module Data.List.Relation.BagAndSetEquality where
open import Algebra using (CommutativeSemiring; CommutativeMonoid)
open import Algebra.FunctionProperties using (Idempotent)
open import Category.Monad using (RawMonad)
open import Data.List
open import Data.List.Categorical using (monad; module MonadProperties)
import Data.List.Properties as LP
open import Data.List.Any using (Any; here; there)
open import Data.List.Any.Properties
open import Data.List.Membership.Propositional using (_∈_)
open import Data.List.Relation.Sublist.Propositional.Properties
using (⊆-preorder)
open import Data.Product hiding (map)
open import Data.Sum hiding (map)
open import Data.Sum.Relation.Pointwise using (_⊎-cong_)
open import Function
open import Function.Equality using (_⟨$⟩_)
import Function.Equivalence as FE
open import Function.Inverse as Inv using (_↔_; module Inverse)
open import Function.Related as Related using (↔⇒; ⌊_⌋; ⌊_⌋→; ⇒→)
open import Function.Related.TypeIsomorphisms
open import Relation.Binary
import Relation.Binary.EqReasoning as EqR
open import Relation.Binary.PropositionalEquality as P
using (_≡_; _≗_)
open import Relation.Nullary
open import Data.List.Membership.Propositional.Properties
open Related public using (Kind; Symmetric-kind) renaming
( implication to subset
; reverse-implication to superset
; equivalence to set
; injection to subbag
; reverse-injection to superbag
; bijection to bag
)
[_]-Order : Kind → ∀ {a} → Set a → Preorder _ _ _
[ k ]-Order A = Related.InducedPreorder₂ k {A = A} _∈_
[_]-Equality : Symmetric-kind → ∀ {a} → Set a → Setoid _ _
[ k ]-Equality A = Related.InducedEquivalence₂ k {A = A} _∈_
infix 4 _∼[_]_
_∼[_]_ : ∀ {a} {A : Set a} → List A → Kind → List A → Set _
_∼[_]_ {A = A} xs k ys = Preorder._∼_ ([ k ]-Order A) xs ys
private
module Eq {k a} {A : Set a} = Setoid ([ k ]-Equality A)
module Ord {k a} {A : Set a} = Preorder ([ k ]-Order A)
module ×⊎ {k ℓ} = CommutativeSemiring (×⊎-CommutativeSemiring k ℓ)
open module ListMonad {ℓ} = RawMonad (monad {ℓ = ℓ})
module MP = MonadProperties
bag-=⇒ : ∀ {k a} {A : Set a} {xs ys : List A} →
xs ∼[ bag ] ys → xs ∼[ k ] ys
bag-=⇒ xs≈ys = ↔⇒ xs≈ys
module ⊆-Reasoning where
import Relation.Binary.PreorderReasoning as PreR
private
open module PR {a} {A : Set a} = PreR (⊆-preorder A) public
