module Data.Fin.Substitution.Lemmas where
import Category.Applicative.Indexed as Applicative
open import Data.Fin.Substitution
open import Data.Nat hiding (_⊔_)
open import Data.Fin using (Fin; zero; suc; lift)
open import Data.Vec
import Data.Vec.Properties as VecProp
open import Function as Fun using (_∘_; _$_)
open import Relation.Binary.PropositionalEquality as PropEq
using (_≡_; refl; sym; cong; cong₂)
open import Relation.Binary.Closure.ReflexiveTransitive
using (Star; ε; _◅_; _▻_)
open PropEq.≡-Reasoning
open import Level using (Level; _⊔_)
open import Relation.Unary using (Pred)
lift-commutes : ∀ {n} k j (x : Fin (j + (k + n))) →
lift j suc (lift j (lift k suc) x) ≡
lift j (lift (suc k) suc) (lift j suc x)
lift-commutes k zero x = refl
lift-commutes k (suc j) zero = refl
lift-commutes k (suc j) (suc x) = cong suc (lift-commutes k j x)
record Lemmas₀ {ℓ : Level} (T : Pred ℕ ℓ) : Set ℓ where
field simple : Simple T
open Simple simple
extensionality : ∀ {m n} {ρ₁ ρ₂ : Sub T m n} →
(∀ x → lookup x ρ₁ ≡ lookup x ρ₂) → ρ₁ ≡ ρ₂
extensionality {ρ₁ = []} {[]} hyp = refl
extensionality {ρ₁ = t₁ ∷ ρ₁} { t₂ ∷ ρ₂} hyp with hyp zero
extensionality {ρ₁ = t₁ ∷ ρ₁} {.t₁ ∷ ρ₂} hyp | refl =
cong (_∷_ t₁) (extensionality (hyp ∘ suc))
id-↑⋆ : ∀ {n} k → id ↑⋆ k ≡ id {k + n}
id-↑⋆ zero = refl
id-↑⋆ (suc k) = begin
(id ↑⋆ k) ↑ ≡⟨ cong _↑ (id-↑⋆ k) ⟩
id ↑ ∎
lookup-map-weaken-↑⋆ : ∀ {m n} k x {ρ : Sub T m n} →
lookup x (map weaken ρ ↑⋆ k) ≡
lookup (lift k suc x) ((ρ ↑) ↑⋆ k)
lookup-map-weaken-↑⋆ zero x = refl
lookup-map-weaken-↑⋆ (suc k) zero = refl
lookup-map-weaken-↑⋆ (suc k) (suc x) {ρ} = begin
lookup x (map weaken (map weaken ρ ↑⋆ k)) ≡⟨ VecProp.lookup-map x weaken _ ⟩
weaken (lookup x (map weaken ρ ↑⋆ k)) ≡⟨ cong weaken (lookup-map-weaken-↑⋆ k x) ⟩
weaken (lookup (lift k suc x) ((ρ ↑) ↑⋆ k)) ≡⟨ sym $ VecProp.lookup-map (lift k suc x) _ _ ⟩
