------------------------------------------------------------------------
-- Sets with decidable equality have unique identity proofs
------------------------------------------------------------------------

{-# OPTIONS --without-K #-}

-- The part up to "decidable⇒UIP" follows a proof by Michael Hedberg
-- ("A coherence theorem for Martin-Löf's type theory", JFP 1998).

open import Equality

module Equality.Decidable-UIP
  {reflexive} (eq :  {a p}  Equality-with-J a p reflexive) where

open Derived-definitions-and-properties eq
open import Logical-equivalence using (module _⇔_)
open import H-level eq
open import Prelude

-- Constant functions.

Constant :  {a b} {A : Set a} {B : Set b}  (A  B)  Set (a  b)
Constant f =  x y  f x  f y

-- Left inverses.

_Left-inverse-of_ :  {a b} {A : Set a} {B : Set b} 
                    (B  A)  (A  B)  Set a
g Left-inverse-of f =  x  g (f x)  x

abstract

  -- A set with a constant endofunction with a left inverse is proof
  -- irrelevant.

  irrelevant :  {a} {A : Set a} 
               (f :  λ (f : A  A)  Constant f) 
               ( λ g  g Left-inverse-of (proj₁ f)) 
               Proof-irrelevant A
  irrelevant (f , constant) (g , left-inverse) x y =
    x        ≡⟨ sym (left-inverse x) 
    g (f x)  ≡⟨ cong g (constant x y) 
    g (f y)  ≡⟨ left-inverse y ⟩∎
    y        

  -- Endofunction families on _≡_ always have left inverses.

  left-inverse :
     {a} {A : Set a} (f : (x y : A)  x  y  x  y) 
     {x y}   λ g  g Left-inverse-of f x y
  left-inverse {A = A} f {x} {y} =
     x≡y 
       x  ≡⟨ x≡y 
       y  ≡⟨ sym (f y y (refl y)) ⟩∎
       y  ) ,
    elim  {x y} x≡y  trans (f x y x≡y) (sym (f y y (refl y)))  x≡y)
          _  trans-symʳ _)

  -- A set A has unique identity proofs if there is a family of
  -- constant endofunctions on _≡_ {A = A}.

  constant⇒UIP :
     {a} {A : Set a} 
    ((x y : A)   λ (f : x  y  x  y)  Constant f) 
    Uniqueness-of-identity-proofs A
  constant⇒UIP constant {x} {y} =
    irrelevant (constant x y)
               (left-inverse  x y  proj₁ $ constant x y))

  -- Sets which are decidable come with constant endofunctions.

  decidable⇒constant :  {a} {A : Set a}  Dec A 
                        λ (f : A  A)  Constant f
  decidable⇒constant (inj₁  x) = (const x , λ _ _  refl x)
  decidable⇒constant (inj₂ ¬x) = (id      , λ _  ⊥-elim  ¬x)

  -- Sets with decidable equality have unique identity proofs.

  decidable⇒UIP :  {a} {A : Set a} 
    Decidable-equality A  Uniqueness-of-identity-proofs A
  decidable⇒UIP dec =
    constant⇒UIP  x y  decidable⇒constant (dec x y))

  -- Types with decidable equality are sets.

  decidable⇒set :  {a} {A : Set a}  Decidable-equality A  Is-set A
  decidable⇒set {A = A} dec =
    _⇔_.from {To = Uniqueness-of-identity-proofs A}
             set⇔UIP (decidable⇒UIP dec)

  -- Non-dependent functions with propositional domains are constant.

  propositional-domain⇒constant :
     {a b} {A : Set a} {B : Set b} 
    Is-proposition A  (f : A  B)  Constant f
  propositional-domain⇒constant A-prop f = λ x y 
    cong f (_⇔_.to propositional⇔irrelevant A-prop x y)

  -- If there is a propositional, reflexive relation on A, and related
  -- elements are equal, then A is a set.
  --
  -- (The statement of this lemma is one part of the statement of
  -- Theorem 7.2.2 in "Homotopy Type Theory: Univalent Foundations of
  -- Mathematics" (first edition).)

  propositional-identity⇒set :
     {a b} {A : Set a}
    (B : A  A  Set b) 
    (∀ x y  Is-proposition (B x y)) 
    (∀ x  B x x) 
    (∀ x y  B x y  x  y) 
    Is-set A
  propositional-identity⇒set B B-prop B-refl f =
    _⇔_.from set⇔UIP $ constant⇒UIP λ x y 
       eq  f x y (subst (B x) eq (B-refl x))) ,
       _ _  propositional-domain⇒constant (B-prop x y) (f x y) _ _)