import lps.IMLL as IMLL
import lps.Linearity as Linearity
import lps.Linearity.Action as Action
import lps.Linearity.Consumption as Consumption
import lps.Search.BelongsTo as BelongsTo
import lps.Search.Calculus as Calculus
import lib.Context as Con
open import lib.Maybe
open import lib.Nullary
open import Data.Empty
open import Data.Product as Prod hiding (map)
open import Data.Nat as ℕ
open import Function
open import Relation.Nullary
open import Relation.Binary.PropositionalEquality as Eq using (_≡_)
module lps.Equivalence (Pr : Set) (_≟_ : (x y : Pr) → Dec (x ≡ y)) where
module BT = BelongsTo Pr _≟_
open Con
open Context
module CBT = Con.BelongsTo
open Pointwise
open IMLL Pr
open IMLL.Type Pr
open Linearity Pr
open Linearity.Context Pr
open Calculus Pr _≟_
open Calculus.Calculus Pr _≟_
module BTTU = BT.Type.Usage
open BT.Context
open Linearity.Type Pr
open Linearity.Type.Usage Pr
open Linearity.Type.Cover Pr
open Action Pr
open Action.Context Pr
open Action.Type.Usage Pr
open Action.Type.Cover Pr
open Consumption Pr
_⊗U_ : {σ τ : ty} (S : LT.Usage σ) (T : LT.Usage τ) → LT.Usage $ σ `⊗ τ
[ σ ] ⊗U [ τ ] = [ σ `⊗ τ ]
[ σ ] ⊗U ] T [ = ] [ σ ]`⊗ T [
] S [ ⊗U [ τ ] = ] S `⊗[ τ ] [
] S [ ⊗U ] T [ = ] S `⊗ T [
_isUsed⊗U_ : {σ τ : ty} {S : LT.Usage σ} {T : LT.Usage τ}
(prS : LTU.isUsed S) (prT : LTU.isUsed T) → LTU.isUsed $ S ⊗U T
] prS [ isUsed⊗U ] prT [ = ] prS `⊗ prT [
_&U[_] : {σ : ty} (S : LT.Usage σ) (τ : ty) → LT.Usage $ σ `& τ
[ σ ] &U[ τ ] = [ σ `& τ ]
] S [ &U[ τ ] = ] S `&[ τ ] [
[_]&U_ : (σ : ty) {τ : ty} (T : LT.Usage τ) → LT.Usage $ σ `& τ
[ σ ]&U [ τ ] = [ σ `& τ ]
[ σ ]&U ] T [ = ] [ σ ]`& T [
data ⟨_⟩Usage_ (h : ty) : (σ : ty) → Set where
⟨⟩ : ⟨ h ⟩Usage h
⟨_⟩`⊗_ : {σ τ : ty} (L : ⟨ h ⟩Usage σ) (R : LT.Usage τ) → ⟨ h ⟩Usage σ `⊗ τ
