{-# OPTIONS --without-K #-}
open import Equality
module Surjection
{reflexive} (eq : ∀ {a p} → Equality-with-J a p reflexive) where
open Derived-definitions-and-properties eq
open import Logical-equivalence
using (_⇔_; module _⇔_) renaming (_∘_ to _⊙_)
open import Prelude as P hiding (id) renaming (_∘_ to _⊚_)
infix 0 _↠_
record _↠_ {f t} (From : Set f) (To : Set t) : Set (f ⊔ t) where
field
logical-equivalence : From ⇔ To
open _⇔_ logical-equivalence
field
right-inverse-of : ∀ x → to (from x) ≡ x
from-to : ∀ {x y} → from x ≡ y → to y ≡ x
from-to {x} {y} from-x≡y =
to y ≡⟨ cong to $ sym from-x≡y ⟩
to (from x) ≡⟨ right-inverse-of x ⟩∎
x ∎
open _⇔_ logical-equivalence public
id : ∀ {a} {A : Set a} → A ↠ A
id = record
{ logical-equivalence = Logical-equivalence.id
; right-inverse-of = refl
}
infixr 9 _∘_
_∘_ : ∀ {a b c} {A : Set a} {B : Set b} {C : Set c} →
B ↠ C → A ↠ B → A ↠ C
f ∘ g = record
{ logical-equivalence = logical-equivalence f ⊙ logical-equivalence g
; right-inverse-of = to∘from
}
where
open _↠_
abstract
to∘from : ∀ x → to f (to g (from g (from f x))) ≡ x
to∘from = λ x →
to f (to g (from g (from f x))) ≡⟨ cong (to f) (right-inverse-of g (from f x)) ⟩
to f (from f x) ≡⟨ right-inverse-of f x ⟩∎
x ∎
infix 0 finally-↠
infixr 0 _↠⟨_⟩_
_↠⟨_⟩_ : ∀ {a b c} (A : Set a) {B : Set b} {C : Set c} →
A ↠ B → B ↠ C → A ↠ C
_ ↠⟨ A↠B ⟩ B↠C = B↠C ∘ A↠B
finally-↠ : ∀ {a b} (A : Set a) (B : Set b) → A ↠ B → A ↠ B
finally-↠ _ _ A↠B = A↠B
syntax finally-↠ A B A↠B = A ↠⟨ A↠B ⟩□ B □
∃-cong : ∀ {a b₁ b₂} {A : Set a} {B₁ : A → Set b₁} {B₂ : A → Set b₂} →
(∀ x → B₁ x ↠ B₂ x) → ∃ B₁ ↠ ∃ B₂
∃-cong {B₁ = B₁} {B₂} B₁↠B₂ = record
{ logical-equivalence = record
{ to = to′
; from = from′
}
; right-inverse-of = right-inverse-of′
}
where
open _↠_
to′ : ∃ B₁ → ∃ B₂
to′ = Σ-map P.id (to (B₁↠B₂ _))
from′ : ∃ B₂ → ∃ B₁
from′ = Σ-map P.id (from (B₁↠B₂ _))
abstract
right-inverse-of′ : ∀ p → to′ (from′ p) ≡ p
right-inverse-of′ = λ p →
cong (_,_ (proj₁ p)) (right-inverse-of (B₁↠B₂ (proj₁ p)) _)
↠-≡ : ∀ {a b} {A : Set a} {B : Set b} (A↠B : A ↠ B) {x y : B} →
(_↠_.from A↠B x ≡ _↠_.from A↠B y) ↠ (x ≡ y)
↠-≡ A↠B {x} {y} = record
{ logical-equivalence = record
{ from = cong from
; to = to′
}
; right-inverse-of = right-inverse-of′
}
where
open _↠_ A↠B
to′ : from x ≡ from y → x ≡ y
to′ = λ from-x≡from-y →
x ≡⟨ sym $ right-inverse-of _ ⟩
to (from x) ≡⟨ cong to from-x≡from-y ⟩
to (from y) ≡⟨ right-inverse-of _ ⟩∎
y ∎
abstract
right-inverse-of′ : ∀ p → to′ (cong from p) ≡ p
right-inverse-of′ = elim
(λ {x y} x≡y → trans (sym (right-inverse-of x)) (
trans (cong to (cong from x≡y)) (
right-inverse-of y)) ≡
x≡y)
(λ x → trans (sym (right-inverse-of x)) (
trans (cong to (cong from (refl x))) (
right-inverse-of x)) ≡⟨ cong (λ p → trans (sym (right-inverse-of x))
(trans (cong to p) (right-inverse-of x)))
(cong-refl from) ⟩
trans (sym (right-inverse-of x)) (
trans (cong to (refl (from x))) (
right-inverse-of x)) ≡⟨ cong (λ p → trans (sym (right-inverse-of x))
(trans p (right-inverse-of x)))
(cong-refl to) ⟩
trans (sym (right-inverse-of x)) (
trans (refl (to (from x))) (
right-inverse-of x)) ≡⟨ cong (trans (sym _)) (trans-reflˡ _) ⟩
trans (sym (right-inverse-of x)) (right-inverse-of x) ≡⟨ trans-symˡ _ ⟩∎
refl x ∎)
Decidable-equality-respects :
∀ {a b} {A : Set a} {B : Set b} →
A ↠ B → Decidable-equality A → Decidable-equality B
Decidable-equality-respects A↠B _≟A_ x y =
⊎-map (to (↠-≡ A↠B))
(λ from-x≢from-y → from-x≢from-y ⊚ from (↠-≡ A↠B))
(from A↠B x ≟A from A↠B y)
where open _↠_