------------------------------------------------------------------------
-- The Agda standard library
--
-- The free monad construction on containers
------------------------------------------------------------------------
module Data.Container.FreeMonad where
open import Level
open import Function using (_∘_)
open import Data.Empty using (⊥-elim)
open import Data.Sum using (inj₁; inj₂)
open import Data.Product
open import Data.Container
open import Data.Container.Combinator using (const; _⊎_)
open import Data.W
open import Category.Monad
infixl 1 _⋆C_
infix 1 _⋆_
------------------------------------------------------------------------
-- The free monad construction over a container and a set is, in
-- universal algebra terminology, also known as the term algebra over a
-- signature (a container) and a set (of variable symbols). The return
-- of the free monad corresponds to variables and the bind operator
-- corresponds to (parallel) substitution.
-- A useful intuition is to think of containers describing single
-- operations and the free monad construction over a container and a set
-- describing a tree of operations as nodes and elements of the set as
-- leafs. If one starts at the root, then any path will pass finitely
-- many nodes (operations described by the container) and eventually end
-- up in a leaf (element of the set) -- hence the Kleene star notation
-- (the type can be read as a regular expression).
_⋆C_ : ∀ {c} → Container c → Set c → Container c
C ⋆C X = const X ⊎ C
_⋆_ : ∀ {c} → Container c → Set c → Set c
C ⋆ X = μ (C ⋆C X)
inn : ∀ {c} {C : Container c} {X} → ⟦ C ⟧ (C ⋆ X) → C ⋆ X
inn (s , k) = sup (inj₂ s) k
rawMonad : ∀ {c} {C : Container c} → RawMonad (_⋆_ C)
rawMonad = record { return = return; _>>=_ = _>>=_ }
where
return : ∀ {c} {C : Container c} {X} → X → C ⋆ X
return x = sup (inj₁ x) (⊥-elim ∘ lower)
_>>=_ : ∀ {c} {C : Container c} {X Y} → C ⋆ X → (X → C ⋆ Y) → C ⋆ Y
sup (inj₁ x) _ >>= k = k x
sup (inj₂ s) f >>= k = inn (s , λ p → f p >>= k)