⟨_⟩`&[_] : {σ : ty} (L : ⟨ h ⟩Usage σ) (τ : ty) → ⟨ h ⟩Usage σ `& τ
_`⊗⟨_⟩ : {σ τ : ty} (L : LT.Usage σ) (R : ⟨ h ⟩Usage τ) → ⟨ h ⟩Usage σ `⊗ τ
[_]`&⟨_⟩ : (σ : ty) {τ : ty} (R : ⟨ h ⟩Usage τ) → ⟨ h ⟩Usage σ `& τ
_>>U_ : {h σ : ty} (H : LT.Usage h) (S : ⟨ h ⟩Usage σ) → LT.Usage σ
H >>U ⟨⟩ = H
H >>U ⟨ S ⟩`⊗ R = (H >>U S) ⊗U R
H >>U ⟨ S ⟩`&[ τ ] = (H >>U S) &U[ τ ]
H >>U L `⊗⟨ S ⟩ = L ⊗U (H >>U S)
H >>U [ σ ]`&⟨ S ⟩ = [ σ ]&U (H >>U S)
infix 3 ⟨_⟩Usages_
data ⟨_⟩Usages_ : (γ δ : Con ty) → Set where
ε : {δ : Con ty} (Δ : LC.Usage δ) → ⟨ ε ⟩Usages δ
_∙_ : {δ γ : Con ty} (Γ : ⟨ γ ⟩Usages δ) {h σ : ty} (S : ⟨ h ⟩Usage σ) → ⟨ γ ∙ h ⟩Usages δ ∙ σ
_∙′_ : {δ γ : Con ty} (Γ : ⟨ γ ⟩Usages δ) {σ : ty} (S : LT.Usage σ) → ⟨ γ ⟩Usages δ ∙ σ
_>>Us_ : {γ δ : Con ty} (Γ : LC.Usage γ) (Δ : ⟨ γ ⟩Usages δ) → LC.Usage δ
Γ >>Us ε Δ = Δ
(Γ ∙ H) >>Us (Δ ∙ S) = (Γ >>Us Δ) ∙ (H >>U S)
Γ >>Us (Δ ∙′ S) = (Γ >>Us Δ) ∙ S
_⊗⊙_ : {a b : ty} {A A₁ A₂ : LT.Usage a} {B B₁ B₂ : LT.Usage b}
(sca : A LAT.Usage.≡ A₁ ⊙ A₂) (scb : B LAT.Usage.≡ B₁ ⊙ B₂) →
A ⊗U B LAT.Usage.≡ A₁ ⊗U B₁ ⊙ A₂ ⊗U B₂
[ σ ] ⊗⊙ [ τ ] = [ σ `⊗ τ ]
[ σ ] ⊗⊙ ] prT [ = ] σ `⊗[ prT ] [
] prS [ ⊗⊙ [ τ ] = ] [ prS ]`⊗ τ [
] prS [ ⊗⊙ ] prT [ = ] prS `⊗ prT [
_&⊙[_] : {a : ty} {A A₁ A₂ : LT.Usage a} (sca : A LAT.Usage.≡ A₁ ⊙ A₂) (b : ty) →
A &U[ b ] LAT.Usage.≡ A₁ &U[ b ] ⊙ A₂ &U[ b ]
[ σ ] &⊙[ τ ] = [ σ `& τ ]
] prS [ &⊙[ τ ] = ] prS `&[ τ ] [
[_]&⊙_ : (a : ty) {b : ty} {B B₁ B₂ : LT.Usage b} (scb : B LAT.Usage.≡ B₁ ⊙ B₂) →
[ a ]&U B LAT.Usage.≡ [ a ]&U B₁ ⊙ [ a ]&U B₂
[ σ ]&⊙ [ τ ] = [ σ `& τ ]
[ σ ]&⊙ ] prT [ = ] [ σ ]`& prT [
⟨_⟩⊙C_ : {h σ : ty} (H : ⟨ h ⟩Usage σ) {S S₁ S₂ : LT.Usage h} (sc : S LAT.Usage.≡ S₁ ⊙ S₂) →
S >>U H LAT.Usage.≡ S₁ >>U H ⊙ S₂ >>U H
⟨ ⟨⟩ ⟩⊙C sc = sc
