------------------------------------------------------------------------
-- The Agda standard library
--
-- Pointers into star-lists
------------------------------------------------------------------------

module Data.Star.Pointer {} {I : Set } where

open import Data.Maybe.Base using (Maybe; nothing; just)
open import Data.Star.Decoration
open import Data.Unit
open import Function
open import Level
open import Relation.Binary
open import Relation.Binary.Closure.ReflexiveTransitive

-- Pointers into star-lists. The edge pointed to is decorated with Q,
-- while other edges are decorated with P.

data Pointer {r} {T : Rel I r} (P Q : EdgePred T)
             : Rel (Maybe (NonEmpty (Star T))) r where
  step :  {i j k} {x : T i j} {xs : Star T j k}
         (p : P x)  Pointer P Q (just (nonEmpty (x  xs)))
                                 (just (nonEmpty xs))
  done :  {i j k} {x : T i j} {xs : Star T j k}
         (q : Q x)  Pointer P Q (just (nonEmpty (x  xs))) nothing

-- Any P Q xs means that some edge in xs satisfies Q, while all
-- preceding edges satisfy P. A star-list of type Any Always Always xs
-- is basically a prefix of xs; the existence of such a prefix
-- guarantees that xs is non-empty.

Any :  {r} {T : Rel I r} (P Q : EdgePred T)  EdgePred (Star T)
Any P Q xs = Star (Pointer P Q) (just (nonEmpty xs)) nothing

this :  {r} {T : Rel I r} {P Q : EdgePred T}
       {i j k} {x : T i j} {xs : Star T j k} 
       Q x  Any P Q (x  xs)
this q = done q  ε

that :  {r} {T : Rel I r} {P Q : EdgePred T}
       {i j k} {x : T i j} {xs : Star T j k} 
       P x  Any P Q xs  Any P Q (x  xs)
that p = _◅_ (step p)

-- Safe lookup.

data Result {r : Level} (T : Rel I r) (P Q : EdgePred T) : Set (  r) where
  result :  {i j} {x : T i j} (p : P x) (q : Q x)  Result T P Q

-- The first argument points out which edge to extract. The edge is
-- returned, together with proofs that it satisfies Q and R.

lookup :  {r} {T : Rel I r} {P Q R : EdgePred T} {i j} {xs : Star T i j} 
         Any P Q xs  All R xs  Result T Q R
lookup (done q  ε)      ( r  _)  = result q r
lookup (step p  ps)     ( r  rs) = lookup ps rs
lookup (done _  ()  _) _

-- We can define something resembling init.

prefixIndex :  {r} {T : Rel I r} {P Q : EdgePred T}
              {i j} {xs : Star T i j}  Any P Q xs  I
prefixIndex (done {i = i} q  _)  = i
prefixIndex (step p          ps) = prefixIndex ps

prefix :  {r} {T : Rel I r} {P Q : EdgePred T}
         {i j} {xs : Star T i j} 
         (ps : Any P Q xs)  Star T i (prefixIndex ps)
prefix (done q          _)  = ε
prefix (step {x = x} p  ps) = x  prefix ps

-- Here we are taking the initial segment of ps (all elements but the
-- last, i.e. all edges satisfying P).

init :  {r} {T : Rel I r} {P Q : EdgePred T}
       {i j} {xs : Star T i j} 
       (ps : Any P Q xs)  All P (prefix ps)
init (done q  _)  = ε
init (step p  ps) =  p  init ps

-- One can simplify the implementation by not carrying around the
-- indices in the type:

last :  {r} {T : Rel I r} {P Q : EdgePred T}
       {i j} {xs : Star T i j} 
       Any P Q xs  NonEmptyEdgePred T Q
last ps with lookup ps (decorate (const (lift tt)) _)
... | result q _ = nonEmptyEdgePred q