------------------------------------------------------------------------
-- The Agda standard library
--
-- Homogeneously-indexed binary relations
------------------------------------------------------------------------

module Relation.Binary.Indexed.Homogeneous where

open import Level using (Level; _⊔_)
import Relation.Binary as B
import Relation.Binary.Indexed as I
open import Relation.Binary.PropositionalEquality as P using (_≡_)

-- Heterogenous, homogenously-indexed relations

REL :  {i a₁ a₂} {I : Set i}  (I  Set a₁)  (I  Set a₂)  ( : Level)  Set _
REL A₁ A₂  =  {i}  A₁ i  A₂ i  Set 

-- Homogeneous, homogenously-indexed relations

Rel :  {i a} {I : Set i}  (I  Set a)  ( : Level)  Set _
Rel A = REL A A


module _ {i a₁ a₂} {I : Set i} {A₁ : I  Set a₁} {A₂ : I  Set a₂} where

  OverPath
    :  {}  REL A₁ A₂ 
     {i j : I}  i  j  B.REL (A₁ i) (A₂ j) 
  OverPath  P.refl = 

  toHetIndexed :  {}  REL A₁ A₂   I.REL A₁ A₂ (i  )
  toHetIndexed _∼_ {i} {j} x y = (p : i  j)  OverPath _∼_ p x y

  fromHetIndexed :  {}  I.REL A₁ A₂   REL A₁ A₂ 
  fromHetIndexed _∼_ {i} = _∼_ {i} {i}


module _ {i a} {I : Set i} (A : I  Set a) {} (_∼_ : Rel A ) where
  Reflexive : Set _
  Reflexive =  {i}  B.Reflexive (_∼_ {i})

  Symmetric : Set _
  Symmetric =  {i}  B.Symmetric (_∼_ {i})

  Transitive : Set _
  Transitive =  {i}  B.Transitive (_∼_ {i})

  IsEquivalence : Set _
  IsEquivalence =  {i}  B.IsEquivalence (_∼_ {i})