{-# OPTIONS --without-K --safe #-}
module Relation.Nullary.Decidable where
open import Level using (Level)
open import Function.Core
open import Function.Equality    using (_⟨$⟩_; module Π)
open import Function.Equivalence using (_⇔_; equivalence; module Equivalence)
open import Function.Injection   using (Injection; module Injection)
open import Relation.Binary      using (Setoid; module Setoid; Decidable)
open import Relation.Nullary
private
  variable
    p q : Level
    P : Set p
    Q : Set q
open import Relation.Nullary.Decidable.Core public
map : P ⇔ Q → Dec P → Dec Q
map P⇔Q (yes p) = yes (Equivalence.to P⇔Q ⟨$⟩ p)
map P⇔Q (no ¬p) = no (¬p ∘ _⟨$⟩_ (Equivalence.from P⇔Q))
map′ : (P → Q) → (Q → P) → Dec P → Dec Q
map′ P→Q Q→P = map (equivalence P→Q Q→P)
module _ {a₁ a₂ b₁ b₂} {A : Setoid a₁ a₂} {B : Setoid b₁ b₂} where
  open Injection
  open Setoid A using () renaming (_≈_ to _≈A_)
  open Setoid B using () renaming (_≈_ to _≈B_)
  
  
  
  via-injection : Injection A B → Decidable _≈B_ → Decidable _≈A_
  via-injection inj dec x y with dec (to inj ⟨$⟩ x) (to inj ⟨$⟩ y)
  ... | yes injx≈injy = yes (Injection.injective inj injx≈injy)
  ... | no  injx≉injy = no (λ x≈y → injx≉injy (Π.cong (to inj) x≈y))