open import Relation.Binary
module Relation.Binary.Properties.Poset
{p₁ p₂ p₃} (P : Poset p₁ p₂ p₃) where
open Relation.Binary.Poset P hiding (trans)
import Relation.Binary.NonStrictToStrict as Conv
open Conv _≈_ _≤_
open import Relation.Binary.Properties.Preorder preorder
open import Function using (flip)
invIsPartialOrder : IsPartialOrder _≈_ (flip _≤_)
invIsPartialOrder = record
{ isPreorder = invIsPreorder
; antisym = flip antisym
}
invPoset : Poset p₁ p₂ p₃
invPoset = record { isPartialOrder = invIsPartialOrder }
strictPartialOrder : StrictPartialOrder _ _ _
strictPartialOrder = record
{ isStrictPartialOrder = record
{ isEquivalence = isEquivalence
; irrefl = <-irrefl
; trans = <-trans isPartialOrder
; <-resp-≈ = <-resp-≈ isEquivalence ≤-resp-≈
}
}
open StrictPartialOrder strictPartialOrder