------------------------------------------------------------------------
-- The Agda standard library
--
-- The free monad construction on containers
------------------------------------------------------------------------

module Data.Container.FreeMonad where

open import Level
open import Function using (_∘_)
open import Data.Empty using (⊥-elim)
open import Data.Sum using (inj₁; inj₂)
open import Data.Product
open import Data.Container
open import Data.Container.Combinator using (const; _⊎_)
open import Data.W
open import Category.Monad

infixl 1 _⋆C_
infix  1 _⋆_

------------------------------------------------------------------------

-- The free monad construction over a container and a set is, in
-- universal algebra terminology, also known as the term algebra over a
-- signature (a container) and a set (of variable symbols). The return
-- of the free monad corresponds to variables and the bind operator
-- corresponds to (parallel) substitution.

-- A useful intuition is to think of containers describing single
-- operations and the free monad construction over a container and a set
-- describing a tree of operations as nodes and elements of the set as
-- leafs. If one starts at the root, then any path will pass finitely
-- many nodes (operations described by the container) and eventually end
-- up in a leaf (element of the set) -- hence the Kleene star notation
-- (the type can be read as a regular expression).

_⋆C_ :  {c}  Container c  Set c  Container c
C ⋆C X = const X  C

_⋆_ :  {c}  Container c  Set c  Set c
C  X = μ (C ⋆C X)

inn :  {c} {C : Container c} {X}   C  (C  X)  C  X
inn (s , k) = sup (inj₂ s) k

rawMonad :  {c} {C : Container c}  RawMonad (_⋆_ C)
rawMonad = record { return = return; _>>=_ = _>>=_ }
  where
  return :  {c} {C : Container c} {X}  X  C  X
  return x = sup (inj₁ x) (⊥-elim  lower)

  _>>=_ :  {c} {C : Container c} {X Y}  C  X  (X  C  Y)  C  Y
  sup (inj₁ x) _ >>= k = k x
  sup (inj₂ s) f >>= k = inn (s , λ p  f p >>= k)