
ö From Void to Pointer.Mu

Guillaume Allais

SPLV St Andrews

July 24th–28th 2023



Me, Myself, and I

Who am I?

▶ Lecturer at the University of Strathclyde

▶ Idris and Agda core developer

What do I care about?

▶ Correct-by-construction method

▶ Efficient runtime representations

▶ Generic programming

▶ Partial Evaluation

▶ “Practical” dependently typed libraries

▶ Proof Automation



Plans for this week

(WIP) Lecture Notes:
https://gallais.github.io/teaching

1. Motivation and Introduction to Idris 2
▶ No prerequisites
▶ Live programming
▶ Key ideas, design patterns

2. Generic Programming

3. Programming Over Serialised Data

https://gallais.github.io/teaching


Motivation



Trees and Pattern Matching

10

5

1

20

data Tree

= Leaf

| Node Tree Bits8 Tree

sum : Tree -> Nat

sum t = case t of

Leaf => 0

Node l b r =>

let m = sum l

n = sum r

in (m + cast b + n)



Serialised Data and Pointer Manipulations

01

(node (node leaf 1 leaf) 5 leaf)︷ ︸︸ ︷
01 01 00 01 00︸ ︷︷ ︸

(node leaf 1 leaf)

05 00 0a 01 00 14 00



Serialised Data and Pointer Manipulations

01

(node (node leaf 1 leaf) 5 leaf)︷ ︸︸ ︷
01 01 00 01 00︸ ︷︷ ︸

(node leaf 1 leaf)

05 00 0a 01 00 14 00

1 i n t sumAt ( u int8 t buf [ ] , i n t ∗ p t r ) {
2 u int8 t tag = buf [∗ p t r ] ; (∗ p t r )++;
3 switch ( tag ) {
4 case 0 : return 0 ;
5 case 1 :
6 i n t m = sumAt ( buf , p t r ) ;
7 u int8 t b = buf [∗ p t r ] ; (∗ p t r )++;
8 i n t n = sumAt ( buf , p t r ) ;
9 return (m + ( i n t ) b + n ) ;

10 defau l t : e x i t (−1) ; }}



Seamless

sum : Data.Mu Tree -> Nat

sum t = case t of

"Leaf" # _ => Z

"Node" # l # b # r =>

let m = sum l

n = sum r

in (m + cast b + n)

sum : Pointer.Mu Tree _ -> IO Nat

sum ptr = case !(view ptr) of

"Leaf" # _ => pure Z

"Node" # l # b # r =>

do m <- sum l

n <- sum r

pure (m + cast b + n)



Correct

sum : Pointer.Mu Tree t ->

IO (Singleton (Data.sum t))

sum ptr = case !(view ptr) of

"Leaf" # _ => pure [| Z |]

"Node" # l # b # r =>

do m <- sum l

n <- sum r

pure [| [| m + [| cast b |] |] + n |]



Generic

fold : {cs : Data nm} -> (alg : Alg cs a) ->

forall t. Pointer.Mu cs t ->

IO (Singleton (Data.fold alg t))



Live programming


	Motivation
	Live programming

