module Data.Container.Indexed where
open import Level
open import Function renaming (id to ⟨id⟩; _∘_ to _⟨∘⟩_)
open import Function.Equality using (_⟨$⟩_)
open import Function.Inverse using (_↔_; module Inverse)
open import Data.Product as Prod hiding (map)
open import Relation.Unary using (Pred; _⊆_)
open import Relation.Binary as B using (Preorder; module Preorder)
open import Relation.Binary.PropositionalEquality as P using (_≡_; _≗_; refl)
open import Relation.Binary.HeterogeneousEquality as H using (_≅_; refl)
open import Relation.Binary.Indexed
open import Data.W.Indexed
open import Data.M.Indexed
open import Data.Container.Indexed.Core public
open Container public
_▷_ : Set → Set → Set₁
I ▷ O = Container I O zero zero
μ ν : ∀ {o c r} {O : Set o} → Container O O c r → Pred O _
μ = W
ν = M
Eq : ∀ {i o c r ℓ} {I : Set i} {O : Set o} (C : Container I O c r)
(X Y : Pred I ℓ) → REL X Y ℓ → REL (⟦ C ⟧ X) (⟦ C ⟧ Y) _
Eq C _ _ _≈_ {o₁} {o₂} (c , k) (c′ , k′) =
o₁ ≡ o₂ × c ≅ c′ × (∀ r r′ → r ≅ r′ → k r ≈ k′ r′)
private
Eq⇒≅ : ∀ {i o c r ℓ} {I : Set i} {O : Set o}
{C : Container I O c r} {X : Pred I ℓ} {o₁ o₂ : O}
{xs : ⟦ C ⟧ X o₁} {ys : ⟦ C ⟧ X o₂} → H.Extensionality r ℓ →
Eq C X X (λ x₁ x₂ → x₁ ≅ x₂) xs ys → xs ≅ ys
Eq⇒≅ {xs = c , k} {.c , k′} ext (refl , refl , k≈k′) =
H.cong (_,_ c) (ext (λ _ → refl) (λ r → k≈k′ r r refl))
setoid : ∀ {i o c r s} {I : Set i} {O : Set o} →
Container I O c r → Setoid I s _ → Setoid O _ _
setoid C X = record
{ Carrier = ⟦ C ⟧ X.Carrier
; _≈_ = _≈_
; isEquivalence = record
{ refl = refl , refl , λ { r .r refl → X.refl }
; sym = sym
; trans = λ { {_} {i = xs} {ys} {zs} → trans {_} {i = xs} {ys} {zs} }
}
}
where
module X = Setoid X
_≈_ : Rel (⟦ C ⟧ X.Carrier) _
_≈_ = Eq C X.Carrier X.Carrier X._≈_
sym : Symmetric (⟦ C ⟧ X.Carrier) _≈_
sym {_} {._} {_ , _} {._ , _} (refl , refl , k) =
refl , refl , λ { r .r refl → X.sym (k r r refl) }
trans : Transitive (⟦ C ⟧ X.Carrier) _≈_
trans {._} {_} {._} {_ , _} {._ , _} {._ , _}
(refl , refl , k) (refl , refl , k′) =
refl , refl , λ { r .r refl → X.trans (k r r refl) (k′ r r refl) }
map : ∀ {i o c r ℓ₁ ℓ₂} {I : Set i} {O : Set o}
(C : Container I O c r) {X : Pred I ℓ₁} {Y : Pred I ℓ₂} →
X ⊆ Y → ⟦ C ⟧ X ⊆ ⟦ C ⟧ Y
map _ f = Prod.map ⟨id⟩ (λ g → f ⟨∘⟩ g)
module Map where
identity : ∀ {i o c r s} {I : Set i} {O : Set o} (C : Container I O c r)
(X : Setoid I s _) → let module X = Setoid X in
∀ {o} {xs : ⟦ C ⟧ X.Carrier o} → Eq C X.Carrier X.Carrier
X._≈_ xs (map C {X.Carrier} ⟨id⟩ xs)
identity C X = Setoid.refl (setoid C X)
composition : ∀ {i o c r s ℓ₁ ℓ₂} {I : Set i} {O : Set o}
(C : Container I O c r) {X : Pred I ℓ₁} {Y : Pred I ℓ₂}
(Z : Setoid I s _) → let module Z = Setoid Z in
{f : Y ⊆ Z.Carrier} {g : X ⊆ Y} {o : O} {xs : ⟦ C ⟧ X o} →
