{-# OPTIONS --without-K --safe #-}
module Relation.Binary.PropositionalEquality.Core where
open import Data.Product using (_,_)
open import Level
open import Relation.Binary.Core
open import Relation.Nullary using (¬_)
open import Agda.Builtin.Equality public
infix 4 _≢_
_≢_ : ∀ {a} {A : Set a} → Rel A a
x ≢ y = ¬ x ≡ y
module _ {a} {A : Set a} where
sym : Symmetric {A = A} _≡_
sym refl = refl
trans : Transitive {A = A} _≡_
trans refl eq = eq
subst : ∀ {p} → Substitutive {A = A} _≡_ p
subst P refl p = p
cong : ∀ {b} {B : Set b} (f : A → B) {x y} → x ≡ y → f x ≡ f y
cong f refl = refl
respˡ : ∀ {ℓ} (∼ : Rel A ℓ) → ∼ Respectsˡ _≡_
respˡ _∼_ refl x∼y = x∼y
respʳ : ∀ {ℓ} (∼ : Rel A ℓ) → ∼ Respectsʳ _≡_
respʳ _∼_ refl x∼y = x∼y
resp₂ : ∀ {ℓ} (∼ : Rel A ℓ) → ∼ Respects₂ _≡_
resp₂ _∼_ = respʳ _∼_ , respˡ _∼_
isEquivalence : IsEquivalence {A = A} _≡_
isEquivalence = record
{ refl = refl
; sym = sym
; trans = trans
}
module _ {a} {A : Set a} {x y : A} where
trans-reflʳ : (p : x ≡ y) → trans p refl ≡ p
trans-reflʳ refl = refl
trans-assoc : ∀ {z u} (p : x ≡ y) {q : y ≡ z} {r : z ≡ u} →
trans (trans p q) r ≡ trans p (trans q r)
trans-assoc refl = refl
trans-symˡ : (p : x ≡ y) → trans (sym p) p ≡ refl
trans-symˡ refl = refl
trans-symʳ : (p : x ≡ y) → trans p (sym p) ≡ refl
trans-symʳ refl = refl
module ≡-Reasoning {a} {A : Set a} where
infix 3 _∎
infixr 2 _≡⟨⟩_ _≡⟨_⟩_ _≡˘⟨_⟩_
infix 1 begin_
begin_ : ∀{x y : A} → x ≡ y → x ≡ y
begin_ x≡y = x≡y
_≡⟨⟩_ : ∀ (x {y} : A) → x ≡ y → x ≡ y
_ ≡⟨⟩ x≡y = x≡y
_≡⟨_⟩_ : ∀ (x {y z} : A) → x ≡ y → y ≡ z → x ≡ z
_ ≡⟨ x≡y ⟩ y≡z = trans x≡y y≡z
_≡˘⟨_⟩_ : ∀ (x {y z} : A) → y ≡ x → y ≡ z → x ≡ z
_ ≡˘⟨ y≡x ⟩ y≡z = trans (sym y≡x) y≡z
_∎ : ∀ (x : A) → x ≡ x
_∎ _ = refl