hiding (_≈⟨_⟩_) renaming (_∼⟨_⟩_ to _⊆⟨_⟩_)
infixr 2 _∼⟨_⟩_
infix 1 _∈⟨_⟩_
_∈⟨_⟩_ : ∀ {a} {A : Set a} x {xs ys : List A} →
x ∈ xs → xs IsRelatedTo ys → x ∈ ys
x ∈⟨ x∈xs ⟩ xs⊆ys = (begin xs⊆ys) x∈xs
_∼⟨_⟩_ : ∀ {k a} {A : Set a} xs {ys zs : List A} →
xs ∼[ ⌊ k ⌋→ ] ys → ys IsRelatedTo zs → xs IsRelatedTo zs
xs ∼⟨ xs≈ys ⟩ ys≈zs = xs ⊆⟨ ⇒→ xs≈ys ⟩ ys≈zs
module _ {a k} {A : Set a} {x y : A} {xs ys} where
∷-cong : x ≡ y → xs ∼[ k ] ys → x ∷ xs ∼[ k ] y ∷ ys
∷-cong P.refl xs≈ys {y} =
y ∈ x ∷ xs ↔⟨ sym $ ∷↔ (y ≡_) ⟩
(y ≡ x ⊎ y ∈ xs) ∼⟨ (y ≡ x ∎) ⊎-cong xs≈ys ⟩
(y ≡ x ⊎ y ∈ ys) ↔⟨ ∷↔ (y ≡_) ⟩
y ∈ x ∷ ys ∎
where open Related.EquationalReasoning
module _ {ℓ k} {A B : Set ℓ} {f g : A → B} {xs ys} where
map-cong : f ≗ g → xs ∼[ k ] ys → map f xs ∼[ k ] map g ys
map-cong f≗g xs≈ys {x} =
x ∈ map f xs ↔⟨ sym $ map↔ ⟩
Any (λ y → x ≡ f y) xs ∼⟨ Any-cong (↔⇒ ∘ helper) xs≈ys ⟩
Any (λ y → x ≡ g y) ys ↔⟨ map↔ ⟩
x ∈ map g ys ∎
where
open Related.EquationalReasoning
helper : ∀ y → x ≡ f y ↔ x ≡ g y
helper y = record
{ to = P.→-to-⟶ (λ x≡fy → P.trans x≡fy ( f≗g y))
; from = P.→-to-⟶ (λ x≡gy → P.trans x≡gy (P.sym $ f≗g y))
; inverse-of = record
{ left-inverse-of = λ _ → P.≡-irrelevance _ _
; right-inverse-of = λ _ → P.≡-irrelevance _ _
}
}
module _ {a k} {A : Set a} {xs₁ xs₂ ys₁ ys₂ : List A} where
++-cong : xs₁ ∼[ k ] xs₂ → ys₁ ∼[ k ] ys₂ →
xs₁ ++ ys₁ ∼[ k ] xs₂ ++ ys₂
++-cong xs₁≈xs₂ ys₁≈ys₂ {x} =
x ∈ xs₁ ++ ys₁ ↔⟨ sym $ ++↔ ⟩
(x ∈ xs₁ ⊎ x ∈ ys₁) ∼⟨ xs₁≈xs₂ ⊎-cong ys₁≈ys₂ ⟩
(x ∈ xs₂ ⊎ x ∈ ys₂) ↔⟨ ++↔ ⟩
x ∈ xs₂ ++ ys₂ ∎
where open Related.EquationalReasoning
module _ {a k} {A : Set a} {xss yss : List (List A)} where
concat-cong : xss ∼[ k ] yss → concat xss ∼[ k ] concat yss
concat-cong xss≈yss {x} =
x ∈ concat xss ↔⟨ sym concat↔ ⟩
Any (Any (x ≡_)) xss ∼⟨ Any-cong (λ _ → _ ∎) xss≈yss ⟩
Any (Any (x ≡_)) yss ↔⟨ concat↔ ⟩
x ∈ concat yss ∎
where open Related.EquationalReasoning
module _ {ℓ k} {A B : Set ℓ} {xs ys} {f g : A → List B} where
>>=-cong : xs ∼[ k ] ys → (∀ x → f x ∼[ k ] g x) →
(xs >>= f) ∼[ k ] (ys >>= g)
>>=-cong xs≈ys f≈g {x} =
x ∈ (xs >>= f) ↔⟨ sym >>=↔ ⟩
Any (λ y → x ∈ f y) xs ∼⟨ Any-cong (λ x → f≈g x) xs≈ys ⟩
Any (λ y → x ∈ g y) ys ↔⟨ >>=↔ ⟩
x ∈ (ys >>= g) ∎
where open Related.EquationalReasoning