⟨ ⟨ H ⟩`⊗ R ⟩⊙C sc = ⟨ H ⟩⊙C sc ⊗⊙ LAT.Usage.⊙-refl R
⟨ ⟨ H ⟩`&[ τ ] ⟩⊙C sc = (⟨ H ⟩⊙C sc) &⊙[ τ ]
⟨ L `⊗⟨ H ⟩ ⟩⊙C sc = LAT.Usage.⊙-refl L ⊗⊙ ⟨ H ⟩⊙C sc
⟨ [ σ ]`&⟨ H ⟩ ⟩⊙C sc = [ σ ]&⊙ ⟨ H ⟩⊙C sc
⟨_⟩⊙Con_ : {γ δ : Con ty} (Δ : ⟨ γ ⟩Usages δ) {Γ Γ₁ Γ₂ : LC.Usage γ} (sc : Γ LAC.≡ Γ₁ ⊙ Γ₂) →
Γ >>Us Δ LAC.≡ Γ₁ >>Us Δ ⊙ Γ₂ >>Us Δ
⟨ Δ ∙′ S ⟩⊙Con sc = ⟨ Δ ⟩⊙Con sc ∙ LAT.Usage.⊙-refl S
⟨ ε Δ ⟩⊙Con ε = LAC.⊙-refl Δ
⟨ Δ ∙ S ⟩⊙Con (sc ∙ pr) = ⟨ Δ ⟩⊙Con sc ∙ ⟨ S ⟩⊙C pr
open BT.Type.Cover.FromDented
open BT.Type.Cover.FromFree
open BTTU
_∈U⊗_ : {k : Pr} {σ τ : ty} {S₁ S₂ : LT.Usage σ} (var : S₁ BTTU.∋ k ∈ S₂) (T : LT.Usage τ) →
S₁ ⊗U T BTTU.∋ k ∈ S₂ ⊗U T
[ prS ] ∈U⊗ [ τ ] = [ prS `⊗ˡ τ ]
[ prS ] ∈U⊗ ] T [ = ] [ prS ]`⊗ˡ T [
] prS [ ∈U⊗ [ τ ] = ] prS `⊗[ τ ] [
] prS [ ∈U⊗ ] T [ = ] prS `⊗ˡ T [
_∈U&[_] : {k : Pr} {σ : ty} {S₁ S₂ : LT.Usage σ} (var : S₁ BTTU.∋ k ∈ S₂) (τ : ty) →
S₁ &U[ τ ] BTTU.∋ k ∈ S₂ &U[ τ ]
[ prS ] ∈U&[ τ ] = [ prS `&ˡ τ ]
] prS [ ∈U&[ τ ] = ] prS `&ˡ τ [
_⊗∈U_ : {k : Pr} {σ : ty} (S : LT.Usage σ) {τ : ty} {T₁ T₂ : LT.Usage τ} (var : T₁ BTTU.∋ k ∈ T₂) →
S ⊗U T₁ BTTU.∋ k ∈ S ⊗U T₂
[ σ ] ⊗∈U [ var ] = [ σ `⊗ʳ var ]
[ σ ] ⊗∈U ] var [ = ] [ σ ]`⊗ var [
] S [ ⊗∈U [ var ] = ] S `⊗ʳ[ var ] [
] S [ ⊗∈U ] var [ = ] S `⊗ʳ var [
[_]&∈U_ : {k : Pr} (σ : ty) {τ : ty} {T₁ T₂ : LT.Usage τ} (var : T₁ BTTU.∋ k ∈ T₂) →
[ σ ]&U T₁ BTTU.∋ k ∈ [ σ ]&U T₂
[ σ ]&∈U [ var ] = [ σ `&ʳ var ]
[ σ ]&∈U ] var [ = ] σ `&ʳ var [
⟨_⟩∈U_ : {k : Pr} {h σ : ty} (S : ⟨ h ⟩Usage σ) {H₁ H₂ : LT.Usage h} (var : H₁ BTTU.∋ k ∈ H₂) →
H₁ >>U S BTTU.∋ k ∈ H₂ >>U S
⟨ ⟨⟩ ⟩∈U var = var
⟨ ⟨ S ⟩`⊗ R ⟩∈U var = (⟨ S ⟩∈U var) ∈U⊗ R
⟨ ⟨ S ⟩`&[ τ ] ⟩∈U var = (⟨ S ⟩∈U var) ∈U&[ τ ]
⟨ L `⊗⟨ S ⟩ ⟩∈U var = L ⊗∈U ⟨ S ⟩∈U var
⟨ [ σ ]`&⟨ S ⟩ ⟩∈U var = [ σ ]&∈U ⟨ S ⟩∈U var
