------------------------------------------------------------------------
-- The Agda standard library
--
-- The basic code for equational reasoning with a single relation
------------------------------------------------------------------------
{-# OPTIONS --cubical-compatible --safe #-}
open import Relation.Binary
module Relation.Binary.Reasoning.Base.Single
{a ℓ} {A : Set a} (_∼_ : Rel A ℓ)
(refl : Reflexive _∼_) (trans : Transitive _∼_)
where
-- TODO: the following part is copied from Relation.Binary.Reasoning.Base.Partial
-- in order to avoid larger refactors. We will refactor this part later
-- so taht we use the same framework as Relation.Binary.Reasoning.Base.Partial.
open import Level using (_⊔_)
open import Relation.Binary.PropositionalEquality.Core as P
using (_≡_)
infix 4 _IsRelatedTo_
------------------------------------------------------------------------
-- Definition of "related to"
-- This seemingly unnecessary type is used to make it possible to
-- infer arguments even if the underlying equality evaluates.
data _IsRelatedTo_ (x y : A) : Set ℓ where
relTo : (x∼y : x ∼ y) → x IsRelatedTo y
------------------------------------------------------------------------
-- Reasoning combinators
-- Note that the arguments to the `step`s are not provided in their
-- "natural" order and syntax declarations are later used to re-order
-- them. This is because the `step` ordering allows the type-checker to
-- better infer the middle argument `y` from the `_IsRelatedTo_`
-- argument (see issue 622).
--
-- This has two practical benefits. First it speeds up type-checking by
-- approximately a factor of 5. Secondly it allows the combinators to be
-- used with macros that use reflection, e.g. `Tactic.RingSolver`, where
-- they need to be able to extract `y` using reflection.
infix 1 begin_
infixr 2 step-∼ step-≡ step-≡˘
infixr 2 _≡⟨⟩_
infix 3 _∎
-- Beginning of a proof
begin_ : ∀ {x y} → x IsRelatedTo y → x ∼ y
begin relTo x∼y = x∼y
-- Standard step with the relation
step-∼ : ∀ x {y z} → y IsRelatedTo z → x ∼ y → x IsRelatedTo z
step-∼ _ (relTo y∼z) x∼y = relTo (trans x∼y y∼z)
-- Step with a non-trivial propositional equality
step-≡ : ∀ x {y z} → y IsRelatedTo z → x ≡ y → x IsRelatedTo z
step-≡ _ x∼z P.refl = x∼z
-- Step with a flipped non-trivial propositional equality
step-≡˘ : ∀ x {y z} → y IsRelatedTo z → y ≡ x → x IsRelatedTo z
step-≡˘ _ x∼z P.refl = x∼z
-- Step with a trivial propositional equality
_≡⟨⟩_ : ∀ x {y} → x IsRelatedTo y → x IsRelatedTo y
_ ≡⟨⟩ x∼y = x∼y
-- Termination
_∎ : ∀ x → x IsRelatedTo x
x ∎ = relTo refl
-- Syntax declarations
syntax step-∼ x y∼z x∼y = x ∼⟨ x∼y ⟩ y∼z
syntax step-≡ x y≡z x≡y = x ≡⟨ x≡y ⟩ y≡z
syntax step-≡˘ x y≡z y≡x = x ≡˘⟨ y≡x ⟩ y≡z