lookup (lift k suc x) (map weaken ((ρ ↑) ↑⋆ k)) ∎
record Lemmas₁ {ℓ} (T : Pred ℕ ℓ) : Set ℓ where
field lemmas₀ : Lemmas₀ T
open Lemmas₀ lemmas₀
open Simple simple
field weaken-var : ∀ {n} {x : Fin n} → weaken (var x) ≡ var (suc x)
lookup-map-weaken : ∀ {m n} x {y} {ρ : Sub T m n} →
lookup x ρ ≡ var y →
lookup x (map weaken ρ) ≡ var (suc y)
lookup-map-weaken x {y} {ρ} hyp = begin
lookup x (map weaken ρ) ≡⟨ VecProp.lookup-map x _ _ ⟩
weaken (lookup x ρ) ≡⟨ cong weaken hyp ⟩
weaken (var y) ≡⟨ weaken-var ⟩
var (suc y) ∎
mutual
lookup-id : ∀ {n} (x : Fin n) → lookup x id ≡ var x
lookup-id zero = refl
lookup-id (suc x) = lookup-wk x
lookup-wk : ∀ {n} (x : Fin n) → lookup x wk ≡ var (suc x)
lookup-wk x = lookup-map-weaken x (lookup-id x)
lookup-↑⋆ : ∀ {m n} (f : Fin m → Fin n) {ρ : Sub T m n} →
(∀ x → lookup x ρ ≡ var (f x)) →
∀ k x → lookup x (ρ ↑⋆ k) ≡ var (lift k f x)
lookup-↑⋆ f hyp zero x = hyp x
lookup-↑⋆ f hyp (suc k) zero = refl
lookup-↑⋆ f hyp (suc k) (suc x) =
lookup-map-weaken x (lookup-↑⋆ f hyp k x)
lookup-lift-↑⋆ : ∀ {m n} (f : Fin n → Fin m) {ρ : Sub T m n} →
(∀ x → lookup (f x) ρ ≡ var x) →
∀ k x → lookup (lift k f x) (ρ ↑⋆ k) ≡ var x
lookup-lift-↑⋆ f hyp zero x = hyp x
lookup-lift-↑⋆ f hyp (suc k) zero = refl
lookup-lift-↑⋆ f hyp (suc k) (suc x) =
lookup-map-weaken (lift k f x) (lookup-lift-↑⋆ f hyp k x)
lookup-wk-↑⋆ : ∀ {n} k (x : Fin (k + n)) →
lookup x (wk ↑⋆ k) ≡ var (lift k suc x)
lookup-wk-↑⋆ = lookup-↑⋆ suc lookup-wk
lookup-wk-↑⋆-↑⋆ : ∀ {n} k j (x : Fin (j + (k + n))) →
lookup x (wk ↑⋆ k ↑⋆ j) ≡
var (lift j (lift k suc) x)
lookup-wk-↑⋆-↑⋆ k = lookup-↑⋆ (lift k suc) (lookup-wk-↑⋆ k)
lookup-sub-↑⋆ : ∀ {n t} k (x : Fin (k + n)) →
lookup (lift k suc x) (sub t ↑⋆ k) ≡ var x
lookup-sub-↑⋆ = lookup-lift-↑⋆ suc lookup-id
open Lemmas₀ lemmas₀ public
