open import Relation.Binary.EqReasoning as EqR using (_IsRelatedTo_)
open import Relation.Binary
open import Relation.Binary.Core
open Setoid
module Relation.Binary.SetoidReasoning where
infix 1 begin⟨_⟩_
infixr 2 _≈⟨_⟩_ _≡⟨_⟩_
infix 3 _∎
begin⟨_⟩_ : ∀ {c l} (S : Setoid c l) → {x y : Carrier S} → _IsRelatedTo_ S x y → _≈_ S x y
begin⟨_⟩_ S p = EqR.begin_ S p
_∎ : ∀ {c l} {S : Setoid c l} → (x : Carrier S) → _IsRelatedTo_ S x x
_∎ {S = S} = EqR._∎ S
_≈⟨_⟩_ : ∀ {c l} {S : Setoid c l} → (x : Carrier S) → {y z : Carrier S} → _≈_ S x y → _IsRelatedTo_ S y z → _IsRelatedTo_ S x z
_≈⟨_⟩_ {S = S} = EqR._≈⟨_⟩_ S
_≡⟨_⟩_ : ∀ {c l} {S : Setoid c l} → (x : Carrier S) → {y z : Carrier S} → x ≡ y → _IsRelatedTo_ S y z → _IsRelatedTo_ S x z
_≡⟨_⟩_ {S = S} = EqR._≡⟨_⟩_ S