Eq C Z.Carrier Z.Carrier Z._≈_
(map C {Y} f (map C {X} g xs))
(map C {X} (f ⟨∘⟩ g) xs)
composition C Z = Setoid.refl (setoid C Z)
module _ {i₁ i₂ o₁ o₂}
{I₁ : Set i₁} {I₂ : Set i₂} {O₁ : Set o₁} {O₂ : Set o₂} where
record ContainerMorphism {c₁ c₂ r₁ r₂ ℓ₁ ℓ₂}
(C₁ : Container I₁ O₁ c₁ r₁) (C₂ : Container I₂ O₂ c₂ r₂)
(f : I₁ → I₂) (g : O₁ → O₂)
(_∼_ : B.Rel I₂ ℓ₁) (_≈_ : B.REL (Set r₂) (Set r₁) ℓ₂)
(_·_ : ∀ {A B} → A ≈ B → A → B) :
Set (i₁ ⊔ i₂ ⊔ o₁ ⊔ o₂ ⊔ c₁ ⊔ c₂ ⊔ r₁ ⊔ r₂ ⊔ ℓ₁ ⊔ ℓ₂) where
field
command : Command C₁ ⊆ Command C₂ ⟨∘⟩ g
response : ∀ {o} {c₁ : Command C₁ o} →
Response C₂ (command c₁) ≈ Response C₁ c₁
coherent : ∀ {o} {c₁ : Command C₁ o} {r₂ : Response C₂ (command c₁)} →
f (next C₁ c₁ (response · r₂)) ∼ next C₂ (command c₁) r₂
open ContainerMorphism public
_⇒[_/_]_ : ∀ {c₁ c₂ r₁ r₂} →
Container I₁ O₁ c₁ r₁ → (I₁ → I₂) → (O₁ → O₂) →
Container I₂ O₂ c₂ r₂ → Set _
C₁ ⇒[ f / g ] C₂ = ContainerMorphism C₁ C₂ f g _≡_ (λ R₂ R₁ → R₂ → R₁) _$_
_⊸[_/_]_ : ∀ {c₁ c₂ r₁ r₂} →
Container I₁ O₁ c₁ r₁ → (I₁ → I₂) → (O₁ → O₂) →
Container I₂ O₂ c₂ r₂ → Set _
C₁ ⊸[ f / g ] C₂ = ContainerMorphism C₁ C₂ f g _≡_ _↔_
(λ r₂↔r₁ r₂ → Inverse.to r₂↔r₁ ⟨$⟩ r₂)
_⇒C[_/_]_ : ∀ {c₁ c₂ r} →
Container I₁ O₁ c₁ r → (I₁ → I₂) → (O₁ → O₂) →
Container I₂ O₂ c₂ r → Set _
C₁ ⇒C[ f / g ] C₂ = ContainerMorphism C₁ C₂ f g _≡_ (λ R₂ R₁ → R₂ ≡ R₁)
(λ r₂≡r₁ r₂ → P.subst ⟨id⟩ r₂≡r₁ r₂)
module _ {i o c r} {I : Set i} {O : Set o} where
_⇒_ : B.Rel (Container I O c r) _
C₁ ⇒ C₂ = C₁ ⇒[ ⟨id⟩ / ⟨id⟩ ] C₂
_⊸_ : B.Rel (Container I O c r) _
C₁ ⊸ C₂ = C₁ ⊸[ ⟨id⟩ / ⟨id⟩ ] C₂
_⇒C_ : B.Rel (Container I O c r) _
C₁ ⇒C C₂ = C₁ ⇒C[ ⟨id⟩ / ⟨id⟩ ] C₂
⟪_⟫ : ∀ {i o c r ℓ} {I : Set i} {O : Set o} {C₁ C₂ : Container I O c r} →
C₁ ⇒ C₂ → (X : Pred I ℓ) → ⟦ C₁ ⟧ X ⊆ ⟦ C₂ ⟧ X
⟪ m ⟫ X (c , k) = command m c , λ r₂ →
P.subst X (coherent m) (k (response m r₂))
module PlainMorphism {i o c r} {I : Set i} {O : Set o} where
Natural : ∀ {ℓ} {C₁ C₂ : Container I O c r} →
((X : Pred I ℓ) → ⟦ C₁ ⟧ X ⊆ ⟦ C₂ ⟧ X) → Set _
Natural {C₁ = C₁} {C₂} m =
∀ {X} Y → let module Y = Setoid Y in (f : X ⊆ Y.Carrier) →
∀ {o} (xs : ⟦ C₁ ⟧ X o) →
Eq C₂ Y.Carrier Y.Carrier Y._≈_
(m Y.Carrier $ map C₁ {X} f xs) (map C₂ {X} f $ m X xs)
NT : ∀ {ℓ} (C₁ C₂ : Container I O c r) → Set _
NT {ℓ} C₁ C₂ = ∃ λ (m : (X : Pred I ℓ) → ⟦ C₁ ⟧ X ⊆ ⟦ C₂ ⟧ X) →
Natural m
natural : ∀ {ℓ} (C₁ C₂ : Container I O c r) (m : C₁ ⇒ C₂) → Natural {ℓ} ⟪ m ⟫
natural _ _ m {X} Y f _ = refl , refl , λ { r .r refl → lemma (coherent m) }
where
module Y = Setoid Y
lemma : ∀ {i j} (eq : i ≡ j) {x} →
P.subst Y.Carrier eq (f x) Y.≈ f (P.subst X eq x)
lemma refl = Y.refl
complete : ∀ {C₁ C₂ : Container I O c r} (nt : NT C₁ C₂) →
∃ λ m → (X : Setoid I _ _) →
let module X = Setoid X in
