------------------------------------------------------------------------
-- The Agda standard library
--
-- The sublist relation over setoid equality.
------------------------------------------------------------------------

open import Relation.Binary

module Data.List.Relation.Sublist.Setoid {c } (S : Setoid c ) where

open import Data.Bool using (Bool; true; false)
open import Data.List
open import Data.List.Any using (Any; here; there)
open import Data.List.Any.Properties using (map↔)
open import Data.List.Membership.Setoid S
open import Data.List.Membership.Setoid.Properties
open import Data.List.Relation.Equality.Setoid S
open import Data.Product as Prod using ()
open import Function using (_∘_; _∘′_; id)
open import Function.Equality using (_⟨$⟩_)
open import Function.Inverse as Inv using (_↔_; module Inverse)
open import Relation.Nullary using (¬_)
open import Relation.Binary.InducedPreorders using (InducedPreorder₂)

open Setoid S renaming (Carrier to A)

------------------------------------------------------------------------
-- Definitions

infix 4 _⊆_ _⊈_

_⊆_ : List A  List A  Set _
xs  ys =  {x}  x  xs  x  ys

_⊈_ : List A  List A  Set _
xs  ys = ¬ xs  ys