
Using Dependent Types at Scale:
Maintaining the Agda Standard Library

Matthew L. Daggitt
Heriot-Watt University
Edinburgh, Scotland
m.daggitt@hw.ac.uk

Guillaume Allais
University of St Andrews

Fife, Scotland
guillaume.allais@ens-lyon.org

Abstract
When creating a new language with real-world impact, im-
plementing an advanced type-system is only the beginning.
In order to attract new users, one must also have a compre-
hensive standard library that makes use of those advanced
features. In this talk I will discuss the practicalities of using
dependent types and other advanced language features in
the Agda Standard Library.

The talk will be split into three parts. In the first I will cover
how the upcoming version 2.0 of the library uses Agda’s type-
system to improve ergonomics and get a little closer to what
a mathematician might write:

1. Using parametrised modules to significantly cut down
the amount of boilerplate required for users.

2. Using instance search to fill in mechanistic proofs for
dependently typed predicates.

3. Exploiting type-level computation to significantly re-
duce the number of cases that need to be considered
when pattern matching.

The second part of the talk will focus on a rarely discussed
topic in dependent type-systems, namely how the size of a
dependently-typed library influences design decisions that,
at first glance, appear unrelated. These effects include limit-
ing the use of the dependently typed features.

The Standard Library has been growing at approximately
10kloc per year, and now stands at over 100kloc, putting it
firmly into the realm of serious software projects by aca-
demic standards. Despite this, it contains surprisingly little
computational content. For example we don’t have real num-
bers or verified interfaces for maps, queues, stacks, sets etc.
So what is taking up all the space? The answer is proofs,
which outnumbers computation by a factor of about 10:1.
The size of the library means that to type-check it all requires
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
WITS’22, 22 January 2022,
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

approximately 8GB of RAM. Consequently if a user wants to
type-check their own code and have a web-browser open at
the same time, they can’t afford to type-check even half of
the library. An apparently inexorable chain of consequences
follows:

• We are now in a dependency hell where we not only
have to worry about dependency cycles, we also have
to minimise the quantity of code each module tran-
sitively imports. Correspondingly we are forced to
favour small modules with minimal relationships be-
tween them.

• As proofs make up the vast majority of the library, it is
immediate clear that the definition of and computation
over data types must live in separate modules from
the proofs about them.

• Consequently we lose the ability to hide implementa-
tion details behind abstraction barriers, as the ‘private‘
and ‘abstract‘ keywords in Agda currently only work
on an intra-module level. Guaranteeing backwards
compatibility is therefore near impossible and instead
we’re forced to rely on conventions, which new users
are unlikely to be aware of.

• We also lose the ability to enforce dependently-typed
pre-conditions to computations. For instance the func-
tion “deduplicate” can’t take a proof that the underly-
ing relation is an equivalence, because using it would
then require importing proofs. This also significantly
complicates the already labyrinthine hierarchy ofmath-
ematical structures, as we must have separate defini-
tions, one with just the operations and one with both
the operations and the laws.

In the final part of the talk I will cover some of the language
features that would make the biggest difference to the library:

1. Improving how instance search handles irrelevancy.
2. Finer grained control over abstraction.
3. Better support for composing records when modelling

inheritance diamonds.

ACM Reference Format:
Matthew L. Daggitt and Guillaume Allais. 2021. Using Dependent
Types at Scale:
Maintaining the Agda Standard Library. In Proceedings of Workshop
on the Implementation of Type Systems (WITS’22). ACM, New York,
NY, USA, 1 page. https://doi.org/10.1145/nnnnnnn.nnnnnnn

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

	Abstract