⟨_⟩∈_ : {k : Pr} {γ δ : Con ty} (Δ : ⟨ γ ⟩Usages δ) {Γ₁ Γ₂ : LC.Usage γ} (var : Γ₁ BTC.∋ k ∈ Γ₂) →
Γ₁ >>Us Δ BTC.∋ k ∈ Γ₂ >>Us Δ
⟨ ε _ ⟩∈ ()
⟨ Δ ∙′ S ⟩∈ var = suc (⟨ Δ ⟩∈ var)
⟨ Δ ∙ S ⟩∈ zro var = zro (⟨ S ⟩∈U var)
⟨ Δ ∙ S ⟩∈ suc var = suc (⟨ Δ ⟩∈ var)
⟨_⟩⊢_ : {τ : ty} {γ δ : Con ty} (Δ : ⟨ γ ⟩Usages δ) {Γ₁ Γ₂ : LC.Usage γ} (tm : Γ₁ ⊢ τ ⊣ Γ₂) →
Γ₁ >>Us Δ ⊢ τ ⊣ Γ₂ >>Us Δ
⟨ Δ ⟩⊢ `κ var = `κ (⟨ Δ ⟩∈ var)
⟨ Δ ⟩⊢ (tm₁ `⊗ʳ tm₂) = (⟨ Δ ⟩⊢ tm₁) `⊗ʳ (⟨ Δ ⟩⊢ tm₂)
⟨ Δ ⟩⊢ (tm₁ `&ʳ tm₂ by pr) = (⟨ Δ ⟩⊢ tm₁) `&ʳ ⟨ Δ ⟩⊢ tm₂ by ⟨ Δ ⟩⊙Con pr
axiom : (σ : ty) → Σ[ S ∈ Cover σ ] LTC.isUsed S × (inj[ ε ∙ σ ] ⊢ σ ⊣ ε ∙ ] S [)
axiom (`κ k) = `κ k , `κ k , `κ (zro [ `κ ])
axiom (σ `⊗ τ) =
let (S₁ , U₁ , tm₁) = axiom σ
(S₂ , U₂ , tm₂) = axiom τ
wkTm₁ = ⟨ ε ε ∙ ⟨ ⟨⟩ ⟩`⊗ [ τ ] ⟩⊢ tm₁
wkTm₂ = ⟨ ε ε ∙ ( ] S₁ [ `⊗⟨ ⟨⟩ ⟩) ⟩⊢ tm₂
in S₁ `⊗ S₂ , U₁ `⊗ U₂ , wkTm₁ `⊗ʳ wkTm₂
axiom (σ `& τ) =
let (S₁ , U₁ , tm₁) = axiom σ
(S₂ , U₂ , tm₂) = axiom τ
wkTm₁ = ⟨ ε ε ∙ ⟨ ⟨⟩ ⟩`&[ τ ] ⟩⊢ tm₁
wkTm₂ = ⟨ ε ε ∙ [ σ ]`&⟨ ⟨⟩ ⟩ ⟩⊢ tm₂
in σ `& τ , σ `& τ , wkTm₁ `&ʳ wkTm₂ by (ε ∙ ] ] U₁ [`&] U₂ [ [)
⟨_⟩Usages-refl : (γ : Con ty) → ⟨ γ ⟩Usages γ
⟨ ε ⟩Usages-refl = ε ε
⟨ γ ∙ σ ⟩Usages-refl = ⟨ γ ⟩Usages-refl ∙ ⟨⟩
Usages-refl : (γ : Con ty) (Γ : LC.Usage γ) → Γ >>Us ⟨ γ ⟩Usages-refl ≡ Γ
Usages-refl .ε ε = Eq.refl
Usages-refl ._ (Γ ∙ S) rewrite Usages-refl _ Γ = Eq.refl
split₁ : {σ τ : ty} {γ : Con ty} (var : σ `& τ BelongsTo.∈ γ) → ⟨ split-&₁ var ⟩Usages γ
split₁ CBT.zro = ⟨ _ ⟩Usages-refl ∙ ⟨ ⟨⟩ ⟩`&[ _ ]
split₁ (CBT.suc var) = split₁ var ∙ ⟨⟩
split₁-eq : {γ : Con ty} {σ τ : ty} (var : σ `& τ BelongsTo.∈ γ) →
inj[ split-&₁ var ] >>Us split₁ var ≡ inj[ γ ]
split₁-eq {γ ∙ σ `& τ} CBT.zro rewrite Usages-refl γ (inj[ γ ]) = Eq.refl
split₁-eq (CBT.suc var) rewrite split₁-eq var = Eq.refl
