{-# OPTIONS --cubical-compatible --safe #-}
open import Relation.Binary.Lattice
module Relation.Binary.Lattice.Properties.BoundedJoinSemilattice
{c ℓ₁ ℓ₂} (J : BoundedJoinSemilattice c ℓ₁ ℓ₂) where
open BoundedJoinSemilattice J
open import Algebra.Definitions _≈_
open import Algebra.Ordered.Structures using (IsCommutativePomonoid)
open import Algebra.Ordered.Bundles using (CommutativePomonoid)
open import Data.Product.Base using (_,_)
open import Function.Base using (_∘_; flip)
open import Relation.Binary.Properties.Poset poset
open import Relation.Binary.Lattice.Properties.JoinSemilattice joinSemilattice
using (isPosemigroup; ∨-comm)
identityˡ : LeftIdentity ⊥ _∨_
identityˡ x =
let _ , x≤⊥∨x , least = supremum ⊥ x
in antisym (least x (minimum x) refl) x≤⊥∨x
identityʳ : RightIdentity ⊥ _∨_
identityʳ x =
let x≤x∨⊥ , _ , least = supremum x ⊥
in antisym (least x refl (minimum x)) x≤x∨⊥
identity : Identity ⊥ _∨_
identity = identityˡ , identityʳ
dualIsBoundedMeetSemilattice : IsBoundedMeetSemilattice _≈_ (flip _≤_) _∨_ ⊥
dualIsBoundedMeetSemilattice = record
{ isMeetSemilattice = record
{ isPartialOrder = ≥-isPartialOrder
; infimum = supremum
}
; maximum = minimum
}
dualBoundedMeetSemilattice : BoundedMeetSemilattice c ℓ₁ ℓ₂
dualBoundedMeetSemilattice = record
{ ⊤ = ⊥
; isBoundedMeetSemilattice = dualIsBoundedMeetSemilattice
}
isCommutativePomonoid : IsCommutativePomonoid _≈_ _≤_ _∨_ ⊥
isCommutativePomonoid = record
{ isPomonoid = record
{ isPosemigroup = isPosemigroup
; identity = identity
}
; comm = ∨-comm
}
commutativePomonoid : CommutativePomonoid c ℓ₁ ℓ₂
commutativePomonoid = record
{ Carrier = Carrier
; _≈_ = _≈_
; _≤_ = _≤_
; _∙_ = _∨_
; ε = ⊥
; isCommutativePomonoid = isCommutativePomonoid
}