{-# OPTIONS --without-K --safe #-}
module Relation.Binary.PropositionalEquality.Core where
open import Data.Product using (_,_)
open import Function.Core using (_∘_)
open import Level
open import Relation.Binary.Core
open import Relation.Binary.Definitions
open import Relation.Nullary using (¬_)
private
variable
a b ℓ : Level
A : Set a
B : Set b
open import Agda.Builtin.Equality public
infix 4 _≢_
_≢_ : {A : Set a} → Rel A a
x ≢ y = ¬ x ≡ y
sym : Symmetric {A = A} _≡_
sym refl = refl
trans : Transitive {A = A} _≡_
trans refl eq = eq
subst : Substitutive {A = A} _≡_ ℓ
subst P refl p = p
cong : ∀ (f : A → B) {x y} → x ≡ y → f x ≡ f y
cong f refl = refl
respˡ : ∀ (∼ : Rel A ℓ) → ∼ Respectsˡ _≡_
respˡ _∼_ refl x∼y = x∼y
respʳ : ∀ (∼ : Rel A ℓ) → ∼ Respectsʳ _≡_
respʳ _∼_ refl x∼y = x∼y
resp₂ : ∀ (∼ : Rel A ℓ) → ∼ Respects₂ _≡_
resp₂ _∼_ = respʳ _∼_ , respˡ _∼_
trans-reflʳ : ∀ {x y : A} (p : x ≡ y) → trans p refl ≡ p
trans-reflʳ refl = refl
trans-assoc : ∀ {x y z u : A} (p : x ≡ y) {q : y ≡ z} {r : z ≡ u} →
trans (trans p q) r ≡ trans p (trans q r)
trans-assoc refl = refl
trans-symˡ : ∀ {x y : A} (p : x ≡ y) → trans (sym p) p ≡ refl
trans-symˡ refl = refl
trans-symʳ : ∀ {x y : A} (p : x ≡ y) → trans p (sym p) ≡ refl
trans-symʳ refl = refl
≢-sym : Symmetric {A = A} _≢_
≢-sym x≢y = x≢y ∘ sym
module ≡-Reasoning {A : Set a} where
infix 3 _∎
infixr 2 _≡⟨⟩_ _≡⟨_⟩_ _≡˘⟨_⟩_
infix 1 begin_
begin_ : ∀{x y : A} → x ≡ y → x ≡ y
begin_ x≡y = x≡y
_≡⟨⟩_ : ∀ (x {y} : A) → x ≡ y → x ≡ y
_ ≡⟨⟩ x≡y = x≡y
_≡⟨_⟩_ : ∀ (x {y z} : A) → x ≡ y → y ≡ z → x ≡ z
_ ≡⟨ x≡y ⟩ y≡z = trans x≡y y≡z
_≡˘⟨_⟩_ : ∀ (x {y z} : A) → y ≡ x → y ≡ z → x ≡ z
_ ≡˘⟨ y≡x ⟩ y≡z = trans (sym y≡x) y≡z
_∎ : ∀ (x : A) → x ≡ x
_∎ _ = refl