record Lemmas₂ {ℓ} (T : Pred ℕ ℓ) : Set ℓ where
field
lemmas₁ : Lemmas₁ T
application : Application T T
open Lemmas₁ lemmas₁
subst : Subst T
subst = record { simple = simple; application = application }
open Subst subst
field var-/ : ∀ {m n x} {ρ : Sub T m n} → var x / ρ ≡ lookup x ρ
suc-/-sub : ∀ {n x} {t : T n} → var (suc x) / sub t ≡ var x
suc-/-sub {x = x} {t} = begin
var (suc x) / sub t ≡⟨ var-/ ⟩
lookup (suc x) (sub t) ≡⟨ refl ⟩
lookup x id ≡⟨ lookup-id x ⟩
var x ∎
lookup-⊙ : ∀ {m n k} x {ρ₁ : Sub T m n} {ρ₂ : Sub T n k} →
lookup x (ρ₁ ⊙ ρ₂) ≡ lookup x ρ₁ / ρ₂
lookup-⊙ x = VecProp.lookup-map x _ _
lookup-⨀ : ∀ {m n} x (ρs : Subs T m n) →
lookup x (⨀ ρs) ≡ var x /✶ ρs
lookup-⨀ x ε = lookup-id x
lookup-⨀ x (ρ ◅ ε) = sym var-/
lookup-⨀ x (ρ ◅ (ρ′ ◅ ρs′)) = begin
lookup x (⨀ (ρ ◅ ρs)) ≡⟨ refl ⟩
lookup x (⨀ ρs ⊙ ρ) ≡⟨ lookup-⊙ x ⟩
lookup x (⨀ ρs) / ρ ≡⟨ cong₂ _/_ (lookup-⨀ x (ρ′ ◅ ρs′)) refl ⟩
var x /✶ ρs / ρ ∎
where ρs = ρ′ ◅ ρs′
id-⊙ : ∀ {m n} {ρ : Sub T m n} → id ⊙ ρ ≡ ρ
id-⊙ {ρ = ρ} = extensionality λ x → begin
lookup x (id ⊙ ρ) ≡⟨ lookup-⊙ x ⟩
lookup x id / ρ ≡⟨ cong₂ _/_ (lookup-id x) refl ⟩
var x / ρ ≡⟨ var-/ ⟩
lookup x ρ ∎
lookup-wk-↑⋆-⊙ : ∀ {m n} k {x} {ρ : Sub T (k + suc m) n} →
lookup x (wk ↑⋆ k ⊙ ρ) ≡ lookup (lift k suc x) ρ
lookup-wk-↑⋆-⊙ k {x} {ρ} = begin
lookup x (wk ↑⋆ k ⊙ ρ) ≡⟨ lookup-⊙ x ⟩
lookup x (wk ↑⋆ k) / ρ ≡⟨ cong₂ _/_ (lookup-wk-↑⋆ k x) refl ⟩
var (lift k suc x) / ρ ≡⟨ var-/ ⟩
lookup (lift k suc x) ρ ∎
wk-⊙-sub′ : ∀ {n} {t : T n} k → wk ↑⋆ k ⊙ sub t ↑⋆ k ≡ id
wk-⊙-sub′ {t = t} k = extensionality λ x → begin
lookup x (wk ↑⋆ k ⊙ sub t ↑⋆ k) ≡⟨ lookup-wk-↑⋆-⊙ k ⟩
lookup (lift k suc x) (sub t ↑⋆ k) ≡⟨ lookup-sub-↑⋆ k x ⟩
var x ≡⟨ sym (lookup-id x) ⟩
lookup x id ∎
wk-⊙-sub : ∀ {n} {t : T n} → wk ⊙ sub t ≡ id
wk-⊙-sub = wk-⊙-sub′ zero
var-/-wk-↑⋆ : ∀ {n} k (x : Fin (k + n)) →
