------------------------------------------------------------------------
-- The Agda standard library
--
-- Arguments used in the reflection machinery
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

module Reflection.AST.Argument where

open import Data.List.Base as List using (List; []; _∷_)
open import Data.Product using (_×_; _,_; uncurry; <_,_>)
open import Data.Nat using ()
open import Reflection.AST.Argument.Visibility
open import Reflection.AST.Argument.Relevance
open import Reflection.AST.Argument.Quantity
open import Reflection.AST.Argument.Modality
open import Reflection.AST.Argument.Information as Information
open import Relation.Nullary
import Relation.Nullary.Decidable as Dec
open import Relation.Nullary.Product using (_×-dec_)
open import Relation.Binary
open import Relation.Binary.PropositionalEquality
open import Level

private
  variable
    a b : Level
    A B : Set a
    i j : ArgInfo
    x y : A

------------------------------------------------------------------------
-- Re-exporting the builtins publicly

open import Agda.Builtin.Reflection public using (Arg)
open Arg public

-- Pattern synonyms

pattern defaultModality = modality relevant quantity-ω

pattern vArg ty = arg (arg-info visible   defaultModality) ty
pattern hArg ty = arg (arg-info hidden    defaultModality) ty
pattern iArg ty = arg (arg-info instance′ defaultModality) ty

------------------------------------------------------------------------
-- Lists of arguments

Args : (A : Set a)  Set a
Args A = List (Arg A)

-- Pattern for appending a visible argument
infixr 5 _⟨∷⟩_
pattern _⟨∷⟩_ x args = vArg x  args

-- Pattern for appending a hidden argument
infixr 5 _⟅∷⟆_
pattern _⟅∷⟆_ x args = hArg x  args

------------------------------------------------------------------------
-- Operations

map : (A  B)  Arg A  Arg B
map f (arg i x) = arg i (f x)

map-Args : (A  B)  Args A  Args B
map-Args f xs = List.map (map f) xs

------------------------------------------------------------------------
-- Decidable equality

arg-injective₁ : arg i x  arg j y  i  j
arg-injective₁ refl = refl

arg-injective₂ : arg i x  arg j y  x  y
arg-injective₂ refl = refl

arg-injective : arg i x  arg j y  i  j × x  y
arg-injective = < arg-injective₁ , arg-injective₂ >

-- We often need decidability of equality for Arg A when implementing it
-- for A. Unfortunately ≡-dec makes the termination checker unhappy.
-- Instead, we can match on both Arg A and use unArg-dec for an obviously
-- decreasing recursive call.

unArg : Arg A  A
unArg (arg i a) = a

unArg-dec : {arg1 arg2 : Arg A}  Dec (unArg arg1  unArg arg2)  Dec (arg1  arg2)
unArg-dec {arg1 = arg i x} {arg j y} arg1≟arg2 =
  Dec.map′ (uncurry (cong₂ arg)) arg-injective (i Information.≟ j ×-dec arg1≟arg2)

≡-dec : DecidableEquality A  DecidableEquality (Arg A)
≡-dec _≟_ x y = unArg-dec (unArg x  unArg y)