------------------------------------------------------------------------
-- The Agda standard library
--
-- Some derivable properties
------------------------------------------------------------------------

{-# OPTIONS --without-K --safe #-}

open import Algebra

module Algebra.Properties.AbelianGroup
         {g₁ g₂} (G : AbelianGroup g₁ g₂) where

open AbelianGroup G
open import Function
open import Relation.Binary.Reasoning.Setoid setoid

------------------------------------------------------------------------
-- Publicly re-export group properties

open import Algebra.Properties.Group group public

------------------------------------------------------------------------
-- Properties of abelian groups

private

  lemma₁ :  x y  x  y  x ⁻¹  y
  lemma₁ x y = begin
    x  y  x ⁻¹    ≈⟨ ∙-congʳ $ comm _ _ 
    y  x  x ⁻¹    ≈⟨ assoc _ _ _ 
    y  (x  x ⁻¹)  ≈⟨ ∙-congˡ $ inverseʳ _ 
    y  ε           ≈⟨ identityʳ _ 
    y               

  lemma₂ :  x y  x  (y  (x  y) ⁻¹  y ⁻¹)  y ⁻¹
  lemma₂ x y = begin
    x  (y  (x  y) ⁻¹  y ⁻¹)  ≈˘⟨ assoc _ _ _ 
    x  (y  (x  y) ⁻¹)  y ⁻¹  ≈˘⟨ ∙-congʳ $ assoc _ _ _ 
    x  y  (x  y) ⁻¹  y ⁻¹    ≈⟨ ∙-congʳ $ inverseʳ _ 
    ε  y ⁻¹                     ≈⟨ identityˡ _ 
    y ⁻¹                         

⁻¹-∙-comm :  x y  x ⁻¹  y ⁻¹  (x  y) ⁻¹
⁻¹-∙-comm x y = begin
  x ⁻¹  y ⁻¹                         ≈⟨ comm _ _ 
  y ⁻¹  x ⁻¹                         ≈˘⟨ ∙-congʳ $ lemma₂ x y 
  x  (y  (x  y) ⁻¹  y ⁻¹)  x ⁻¹  ≈⟨ lemma₁ _ _ 
  y  (x  y) ⁻¹  y ⁻¹               ≈⟨ lemma₁ _ _ 
  (x  y) ⁻¹