module Data.Table.Properties where
open import Data.Table
open import Data.Table.Relation.Equality
open import Data.Bool using (true; false; if_then_else_)
open import Data.Fin using (Fin; suc; zero; _≟_)
open import Data.List as L using (List; _∷_; [])
open import Data.List.Any using (here; there; index)
open import Data.List.Membership.Propositional using (_∈_)
open import Data.Product as Product using (Σ; ∃; _,_; proj₁; proj₂)
open import Data.Vec as V using (Vec; _∷_; [])
import Data.Vec.Properties as VP
open import Function using (_∘_; flip)
open import Function.Inverse using (Inverse)
open import Relation.Binary.PropositionalEquality as P using (_≡_)
open import Relation.Nullary using (yes; no)
module _ {a} {A : Set a} where
fromList-∈ : ∀ {xs : List A} (i : Fin (L.length xs)) → lookup (fromList xs) i ∈ xs
fromList-∈ {[]} ()
fromList-∈ {x ∷ xs} zero = here P.refl
fromList-∈ {x ∷ xs} (suc i) = there (fromList-∈ i)
index-fromList-∈ : ∀ {xs i} → index (fromList-∈ {xs} i) ≡ i
index-fromList-∈ {[]} {()}
index-fromList-∈ {x ∷ xs} {zero} = P.refl
index-fromList-∈ {x ∷ xs} {suc i} = P.cong suc index-fromList-∈
fromList-index : ∀ {xs} {x : A} (x∈xs : x ∈ xs) → lookup (fromList xs) (index x∈xs) ≡ x
fromList-index (here px) = P.sym px
fromList-index (there x∈xs) = fromList-index x∈xs
lookup∈ : ∀ {xs : List A} (i : Fin (L.length xs)) → ∃ λ x → x ∈ xs
lookup∈ i = _ , fromList-∈ i
private
fromVec : ∀ {n} → Vec A n → Table A n
fromVec = tabulate ∘ flip V.lookup
toVec : ∀ {n} → Table A n → Vec A n
toVec = V.tabulate ∘ lookup
↔Vec : ∀ {n} → Inverse (≡-setoid A n) (P.setoid (Vec A n))
↔Vec = record
{ to = record { _⟨$⟩_ = toVec ; cong = VP.tabulate-cong }
; from = P.→-to-⟶ fromVec
; inverse-of = record
{ left-inverse-of = VP.lookup∘tabulate ∘ lookup
; right-inverse-of = VP.tabulate∘lookup
}
}
select-const : ∀ {n} (z : A) (i : Fin n) t → select z i t ≗ select z i (replicate (lookup t i))
select-const z i t j with j ≟ i
... | yes _ = P.refl
... | no _ = P.refl