var x / wk ↑⋆ k ≡ var (lift k suc x)
var-/-wk-↑⋆ k x = begin
var x / wk ↑⋆ k ≡⟨ var-/ ⟩
lookup x (wk ↑⋆ k) ≡⟨ lookup-wk-↑⋆ k x ⟩
var (lift k suc x) ∎
wk-↑⋆-⊙-wk : ∀ {n} k j →
wk {n} ↑⋆ k ↑⋆ j ⊙ wk ↑⋆ j ≡
wk ↑⋆ j ⊙ wk ↑⋆ suc k ↑⋆ j
wk-↑⋆-⊙-wk k j = extensionality λ x → begin
lookup x (wk ↑⋆ k ↑⋆ j ⊙ wk ↑⋆ j) ≡⟨ lookup-⊙ x ⟩
lookup x (wk ↑⋆ k ↑⋆ j) / wk ↑⋆ j ≡⟨ cong₂ _/_ (lookup-wk-↑⋆-↑⋆ k j x) refl ⟩
var (lift j (lift k suc) x) / wk ↑⋆ j ≡⟨ var-/-wk-↑⋆ j (lift j (lift k suc) x) ⟩
var (lift j suc (lift j (lift k suc) x)) ≡⟨ cong var (lift-commutes k j x) ⟩
var (lift j (lift (suc k) suc) (lift j suc x)) ≡⟨ sym (lookup-wk-↑⋆-↑⋆ (suc k) j (lift j suc x)) ⟩
lookup (lift j suc x) (wk ↑⋆ suc k ↑⋆ j) ≡⟨ sym var-/ ⟩
var (lift j suc x) / wk ↑⋆ suc k ↑⋆ j ≡⟨ cong₂ _/_ (sym (lookup-wk-↑⋆ j x)) refl ⟩
lookup x (wk ↑⋆ j) / wk ↑⋆ suc k ↑⋆ j ≡⟨ sym (lookup-⊙ x) ⟩
lookup x (wk ↑⋆ j ⊙ wk ↑⋆ suc k ↑⋆ j) ∎
open Subst subst public hiding (simple; application)
open Lemmas₁ lemmas₁ public
record Lemmas₃ {ℓ} (T : Pred ℕ ℓ) : Set ℓ where
field lemmas₂ : Lemmas₂ T
open Lemmas₂ lemmas₂
field
/✶-↑✶ : ∀ {m n} (ρs₁ ρs₂ : Subs T m n) →
(∀ k x → var x /✶ ρs₁ ↑✶ k ≡ var x /✶ ρs₂ ↑✶ k) →
∀ k t → t /✶ ρs₁ ↑✶ k ≡ t /✶ ρs₂ ↑✶ k
/✶-↑✶′ : ∀ {m n} (ρs₁ ρs₂ : Subs T m n) →
(∀ k → ⨀ (ρs₁ ↑✶ k) ≡ ⨀ (ρs₂ ↑✶ k)) →
∀ k t → t /✶ ρs₁ ↑✶ k ≡ t /✶ ρs₂ ↑✶ k
/✶-↑✶′ ρs₁ ρs₂ hyp = /✶-↑✶ ρs₁ ρs₂ (λ k x → begin
var x /✶ ρs₁ ↑✶ k ≡⟨ sym (lookup-⨀ x (ρs₁ ↑✶ k)) ⟩
lookup x (⨀ (ρs₁ ↑✶ k)) ≡⟨ cong (lookup x) (hyp k) ⟩
lookup x (⨀ (ρs₂ ↑✶ k)) ≡⟨ lookup-⨀ x (ρs₂ ↑✶ k) ⟩
var x /✶ ρs₂ ↑✶ k ∎)
id-vanishes : ∀ {n} (t : T n) → t / id ≡ t
id-vanishes = /✶-↑✶′ (ε ▻ id) ε id-↑⋆ zero
⊙-id : ∀ {m n} {ρ : Sub T m n} → ρ ⊙ id ≡ ρ
⊙-id {ρ = ρ} = begin
map (λ t → t / id) ρ ≡⟨ VecProp.map-cong id-vanishes ρ ⟩
map Fun.id ρ ≡⟨ VecProp.map-id ρ ⟩
ρ ∎
open Lemmas₂ lemmas₂ public hiding (wk-⊙-sub′)
