------------------------------------------------------------------------
-- The Agda standard library
--
-- Comonads
------------------------------------------------------------------------

-- Note that currently the monad laws are not included here.

{-# OPTIONS --without-K --safe #-}

module Category.Comonad where

open import Level
open import Function

record RawComonad {f} (W : Set f  Set f) : Set (suc f) where

  infixl 1 _=>>_ _=>=_
  infixr 1 _<<=_ _=<=_

  field
    extract :  {A}  W A  A
    extend  :  {A B}  (W A  B)  (W A  W B)

  duplicate :  {A}  W A  W (W A)
  duplicate = extend id

  liftW :  {A B}  (A  B)  W A  W B
  liftW f = extend (f ∘′ extract)

  _=>>_ :  {A B}  W A  (W A  B)  W B
  _=>>_ = flip extend

  _=>=_ :  {c A B} {C : Set c}  (W A  B)  (W B  C)  W A  C
  f =>= g = g ∘′ extend f

  _<<=_ :  {A B}  (W A  B)  W A  W B
  _<<=_ = extend

  _=<=_ :  {A B c} {C : Set c}  (W B  C)  (W A  B)  W A  C
  _=<=_ = flip _=>=_