module _ {ℓ k} {A B : Set ℓ} {fs gs : List (A → B)} {xs ys} where
⊛-cong : fs ∼[ k ] gs → xs ∼[ k ] ys → (fs ⊛ xs) ∼[ k ] (gs ⊛ ys)
⊛-cong fs≈gs xs≈ys =
>>=-cong fs≈gs λ f →
>>=-cong xs≈ys λ x →
_ ∎
where open Related.EquationalReasoning
module _ {ℓ k} {A B : Set ℓ} {xs₁ xs₂ : List A} {ys₁ ys₂ : List B} where
⊗-cong : xs₁ ∼[ k ] xs₂ → ys₁ ∼[ k ] ys₂ →
(xs₁ ⊗ ys₁) ∼[ k ] (xs₂ ⊗ ys₂)
⊗-cong xs₁≈xs₂ ys₁≈ys₂ =
⊛-cong (⊛-cong (Ord.refl {x = [ _,_ ]}) xs₁≈xs₂) ys₁≈ys₂
commutativeMonoid : ∀ {a} → Symmetric-kind → Set a →
CommutativeMonoid _ _
commutativeMonoid {a} k A = record
{ Carrier = List A
; _≈_ = _∼[ ⌊ k ⌋ ]_
; _∙_ = _++_
; ε = []
; isCommutativeMonoid = record
{ isSemigroup = record
{ isEquivalence = Eq.isEquivalence
; assoc = λ xs ys zs →
Eq.reflexive (LP.++-assoc xs ys zs)
; ∙-cong = ++-cong
}
; identityˡ = λ xs {x} → x ∈ xs ∎
; comm = λ xs ys {x} →
x ∈ xs ++ ys ↔⟨ ++↔++ xs ys ⟩
x ∈ ys ++ xs ∎
}
}
where open Related.EquationalReasoning
empty-unique : ∀ {k a} {A : Set a} {xs : List A} →
xs ∼[ ⌊ k ⌋→ ] [] → xs ≡ []
empty-unique {xs = []} _ = P.refl
empty-unique {xs = _ ∷ _} ∷∼[] with ⇒→ ∷∼[] (here P.refl)
... | ()
++-idempotent : ∀ {a} {A : Set a} → Idempotent (_∼[ set ]_) (_++_ {A = A})
++-idempotent {a} xs {x} =
x ∈ xs ++ xs ∼⟨ FE.equivalence ([ id , id ]′ ∘ _⟨$⟩_ (Inverse.from $ ++↔))
(_⟨$⟩_ (Inverse.to $ ++↔) ∘ inj₁) ⟩
x ∈ xs ∎
where open Related.EquationalReasoning
>>=-left-distributive :
∀ {ℓ} {A B : Set ℓ} (xs : List A) {f g : A → List B} →
(xs >>= λ x → f x ++ g x) ∼[ bag ] (xs >>= f) ++ (xs >>= g)
>>=-left-distributive {ℓ} xs {f} {g} {y} =
y ∈ (xs >>= λ x → f x ++ g x) ↔⟨ sym $ >>=↔ ⟩
Any (λ x → y ∈ f x ++ g x) xs ↔⟨ sym (Any-cong (λ _ → ++↔) (_ ∎)) ⟩
Any (λ x → y ∈ f x ⊎ y ∈ g x) xs ↔⟨ sym $ ⊎↔ ⟩
(Any (λ x → y ∈ f x) xs ⊎ Any (λ x → y ∈ g x) xs) ↔⟨ >>=↔ ⟨ ×⊎.+-cong ⟩ >>=↔ ⟩
(y ∈ (xs >>= f) ⊎ y ∈ (xs >>= g)) ↔⟨ ++↔ ⟩
y ∈ (xs >>= f) ++ (xs >>= g) ∎
where open Related.EquationalReasoning
⊛-left-distributive :
∀ {ℓ} {A B : Set ℓ} (fs : List (A → B)) xs₁ xs₂ →
(fs ⊛ (xs₁ ++ xs₂)) ∼[ bag ] (fs ⊛ xs₁) ++ (fs ⊛ xs₂)
⊛-left-distributive {B = B} fs xs₁ xs₂ = begin
fs ⊛ (xs₁ ++ xs₂) ≡⟨ P.refl ⟩
(fs >>= λ f → xs₁ ++ xs₂ >>= return ∘ f) ≡⟨ (MP.cong (P.refl {x = fs}) λ f →
MP.right-distributive xs₁ xs₂ (return ∘ f)) ⟩
(fs >>= λ f → (xs₁ >>= return ∘ f) ++