record Lemmas₄ {ℓ} (T : Pred ℕ ℓ) : Set ℓ where
field lemmas₃ : Lemmas₃ T
open Lemmas₃ lemmas₃
field /-wk : ∀ {n} {t : T n} → t / wk ≡ weaken t
private
↑-distrib′ : ∀ {m n k} {ρ₁ : Sub T m n} {ρ₂ : Sub T n k} →
(∀ t → t / ρ₂ / wk ≡ t / wk / ρ₂ ↑) →
(ρ₁ ⊙ ρ₂) ↑ ≡ ρ₁ ↑ ⊙ ρ₂ ↑
↑-distrib′ {ρ₁ = ρ₁} {ρ₂} hyp = begin
(ρ₁ ⊙ ρ₂) ↑ ≡⟨ refl ⟩
var zero ∷ map weaken (ρ₁ ⊙ ρ₂) ≡⟨ cong₂ _∷_ (sym var-/) lemma ⟩
var zero / ρ₂ ↑ ∷ map weaken ρ₁ ⊙ ρ₂ ↑ ≡⟨ refl ⟩
ρ₁ ↑ ⊙ ρ₂ ↑ ∎
where
lemma = begin
map weaken (map (λ t → t / ρ₂) ρ₁) ≡⟨ sym (VecProp.map-∘ _ _ _) ⟩
map (λ t → weaken (t / ρ₂)) ρ₁ ≡⟨ VecProp.map-cong (λ t → begin
weaken (t / ρ₂) ≡⟨ sym /-wk ⟩
t / ρ₂ / wk ≡⟨ hyp t ⟩
t / wk / ρ₂ ↑ ≡⟨ cong₂ _/_ /-wk refl ⟩
weaken t / ρ₂ ↑ ∎) ρ₁ ⟩
map (λ t → weaken t / ρ₂ ↑) ρ₁ ≡⟨ VecProp.map-∘ _ _ _ ⟩
map (λ t → t / ρ₂ ↑) (map weaken ρ₁) ∎
↑⋆-distrib′ : ∀ {m n o} {ρ₁ : Sub T m n} {ρ₂ : Sub T n o} →
(∀ k t → t / ρ₂ ↑⋆ k / wk ≡ t / wk / ρ₂ ↑⋆ suc k) →
∀ k → (ρ₁ ⊙ ρ₂) ↑⋆ k ≡ ρ₁ ↑⋆ k ⊙ ρ₂ ↑⋆ k
↑⋆-distrib′ hyp zero = refl
↑⋆-distrib′ {ρ₁ = ρ₁} {ρ₂} hyp (suc k) = begin
(ρ₁ ⊙ ρ₂) ↑⋆ suc k ≡⟨ cong _↑ (↑⋆-distrib′ hyp k) ⟩
(ρ₁ ↑⋆ k ⊙ ρ₂ ↑⋆ k) ↑ ≡⟨ ↑-distrib′ (hyp k) ⟩
ρ₁ ↑⋆ suc k ⊙ ρ₂ ↑⋆ suc k ∎
map-weaken : ∀ {m n} {ρ : Sub T m n} → map weaken ρ ≡ ρ ⊙ wk
map-weaken {ρ = ρ} = begin
map weaken ρ ≡⟨ VecProp.map-cong (λ _ → sym /-wk) ρ ⟩
map (λ t → t / wk) ρ ≡⟨ refl ⟩
ρ ⊙ wk ∎
private
⊙-wk′ : ∀ {m n} {ρ : Sub T m n} k →
ρ ↑⋆ k ⊙ wk ↑⋆ k ≡ wk ↑⋆ k ⊙ ρ ↑ ↑⋆ k
⊙-wk′ {ρ = ρ} k = sym (begin
wk ↑⋆ k ⊙ ρ ↑ ↑⋆ k ≡⟨ lemma ⟩
map weaken ρ ↑⋆ k ≡⟨ cong (λ ρ′ → ρ′ ↑⋆ k) map-weaken ⟩
(ρ ⊙ wk) ↑⋆ k ≡⟨ ↑⋆-distrib′ (λ k t →
/✶-↑✶′ (ε ▻ wk ↑⋆ k ▻ wk) (ε ▻ wk ▻ wk ↑⋆ suc k)
(wk-↑⋆-⊙-wk k) zero t) k ⟩
ρ ↑⋆ k ⊙ wk ↑⋆ k ∎)
where
lemma = extensionality λ x → begin
lookup x (wk ↑⋆ k ⊙ ρ ↑ ↑⋆ k) ≡⟨ lookup-wk-↑⋆-⊙ k ⟩
lookup (lift k suc x) (ρ ↑ ↑⋆ k) ≡⟨ sym (lookup-map-weaken-↑⋆ k x) ⟩