∀ {o} (xs : ⟦ C₁ ⟧ X.Carrier o) →
Eq C₂ X.Carrier X.Carrier X._≈_
(proj₁ nt X.Carrier xs) (⟪ m ⟫ X.Carrier {o} xs)
complete {C₁} {C₂} (nt , nat) = m , (λ X xs → nat X
(λ { (r , eq) → P.subst (Setoid.Carrier X) eq (proj₂ xs r) })
(proj₁ xs , (λ r → r , refl)))
where
m : C₁ ⇒ C₂
m = record
{ command = λ c₁ → proj₁ (lemma c₁)
; response = λ {_} {c₁} r₂ → proj₁ (proj₂ (lemma c₁) r₂)
; coherent = λ {_} {c₁} {r₂} → proj₂ (proj₂ (lemma c₁) r₂)
}
where
lemma : ∀ {o} (c₁ : Command C₁ o) → Σ[ c₂ ∈ Command C₂ o ]
((r₂ : Response C₂ c₂) → Σ[ r₁ ∈ Response C₁ c₁ ]
next C₁ c₁ r₁ ≡ next C₂ c₂ r₂)
lemma c₁ = nt (λ i → Σ[ r₁ ∈ Response C₁ c₁ ] next C₁ c₁ r₁ ≡ i)
(c₁ , λ r₁ → r₁ , refl)
id : (C : Container I O c r) → C ⇒ C
id _ = record
{ command = ⟨id⟩
; response = ⟨id⟩
; coherent = refl
}
infixr 9 _∘_
_∘_ : {C₁ C₂ C₃ : Container I O c r} →
C₂ ⇒ C₃ → C₁ ⇒ C₂ → C₁ ⇒ C₃
f ∘ g = record
{ command = command f ⟨∘⟩ command g
; response = response g ⟨∘⟩ response f
; coherent = coherent g ⟨ P.trans ⟩ coherent f
}
id-correct : ∀ {ℓ} {C : Container I O c r} → ∀ {X : Pred I ℓ} {o} →
⟪ id C ⟫ X {o} ≗ ⟨id⟩
id-correct _ = refl
∘-correct : {C₁ C₂ C₃ : Container I O c r}
(f : C₂ ⇒ C₃) (g : C₁ ⇒ C₂) (X : Setoid I (c ⊔ r) _) →
let module X = Setoid X in
∀ {o} {xs : ⟦ C₁ ⟧ X.Carrier o} →
Eq C₃ X.Carrier X.Carrier X._≈_
(⟪ f ∘ g ⟫ X.Carrier xs)
(⟪ f ⟫ X.Carrier (⟪ g ⟫ X.Carrier xs))
∘-correct f g X = refl , refl , λ { r .r refl → lemma (coherent g)
(coherent f) }
where
module X = Setoid X
lemma : ∀ {i j k} (eq₁ : i ≡ j) (eq₂ : j ≡ k) {x} →
P.subst X.Carrier (P.trans eq₁ eq₂) x
X.≈
P.subst X.Carrier eq₂ (P.subst X.Carrier eq₁ x)
lemma refl refl = X.refl
module LinearMorphism
{i o c r} {I : Set i} {O : Set o} {C₁ C₂ : Container I O c r}
(m : C₁ ⊸ C₂)
where
morphism : C₁ ⇒ C₂
morphism = record
{ command = command m
; response = _⟨$⟩_ (Inverse.to (response m))
; coherent = coherent m
}
⟪_⟫⊸ : ∀ {ℓ} (X : Pred I ℓ) → ⟦ C₁ ⟧ X ⊆ ⟦ C₂ ⟧ X
⟪_⟫⊸ = ⟪ morphism ⟫
open LinearMorphism public using (⟪_⟫⊸)
module CartesianMorphism
{i o c r} {I : Set i} {O : Set o} {C₁ C₂ : Container I O c r}
(m : C₁ ⇒C C₂)
where
morphism : C₁ ⇒ C₂
morphism = record
{ command = command m
; response = P.subst ⟨id⟩ (response m)
; coherent = coherent m
}
⟪_⟫C : ∀ {ℓ} (X : Pred I ℓ) → ⟦ C₁ ⟧ X ⊆ ⟦ C₂ ⟧ X
⟪_⟫C = ⟪ morphism ⟫
open CartesianMorphism public using (⟪_⟫C)
module _ {i o c r ℓ₁ ℓ₂} {I : Set i} {O : Set o} (C : Container I O c r)
{X : Pred I ℓ₁} {P Q : Pred (Σ I X) ℓ₂} where
□-map : P ⊆ Q → □ C P ⊆ □ C Q
□-map P⊆Q = _⟨∘⟩_ P⊆Q
◇-map : P ⊆ Q → ◇ C P ⊆ ◇ C Q
◇-map P⊆Q = Prod.map ⟨id⟩ P⊆Q
infix 4 _∈_
_∈_ : ∀ {i o c r ℓ} {I : Set i} {O : Set o}
{C : Container I O c r} {X : Pred I (i ⊔ ℓ)} → REL X (⟦ C ⟧ X) _
_∈_ {C = C} {X} x xs = ◇ C {X = X} (_≅_ x) (, xs)