split₁IsUsed : {σ τ : ty} {γ : Con ty} (var : σ `& τ CBT.∈ γ) {Γ : LC.Usage (split-&₁ var)}
(pr : LC.isUsed Γ) → LC.isUsed $ Γ >>Us split₁ var
split₁IsUsed CBT.zro (prΓ ∙ ] prS [) = Eq.subst LC.isUsed (Eq.sym $ Usages-refl _ _) prΓ ∙ ] prS `&[ _ ] [
split₁IsUsed (CBT.suc var) (prΓ ∙ prS) = split₁IsUsed var prΓ ∙ prS
split₂ : {σ τ : ty} {γ : Con ty} (var : σ `& τ BelongsTo.∈ γ) → ⟨ split-&₂ var ⟩Usages γ
split₂ CBT.zro = ⟨ _ ⟩Usages-refl ∙ [ _ ]`&⟨ ⟨⟩ ⟩
split₂ (CBT.suc var) = split₂ var ∙ ⟨⟩
split₂-eq : {γ : Con ty} {σ τ : ty} (var : σ `& τ BelongsTo.∈ γ) →
inj[ split-&₂ var ] >>Us split₂ var ≡ inj[ γ ]
split₂-eq {γ ∙ σ `& τ} CBT.zro rewrite Usages-refl γ (inj[ γ ]) = Eq.refl
split₂-eq (CBT.suc var) rewrite split₂-eq var = Eq.refl
split₂IsUsed : {σ τ : ty} {γ : Con ty} (var : σ `& τ CBT.∈ γ) {Γ : LC.Usage (split-&₂ var)}
(pr : LC.isUsed Γ) → LC.isUsed $ Γ >>Us split₂ var
split₂IsUsed CBT.zro (prΓ ∙ ] prS [) = Eq.subst LC.isUsed (Eq.sym $ Usages-refl _ _) prΓ ∙ ] [ _ ]`& prS [
split₂IsUsed (CBT.suc var) (prΓ ∙ prS) = split₂IsUsed var prΓ ∙ prS
isUsed⊙Cov : {σ : ty} {S₁ S₂ : Cover σ} (U₁ : LTC.isUsed S₁) (U₂ : LTC.isUsed S₂) →
Σ[ S ∈ LT.Cover σ ] LTC.isUsed S × S LAT.Cover.≡ S₁ ⊙ S₂
isUsed⊙Cov (`κ k) (`κ .k) = `κ k , `κ k , `κ k
isUsed⊙Cov (S₁ `⊗ T₁) (S₂ `⊗ T₂) =
let (S , US , Ssc) = isUsed⊙Cov S₁ S₂
(T , UT , Tsc) = isUsed⊙Cov T₁ T₂
in S `⊗ T , US `⊗ UT , Ssc `⊗ Tsc
isUsed⊙Cov (a `& b) (.a `& .b) = a `& b , a `& b , a `& b
isUsed⊙Cov (a `& b) (U₂ `&[ .b ]) = a `& b , a `& b , sym `&] U₂ [
isUsed⊙Cov (a `& b) ([ .a ]`& U₂) = a `& b , a `& b , sym ] U₂ [`&
isUsed⊙Cov (U₁ `&[ b ]) (a `& .b) = a `& b , a `& b , `&] U₁ [
isUsed⊙Cov (U₁ `&[ b ]) (U₂ `&[ .b ]) =
let (S , U , sc) = isUsed⊙Cov U₁ U₂
in S `&[ b ] , U `&[ b ] , sc `&[ b ]
isUsed⊙Cov (U₁ `&[ b ]) ([ a ]`& U₂) = a `& b , a `& b , ] U₁ [`&] U₂ [