lookup x (map weaken ρ ↑⋆ k) ∎
⊙-wk : ∀ {m n} {ρ : Sub T m n} → ρ ⊙ wk ≡ wk ⊙ ρ ↑
⊙-wk = ⊙-wk′ zero
wk-commutes : ∀ {m n} {ρ : Sub T m n} t →
t / ρ / wk ≡ t / wk / ρ ↑
wk-commutes {ρ = ρ} = /✶-↑✶′ (ε ▻ ρ ▻ wk) (ε ▻ wk ▻ ρ ↑) ⊙-wk′ zero
↑⋆-distrib : ∀ {m n o} {ρ₁ : Sub T m n} {ρ₂ : Sub T n o} →
∀ k → (ρ₁ ⊙ ρ₂) ↑⋆ k ≡ ρ₁ ↑⋆ k ⊙ ρ₂ ↑⋆ k
↑⋆-distrib = ↑⋆-distrib′ (λ _ → wk-commutes)
/-⊙ : ∀ {m n k} {ρ₁ : Sub T m n} {ρ₂ : Sub T n k} t →
t / ρ₁ ⊙ ρ₂ ≡ t / ρ₁ / ρ₂
/-⊙ {ρ₁ = ρ₁} {ρ₂} t =
/✶-↑✶′ (ε ▻ ρ₁ ⊙ ρ₂) (ε ▻ ρ₁ ▻ ρ₂) ↑⋆-distrib zero t
⊙-assoc : ∀ {m n k o}
{ρ₁ : Sub T m n} {ρ₂ : Sub T n k} {ρ₃ : Sub T k o} →
ρ₁ ⊙ (ρ₂ ⊙ ρ₃) ≡ (ρ₁ ⊙ ρ₂) ⊙ ρ₃
⊙-assoc {ρ₁ = ρ₁} {ρ₂} {ρ₃} = begin
map (λ t → t / ρ₂ ⊙ ρ₃) ρ₁ ≡⟨ VecProp.map-cong /-⊙ ρ₁ ⟩
map (λ t → t / ρ₂ / ρ₃) ρ₁ ≡⟨ VecProp.map-∘ _ _ _ ⟩
map (λ t → t / ρ₃) (map (λ t → t / ρ₂) ρ₁) ∎
map-weaken-⊙-sub : ∀ {m n} {ρ : Sub T m n} {t} → map weaken ρ ⊙ sub t ≡ ρ
map-weaken-⊙-sub {ρ = ρ} {t} = begin
map weaken ρ ⊙ sub t ≡⟨ cong₂ _⊙_ map-weaken refl ⟩
ρ ⊙ wk ⊙ sub t ≡⟨ sym ⊙-assoc ⟩
ρ ⊙ (wk ⊙ sub t) ≡⟨ cong (_⊙_ ρ) wk-⊙-sub ⟩
ρ ⊙ id ≡⟨ ⊙-id ⟩
ρ ∎
sub-⊙ : ∀ {m n} {ρ : Sub T m n} t → sub t ⊙ ρ ≡ ρ ↑ ⊙ sub (t / ρ)
sub-⊙ {ρ = ρ} t = begin
sub t ⊙ ρ ≡⟨ refl ⟩
t / ρ ∷ id ⊙ ρ ≡⟨ cong (_∷_ (t / ρ)) id-⊙ ⟩
t / ρ ∷ ρ ≡⟨ cong (_∷_ (t / ρ)) (sym map-weaken-⊙-sub) ⟩
t / ρ ∷ map weaken ρ ⊙ sub (t / ρ) ≡⟨ cong₂ _∷_ (sym var-/) refl ⟩
ρ ↑ ⊙ sub (t / ρ) ∎
suc-/-↑ : ∀ {m n} {ρ : Sub T m n} x →
var (suc x) / ρ ↑ ≡ var x / ρ / wk
suc-/-↑ {ρ = ρ} x = begin
var (suc x) / ρ ↑ ≡⟨ var-/ ⟩
lookup x (map weaken ρ) ≡⟨ cong (lookup x) map-weaken ⟩
lookup x (ρ ⊙ wk) ≡⟨ lookup-⊙ x ⟩
lookup x ρ / wk ≡⟨ cong₂ _/_ (sym var-/) refl ⟩
var x / ρ / wk ∎
open Lemmas₃ lemmas₃ public
hiding (/✶-↑✶; /✶-↑✶′; wk-↑⋆-⊙-wk;
lookup-wk-↑⋆-⊙; lookup-map-weaken-↑⋆)