(xs₂ >>= return ∘ f)) ≈⟨ >>=-left-distributive fs ⟩
(fs >>= λ f → xs₁ >>= return ∘ f) ++
(fs >>= λ f → xs₂ >>= return ∘ f) ≡⟨ P.refl ⟩
(fs ⊛ xs₁) ++ (fs ⊛ xs₂) ∎
where open EqR ([ bag ]-Equality B)
private
¬-drop-cons : ∀ {a} {A : Set a} {x : A} →
¬ (∀ {xs ys} → x ∷ xs ∼[ set ] x ∷ ys → xs ∼[ set ] ys)
¬-drop-cons {x = x} drop-cons
with FE.Equivalence.to x∼[] ⟨$⟩ here P.refl
where
x,x≈x : (x ∷ x ∷ []) ∼[ set ] [ x ]
x,x≈x = ++-idempotent [ x ]
x∼[] : [ x ] ∼[ set ] []
x∼[] = drop-cons x,x≈x
... | ()
drop-cons : ∀ {a} {A : Set a} {x : A} {xs ys} →
x ∷ xs ∼[ bag ] x ∷ ys → xs ∼[ bag ] ys
drop-cons {A = A} {x} {xs} {ys} x∷xs≈x∷ys {z} = record
{ to = P.→-to-⟶ $ f x∷xs≈x∷ys
; from = P.→-to-⟶ $ f $ Inv.sym x∷xs≈x∷ys
; inverse-of = record
{ left-inverse-of = f∘f x∷xs≈x∷ys
; right-inverse-of = f∘f $ Inv.sym x∷xs≈x∷ys
}
}
where
open Inverse
open P.≡-Reasoning
f : ∀ {xs ys z} → (z ∈ x ∷ xs) ↔ (z ∈ x ∷ ys) → z ∈ xs → z ∈ ys
f inv z∈xs with to inv ⟨$⟩ there z∈xs | left-inverse-of inv (there z∈xs)
f inv z∈xs | there z∈ys | left⁺ = z∈ys
f inv z∈xs | here z≡x | left⁺ with to inv ⟨$⟩ here z≡x | left-inverse-of inv (here z≡x)
f inv z∈xs | here z≡x | left⁺ | there z∈ys | left⁰ = z∈ys
f inv z∈xs | here P.refl | left⁺ | here P.refl | left⁰ with begin
here P.refl ≡⟨ P.sym left⁰ ⟩
from inv ⟨$⟩ here P.refl ≡⟨ left⁺ ⟩
there z∈xs ∎
... | ()
f∘f : ∀ {xs ys z}
(inv : (z ∈ x ∷ xs) ↔ (z ∈ x ∷ ys)) (p : z ∈ xs) →
f (Inv.sym inv) (f inv p) ≡ p
f∘f inv z∈xs with to inv ⟨$⟩ there z∈xs | left-inverse-of inv (there z∈xs)
f∘f inv z∈xs | there z∈ys | left⁺ with from inv ⟨$⟩ there z∈ys | right-inverse-of inv (there z∈ys)
f∘f inv z∈xs | there z∈ys | P.refl | .(there z∈xs) | _ = P.refl
f∘f inv z∈xs | here z≡x | left⁺ with to inv ⟨$⟩ here z≡x | left-inverse-of inv (here z≡x)
f∘f inv z∈xs | here z≡x | left⁺ | there z∈ys | left⁰ with from inv ⟨$⟩ there z∈ys | right-inverse-of inv (there z∈ys)
f∘f inv z∈xs | here z≡x | left⁺ | there z∈ys | P.refl | .(here z≡x) | _ with from inv ⟨$⟩ here z≡x
| right-inverse-of inv (here z≡x)
f∘f inv z∈xs | here z≡x | P.refl | there z∈ys | P.refl | .(here z≡x) | _ | .(there z∈xs) | _ = P.refl
f∘f inv z∈xs | here P.refl | left⁺ | here P.refl | left⁰ with begin
here P.refl ≡⟨ P.sym left⁰ ⟩
from inv ⟨$⟩ here P.refl ≡⟨ left⁺ ⟩
there z∈xs ∎
... | ()