isUsed⊙Cov ([ a ]`& U₁) (.a `& b) = a `& b , a `& b , ] U₁ [`&
isUsed⊙Cov ([ a ]`& U₁) (U₂ `&[ b ]) = a `& b , a `& b , sym ] U₂ [`&] U₁ [
isUsed⊙Cov ([ a ]`& U₁) ([ .a ]`& U₂) =
let (S , U , sc) = isUsed⊙Cov U₁ U₂
in [ a ]`& S , [ a ]`& U , [ a ]`& sc
isUsed⊙Con : {γ : Con ty} {Γ₁ Γ₂ : LC.Usage γ} (U₁ : LC.isUsed Γ₁) (U₂ : LC.isUsed Γ₂) →
Σ[ Γ ∈ LC.Usage γ ] LC.isUsed Γ × Γ LAC.≡ Γ₁ ⊙ Γ₂
isUsed⊙Con ε ε = ε , ε , ε
isUsed⊙Con (U₁ ∙ ] S₁ [) (U₂ ∙ ] S₂ [) =
let (Γ , UΓ , Γsc) = isUsed⊙Con U₁ U₂
(S , US , Ssc) = isUsed⊙Cov S₁ S₂
in Γ ∙ ] S [ , UΓ ∙ ] US [ , Γsc ∙ ] Ssc [
open Interleaving
merge : {γ δ e : Con ty} (mg : γ ≡ δ ⋈ e) (Δ : LC.Usage δ) (E : LC.Usage e) →
⟨ δ ⟩Usages γ × ⟨ e ⟩Usages γ
merge ε Δ E = ε ε , ε ε
merge (mg ∙ʳ σ) Δ (E ∙ S) = Prod.map (λ Γ → Γ ∙′ S) (λ Γ → Γ ∙ ⟨⟩) $ merge mg Δ E
merge (mg ∙ˡ σ) (Δ ∙ S) E = Prod.map (λ Γ → Γ ∙ ⟨⟩) (λ Γ → Γ ∙′ S) $ merge mg Δ E
merge-eq : {γ δ e : Con ty} (mg : γ ≡ δ ⋈ e) (Δ : LC.Usage δ) (E : LC.Usage e) →
let (H₁ , H₂) = merge mg Δ E in E >>Us H₂ ≡ Δ >>Us H₁
merge-eq ε Δ E = Eq.refl
merge-eq (mg ∙ʳ σ) Δ (E ∙ S) = Eq.cong₂ _∙_ (merge-eq mg Δ E) Eq.refl
merge-eq (mg ∙ˡ σ) (Δ ∙ S) E = Eq.cong₂ _∙_ (merge-eq mg Δ E) Eq.refl
merge-inj : {γ δ e : Con ty} (mg : γ ≡ δ ⋈ e) (Δ : LC.Usage δ) →
inj[ δ ] >>Us proj₁ (merge mg Δ inj[ e ]) ≡ inj[ γ ]
merge-inj ε Δ = Eq.refl
merge-inj (mg ∙ʳ σ) Δ = Eq.cong₂ _∙_ (merge-inj mg Δ) Eq.refl
merge-inj (mg ∙ˡ σ) (Δ ∙ S) = Eq.cong₂ _∙_ (merge-inj mg Δ) Eq.refl
mergeIsUsed : {γ δ e : Con ty} (mg : γ ≡ δ ⋈ e)
{Δ : LC.Usage δ} (prΔ : LC.isUsed Δ) {E : LC.Usage e} (prE : LC.isUsed E) →
LC.isUsed $ E >>Us proj₂ (merge mg Δ inj[ e ])
mergeIsUsed ε prΔ prE = ε
mergeIsUsed (mg ∙ʳ σ) prΔ (prE ∙ prS) = mergeIsUsed mg prΔ prE ∙ prS