record AppLemmas {ℓ₁ ℓ₂} (T₁ : Pred ℕ ℓ₁) (T₂ : Pred ℕ ℓ₂) : Set (ℓ₁ ⊔ ℓ₂) where
field
application : Application T₁ T₂
lemmas₄ : Lemmas₄ T₂
open Application application using (_/_; _/✶_)
open Lemmas₄ lemmas₄
using (id; _⊙_; wk; weaken; sub; _↑; ⨀) renaming (_/_ to _⊘_)
field
id-vanishes : ∀ {n} (t : T₁ n) → t / id ≡ t
/-⊙ : ∀ {m n k} {ρ₁ : Sub T₂ m n} {ρ₂ : Sub T₂ n k} t →
t / ρ₁ ⊙ ρ₂ ≡ t / ρ₁ / ρ₂
private module L₄ = Lemmas₄ lemmas₄
/-⨀ : ∀ {m n} t (ρs : Subs T₂ m n) → t / ⨀ ρs ≡ t /✶ ρs
/-⨀ t ε = id-vanishes t
/-⨀ t (ρ ◅ ε) = refl
/-⨀ t (ρ ◅ (ρ′ ◅ ρs′)) = begin
t / ⨀ ρs ⊙ ρ ≡⟨ /-⊙ t ⟩
t / ⨀ ρs / ρ ≡⟨ cong₂ _/_ (/-⨀ t (ρ′ ◅ ρs′)) refl ⟩
t /✶ ρs / ρ ∎
where ρs = ρ′ ◅ ρs′
⨀→/✶ : ∀ {m n} (ρs₁ ρs₂ : Subs T₂ m n) →
⨀ ρs₁ ≡ ⨀ ρs₂ → ∀ t → t /✶ ρs₁ ≡ t /✶ ρs₂
⨀→/✶ ρs₁ ρs₂ hyp t = begin
t /✶ ρs₁ ≡⟨ sym (/-⨀ t ρs₁) ⟩
t / ⨀ ρs₁ ≡⟨ cong (_/_ t) hyp ⟩
t / ⨀ ρs₂ ≡⟨ /-⨀ t ρs₂ ⟩
t /✶ ρs₂ ∎
wk-commutes : ∀ {m n} {ρ : Sub T₂ m n} t →
t / ρ / wk ≡ t / wk / ρ ↑
wk-commutes {ρ = ρ} = ⨀→/✶ (ε ▻ ρ ▻ wk) (ε ▻ wk ▻ ρ ↑) L₄.⊙-wk
sub-commutes : ∀ {m n} {t′} {ρ : Sub T₂ m n} t →
t / sub t′ / ρ ≡ t / ρ ↑ / sub (t′ ⊘ ρ)
sub-commutes {t′ = t′} {ρ} =
⨀→/✶ (ε ▻ sub t′ ▻ ρ) (ε ▻ ρ ↑ ▻ sub (t′ ⊘ ρ)) (L₄.sub-⊙ t′)
wk-sub-vanishes : ∀ {n t′} (t : T₁ n) → t / wk / sub t′ ≡ t
wk-sub-vanishes {t′ = t′} = ⨀→/✶ (ε ▻ wk ▻ sub t′) ε L₄.wk-⊙-sub
/-weaken : ∀ {m n} {ρ : Sub T₂ m n} t → t / map weaken ρ ≡ t / ρ / wk
/-weaken {ρ = ρ} = ⨀→/✶ (ε ▻ map weaken ρ) (ε ▻ ρ ▻ wk) L₄.map-weaken
open Application application public
open L₄ public
hiding (application; _⊙_; _/_; _/✶_;
id-vanishes; /-⊙; wk-commutes)
record Lemmas₅ {ℓ} (T : Pred ℕ ℓ) : Set ℓ where
field lemmas₄ : Lemmas₄ T
private module L₄ = Lemmas₄ lemmas₄
appLemmas : AppLemmas T T
appLemmas = record
{ application = L₄.application
; lemmas₄ = lemmas₄
; id-vanishes = L₄.id-vanishes
; /-⊙ = L₄./-⊙
}
