{-# OPTIONS --without-K --safe #-}
module Category.Comonad where
open import Level
open import Function
record RawComonad {f} (W : Set f → Set f) : Set (suc f) where
infixl 1 _=>>_ _=>=_
infixr 1 _<<=_ _=<=_
field
extract : ∀ {A} → W A → A
extend : ∀ {A B} → (W A → B) → (W A → W B)
duplicate : ∀ {A} → W A → W (W A)
duplicate = extend id
liftW : ∀ {A B} → (A → B) → W A → W B
liftW f = extend (f ∘′ extract)
_=>>_ : ∀ {A B} → W A → (W A → B) → W B
_=>>_ = flip extend
_=>=_ : ∀ {c A B} {C : Set c} → (W A → B) → (W B → C) → W A → C
f =>= g = g ∘′ extend f
_<<=_ : ∀ {A B} → (W A → B) → W A → W B
_<<=_ = extend
_=<=_ : ∀ {A B c} {C : Set c} → (W B → C) → (W A → B) → W A → C
_=<=_ = flip _=>=_