mergeIsUsed (mg ∙ˡ σ) (prΔ ∙ prS) prE = mergeIsUsed mg prΔ prE ∙ prS
Usage-split-⊗⁻¹ : {γ : Con ty} {σ τ : ty} (var : σ `⊗ τ CBT.∈ γ) (Γ : LC.Usage $ split-⊗ var) → LC.Usage γ
Usage-split-⊗⁻¹ CBT.zro (Γ ∙ S ∙ T) = Γ ∙ (S ⊗U T)
Usage-split-⊗⁻¹ (CBT.suc var) (Γ ∙ S) = Usage-split-⊗⁻¹ var Γ ∙ S
∋∈-split-⊗⁻¹ : {γ : Con ty} {σ τ : ty} {k : Pr} (var : σ `⊗ τ CBT.∈ γ) {Γ Δ : LC.Usage $ split-⊗ var}
(tm : Γ BTC.∋ k ∈ Δ) → Usage-split-⊗⁻¹ var Γ BTC.∋ k ∈ Usage-split-⊗⁻¹ var Δ
∋∈-split-⊗⁻¹ CBT.zro {Γ = Γ ∙ S₁ ∙ T₁} (BTC.zro pr) = BTC.zro (S₁ ⊗∈U pr)
∋∈-split-⊗⁻¹ CBT.zro (BTC.suc (BTC.zro pr)) = BTC.zro (pr ∈U⊗ _)
∋∈-split-⊗⁻¹ CBT.zro (BTC.suc (BTC.suc tm)) = BTC.suc tm
∋∈-split-⊗⁻¹ (CBT.suc var) (BTC.zro pr) = BTC.zro pr
∋∈-split-⊗⁻¹ (CBT.suc var) (BTC.suc tm) = BTC.suc (∋∈-split-⊗⁻¹ var tm)
⊙-split-⊗⁻¹ : {γ : Con ty} {σ τ : ty} (var : σ `⊗ τ CBT.∈ γ)
{Γ Γ₁ Γ₂ : LC.Usage $ split-⊗ var} (sc : Γ LAC.≡ Γ₁ ⊙ Γ₂) →
Usage-split-⊗⁻¹ var Γ LAC.≡ Usage-split-⊗⁻¹ var Γ₁ ⊙ Usage-split-⊗⁻¹ var Γ₂
⊙-split-⊗⁻¹ CBT.zro (sc ∙ scS ∙ scT) = sc ∙ (scS ⊗⊙ scT)
⊙-split-⊗⁻¹ (CBT.suc var) (sc ∙ scS) = ⊙-split-⊗⁻¹ var sc ∙ scS
⊢⊣-split-⊗⁻¹ : {γ : Con ty} {σ τ υ : ty} (var : σ `⊗ τ CBT.∈ γ) {Γ Δ : LC.Usage $ split-⊗ var}
(tm : Γ ⊢ υ ⊣ Δ) → Usage-split-⊗⁻¹ var Γ ⊢ υ ⊣ Usage-split-⊗⁻¹ var Δ
⊢⊣-split-⊗⁻¹ var (`κ pr) = `κ (∋∈-split-⊗⁻¹ var pr)
⊢⊣-split-⊗⁻¹ var (tm₁ `⊗ʳ tm₂) = ⊢⊣-split-⊗⁻¹ var tm₁ `⊗ʳ ⊢⊣-split-⊗⁻¹ var tm₂
⊢⊣-split-⊗⁻¹ var (tm₁ `&ʳ tm₂ by sc) = ⊢⊣-split-⊗⁻¹ var tm₁ `&ʳ ⊢⊣-split-⊗⁻¹ var tm₂ by ⊙-split-⊗⁻¹ var sc
split-⊗⁻¹-inj : {γ : Con ty} {σ τ : ty} (var : σ `⊗ τ CBT.∈ γ) →
Usage-split-⊗⁻¹ var (inj[ split-⊗ var ]) ≡ inj[ γ ]
split-⊗⁻¹-inj CBT.zro = Eq.refl
split-⊗⁻¹-inj (CBT.suc var) = Eq.cong₂ _∙_ (split-⊗⁻¹-inj var) Eq.refl
