to expose the top constructor
index and a Pointer.Meaning to the constructor’s payload. We then user layer to
extract the full Layer of deserialised values that the pointer references.

view : {cs : Data nm} ->

forall t. Pointer.Mu cs t ->

IO (View cs t)

view ptr = do k # el <- out ptr

vs <- layer el

pure (k # vs)

Cost of View

Although a view may be convenient to consume, a performance-minded user may
decide to directly use the out and poke combinators to avoid deserialising values
that they do not need.
For instance, there is no need to deserialise all of the nodes encountered when
descending down the rightmost branch of a tree if our only goal is to return the
value of the leaf at the end.

3.4.5 Generic Deserialisation

By repeatedly calling view, we can define the correct-by-construction generic deseriali-
sation function that turns a pointer to a tree into a runtime value equal to this tree.

deserialise : {cs : Data nm} -> forall t.

Pointer.Mu cs t -> IO (Singleton t)

We can measure the benefits of our approach by comparing the runtime of a function
directly operating on buffers to its pure counterpart composed with a deserialisation
step. For functions like rightmost that only explore a very small part of the full tree,
the gains are spectacular: the process operating on buffers is exponentially faster than
its counterpart which needs to deserialise the entire tree first.
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3.5 Generic Fold

The implementation of the generic fold over a tree stored in a buffer is going to have
the same structure as the generic fold over inductive values: first match on the top
constructor, then use fmap to apply the fold to all the substructures and, finally, apply
the algebra to the result. We start by implementing the buffer-based counterpart to
fmap. Let us go through the details of its type first.

fmap : (d : Desc r s o) ->

(0 f : Data.Mu cs -> b) ->

(forall t. Pointer.Mu cs t -> IO (Singleton (f t))) ->

forall t. Pointer.Meaning d cs t ->

IO (Singleton (Data.fmap d f t))

The first two arguments to fmap are similar to its pure counterpart: a description
d and a (here runtime-irrelevant) function f to map over a Meaning. Next we take a
function which is the buffer-aware counterpart to f: given any runtime-irrelevant term
t and a pointer to it in a buffer, it returns an IO process computing the value (f t).
Finally, we take a runtime-irrelevant meaning t as well as a pointer to its representation
in a buffer and compute an IO process which will return a value equal to (Data.fmap d

f t).
We can now look at the definition of fmap.

fmap d f act ptr = poke ptr >>= go d where

go : (d : Desc{}) -> forall t. Poke d cs t ->

IO (Singleton (Data.fmap d f t))

go None {t} v = pure byIrrelevance

go Byte v = pure v

go (Prod d e) (v # w)

= do fv <- fmap d f act v

fw <- fmap e f act w

pure [| fv # fw |]

go Rec v = act v

We poke the buffer to reveal the value the Pointer.Meaning named ptr is pointing
at and then dispatch over the description d using the go auxiliary function.

If the description is None we use byIrrelevance which happily builds any (Singleton
t) provided that t’s type is proof irrelevant.

If the description is Byte, the value is left untouched and so we can simply return it
immediately.
If we have a Prod of two descriptions, we recursively apply fmap to each of them and

pair the results back.

35



3 Programming Over Serialised Data

Finally, if we have a Rec we apply the function operating on buffers that we know
performs the same computation as f.

We can now combine out and fmap to compute the correct-by-construction fold:
provided an algebra for a datatype cs and a pointer to a tree of type cs stored in a
buffer, we return an IO process computing the fold.

fold : {cs : Data nm} -> (alg : Alg cs a) ->

forall t. Pointer.Mu cs t ->

IO (Singleton (Data.fold alg t))

We first use out to reveal the constructor choice in the tree’s top node, we then
recursively apply (fold alg) to all the substructures by calling fmap, and we conclude
by applying the algebra to this result.

fold alg ptr

= do k # v <- out ptr

rec <- assert_total (fmap _ _ (fold alg) v)

pure (alg k <$> rec)

We once again (cf. Section 2.3.1) had to use assert_total because it is not obvious
to Idris 2 that fmap only uses its argument on subterms. This could have also been
avoided by mutually defining fold and a specialised version of (fmap (fold alg)) at the
cost of code duplication and obfuscation.

3.6 Serialising Data

So far all of our example programs involved taking an inductive value apart and comput-
ing a return value in the host language. But we may instead want to compute another
value in serialised form. We include below one such example: a map function which takes
a function f acting on bytes and applies it to all of the ones stored in the nodes of our
type of Trees.

map : (f : Bits8 -> Bits8) ->

(ptr : Pointer.Mu Tree t) ->

Serialising Tree (Data.map f t)

map f ptr = case !(view ptr) of

"Leaf" # () => "Leaf" # ()

"Node" # l # b # r => "Node" # map f l # [| f b |] # map f r

It calls the view we just defined to observe whether the tree is a leaf or a node. If
it’s a leaf, it returns a leaf. If it’s a node, it returns a node where the map has been
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recursively applied to the left and right subtrees while the function f has been applied
to the byte b.
In this section we are going to spell out how we can define high-level constructs allowing

users to write these correct-by-construction serialisers.