open AppLemmas appLemmas public hiding (lemmas₄)
module VarLemmas where
open VarSubst
lemmas₃ : Lemmas₃ Fin
lemmas₃ = record
{ lemmas₂ = record
{ lemmas₁ = record
{ lemmas₀ = record
{ simple = simple
}
; weaken-var = refl
}
; application = application
; var-/ = refl
}
; /✶-↑✶ = λ _ _ hyp → hyp
}
private module L₃ = Lemmas₃ lemmas₃
lemmas₅ : Lemmas₅ Fin
lemmas₅ = record
{ lemmas₄ = record
{ lemmas₃ = lemmas₃
; /-wk = L₃.lookup-wk _
}
}
open Lemmas₅ lemmas₅ public hiding (lemmas₃)
record TermLemmas (T : ℕ → Set) : Set₁ where
field
termSubst : TermSubst T
open TermSubst termSubst
field
app-var : ∀ {T′} {lift : Lift T′ T} {m n x} {ρ : Sub T′ m n} →
app lift (var x) ρ ≡ Lift.lift lift (lookup x ρ)
/✶-↑✶ : ∀ {T₁ T₂} {lift₁ : Lift T₁ T} {lift₂ : Lift T₂ T} →
let open Lifted lift₁
using () renaming (_↑✶_ to _↑✶₁_; _/✶_ to _/✶₁_)
open Lifted lift₂
using () renaming (_↑✶_ to _↑✶₂_; _/✶_ to _/✶₂_)
in
∀ {m n} (ρs₁ : Subs T₁ m n) (ρs₂ : Subs T₂ m n) →
(∀ k x → var x /✶₁ ρs₁ ↑✶₁ k ≡ var x /✶₂ ρs₂ ↑✶₂ k) →
∀ k t → t /✶₁ ρs₁ ↑✶₁ k ≡ t /✶₂ ρs₂ ↑✶₂ k
private module V = VarLemmas
lemmas₃ : Lemmas₃ T
lemmas₃ = record
{ lemmas₂ = record
{ lemmas₁ = record
{ lemmas₀ = record
{ simple = simple
}
; weaken-var = λ {_ x} → begin
var x /Var V.wk ≡⟨ app-var ⟩
var (lookup x V.wk) ≡⟨ cong var (V.lookup-wk x) ⟩
var (suc x) ∎
}
; application = Subst.application subst
; var-/ = app-var
}
; /✶-↑✶ = /✶-↑✶
}
private module L₃ = Lemmas₃ lemmas₃
lemmas₅ : Lemmas₅ T
lemmas₅ = record
{ lemmas₄ = record
{ lemmas₃ = lemmas₃
; /-wk = λ {_ t} → begin
t / wk ≡⟨ /✶-↑✶ (ε ▻ wk) (ε ▻ V.wk)
(λ k x → begin
var x / wk ↑⋆ k ≡⟨ L₃.var-/-wk-↑⋆ k x ⟩
var (lift k suc x) ≡⟨ cong var (sym (V.var-/-wk-↑⋆ k x)) ⟩
var (lookup x (V._↑⋆_ V.wk k)) ≡⟨ sym app-var ⟩
var x /Var V._↑⋆_ V.wk k ∎)
zero t ⟩
t /Var V.wk ≡⟨ refl ⟩
weaken t ∎
}
}
open Lemmas₅ lemmas₅ public hiding (lemmas₃)