split-⊗⁻¹IsUsed : {γ : Con ty} {σ τ : ty} (var : σ `⊗ τ CBT.∈ γ) {Γ : LC.Usage $ split-⊗ var}
(pr : LC.isUsed Γ) → LC.isUsed $ Usage-split-⊗⁻¹ var Γ
split-⊗⁻¹IsUsed CBT.zro (prΓ ∙ prS ∙ prT) = prΓ ∙ (prS isUsed⊗U prT)
split-⊗⁻¹IsUsed (CBT.suc var) (prΓ ∙ prS) = split-⊗⁻¹IsUsed var prΓ ∙ prS
complete : {γ : Con ty} {σ : ty} (tm : γ ⊢ σ) →
Σ[ Γ ∈ LC.Usage γ ] (LC.isUsed Γ) × (inj[ γ ] ⊢ σ ⊣ Γ)
complete {σ = σ} `v =
let (S , U , tm) = axiom σ
in ε ∙ ] S [ , ε ∙ ] U [ , tm
complete {σ = σ} (var `⊗ˡ tm) =
let (Δ , U , tm) = complete tm
Δ′ = Usage-split-⊗⁻¹ var Δ
tm′ = Eq.subst (λ Γ → Γ ⊢ σ ⊣ Δ′) (split-⊗⁻¹-inj var) (⊢⊣-split-⊗⁻¹ var tm)
in Δ′ , split-⊗⁻¹IsUsed var U , tm′
complete {γ} {σ} (var `&ˡ₁ tm) =
let (Γ , U , tm) = complete tm
Γ′ = Γ >>Us split₁ var
U′ = split₁IsUsed var U
in Γ′ , U′ , Eq.subst (λ Γ → Γ ⊢ σ ⊣ Γ′) (split₁-eq var) (⟨ split₁ var ⟩⊢ tm)
complete {γ} {σ} (var `&ˡ₂ tm) =
let (Γ , U , tm) = complete tm
Γ′ = Γ >>Us split₂ var
U′ = split₂IsUsed var U
in Γ′ , U′ , Eq.subst (λ Γ → Γ ⊢ σ ⊣ Γ′) (split₂-eq var) (⟨ split₂ var ⟩⊢ tm)
complete {γ} {σ `⊗ τ} (tm₁ `⊗ʳ tm₂ by mg) =
let (Γ₁ , U₁ , tm₁) = complete tm₁
(Γ₂ , U₂ , tm₂) = complete tm₂
(H₁ , H₂) = merge mg Γ₁ inj[ _ ]
tm₁ = Eq.subst (λ Γ → Γ ⊢ σ ⊣ Γ₁ >>Us H₁) (merge-inj mg Γ₁) (⟨ H₁ ⟩⊢ tm₁)
tm₂ = Eq.subst (λ Δ → Δ ⊢ τ ⊣ Γ₂ >>Us H₂) (merge-eq mg Γ₁ inj[ _ ]) (⟨ H₂ ⟩⊢ tm₂)
U = mergeIsUsed mg U₁ U₂
in Γ₂ >>Us H₂ , U , tm₁ `⊗ʳ tm₂
complete (tm₁ `&ʳ tm₂) =
let (Γ₁ , U₁ , tm₁) = complete tm₁
(Γ₂ , U₂ , tm₂) = complete tm₂
(Γ , U , sc) = isUsed⊙Con U₁ U₂
in Γ , U , tm₁ `&ʳ tm₂ by sc
⊢-dec : (γ : Con ty) (σ : ty) → Dec $ γ ⊢ σ
⊢-dec γ σ with ⊢⊣-dec inj[ γ ] σ
... | no ¬p = no (¬p ∘ complete)
... | yes (Γ , U , tm) =
let (E , d , pr) = Soundness.Context.⟦ tm ⟧
in yes (LC.⟦isUsed⟧ (LCC.isUsed-diff U d) pr)