3.6.1 The Type of Serialisation Processes

A serialisation process for a tree t that belongs to the datatype cs is a function that
takes a buffer and a starting position and returns an IO process that serialises the term in
the buffer at that position and computes the position of the first byte past the serialised
tree.

record Serialising (cs : Data nm) (t : Data.Mu cs) where

constructor MkSerialising

runSerialising : Buffer -> Int -> IO Int

We do not expect users to define such processes by hand and in fact prevent them from
doing so by not exporting the MkSerialising constructor. Instead, we provide high-
level, invariant-respecting combinators to safely construct such serialisation processes.

3.6.2 Building Serialisation Processes

Our main combinator is (#): by providing a node’s constructor index and a way to
serialise all of the node’s subtrees, we obtain a serialisation process for said node. We
will give a detailed explanation of All below.

(#) : {cs : Data nm} -> (k : Index cs) ->

{0 t : Meaning (description k) (Data.Mu cs)} ->

All (description k) (Serialising cs) t ->

Serialising cs (k # t)

The keen reader may refer to the accompanying code to see the implementation.
Informally (cf. Section 3.2.2 for the description of the format): first we write the tag
corresponding to the choice of constructor, then we leave some space for the offsets, in the
meantime we write all of the constructor’s arguments and collect the offsets associated
to each subtree while doing so, and finally we fill in the space we had left blank with the
offsets we have thus collected.
The All quantifier performs the pointwise lifting of a predicate over the functor de-

scribed by a Desc. It is defined by induction over the description.
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All : (d : Desc r s o) -> (p : x -> Type) -> Meaning d x -> Type

All None p t = ()

All Byte p t = Singleton t

All Rec p t = p t

All d@(Prod _ _) p t = All’ d p t

If the description is None then there is nothing to apply the predicate to and so
we return the unit type. If the description is Byte we only demand that we have a
runtime copy of the byte so that we may write it inside a buffer. This is done using the
Singleton family discussed in Section 1.4. If the description is Rec then we demand
that the predicate holds. Finally, if the description is a the Prod of two subdescriptions,
we once again use an auxiliary family purely for ergonomics. It is defined mutually with
All and does the expected structural operation.

data All’ : (d : Desc r s o) -> (p : x -> Type) ->

Meaning d x -> Type where

(#) : All d p t -> All e p u -> All’ (Prod d e) p (t # u)

It should now be clear that (All (description k) (Serialising cs)) indeed corre-
sponds to having already defined a serialisation process for each subtree.
This very general combinator should be enough to define all the serialisers we may

ever want. By repeatedly pattern-matching on the input tree and using (#), we can for
instance define the correct-by-construction generic serialisation function.

serialise : {cs : Data nm} -> (t : Data.Mu cs) -> Serialising cs t

We nonetheless include other combinators purely for performance reasons.

3.6.3 Copying Entire Trees

We introduce a copy combinator for trees that we want to serialise as-is and have a
pointer for. Equipped with this combinator, we are able to easily write e.g. the swap

function which takes a binary tree apart and swaps its left and right branches (if the
tree is non-empty).

swap : Pointer.Mu Tree t -> Serialising Tree (Data.swap t)

swap ptr = case !(view ptr) of

"Leaf" # () => leaf

"Node" # l # b # r => node (copy r) b (copy l)

We could define this copy combinator at a high level either by composing deserialise
and serialise, or by interleaving calls to view and (#). This would however lead to a
slow implementation that needs to traverse the entire tree in order to simply copy it.
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Instead, we implement copy by using the copyData primitive for Buffers present in
Idris 2’s standard library. This primitive allows us to grab a slice of the source buffer
corresponding to the tree and to copy the raw bytes directly into the target buffer.

copy : Pointer.Mu cs t -> Serialising cs t

copy ptr = MkSerialising $ \ buf, pos => do

let size = muSize ptr

copyData (muBuffer ptr) (muPosition ptr) size buf pos

pure (pos + size)

This is the one combinator that crucially relies on our format only using offsets and
not absolute addresses and on the accuracy of the size information we have been keeping
in Pointer.Mu and Pointer.Meaning. This is spectacularly faster than a deep copying
process traversing the tree.

3.6.4 Executing a Serialisation Action

Now that we can describe actions serialising a value to a buffer, the last basic building
block we are still missing is a function actually performing such actions. This is provided
by the execSerialising function declared below.

execSerialising : {cs : Data nm} -> {0 t : Data.Mu cs} ->

Serialising cs t -> IO (Pointer.Mu cs t)

By executing a (Serialising cs t), we obtain an IO process returning a pointer to
the tree t stored in a buffer. We can then either compute further with this tree (e.g. by
calling sum on it), or write it to a file for safekeeping using the function writeToFile

introduced in Section 3.3.2.

3.6.5 Evaluation Order

The careful reader may have noticed that we can and do run arbitrary IO operations
when building a value of type Serialising (cf. the map example in Section 3.6 where
we perform a call to view to inspect the input’s shape).

This is possible thanks to Idris 2 elaborating do-blocks using whichever appropriate
bind operator is in scope. In particular, we have defined the following one to use when
building a serialisation process:

(>>=) : IO a -> (a -> Serialising cs t) -> Serialising cs t

io >>= f = MkSerialising $ \buf, start =>

do x <- io

runSerialising (f x) buf start
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By using this bind we can temporarily pause writing to the buffer to make arbitrary
IO requests to the outside world. In particular, this allows us to interleave reading
from the original buffer and writing into the target one thus having a much better
memory footprint than if we were to first use the IO monad to build in one go the whole
serialisation process for a given tree and then execute it.
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