{-# OPTIONS --without-K --safe #-}
module Relation.Binary.Reasoning.MultiSetoid where
open import Relation.Binary
open import Relation.Binary.Reasoning.Setoid as EqR using (_IsRelatedTo_)
open import Relation.Binary.PropositionalEquality
open Setoid renaming (_≈_ to [_]_≈_)
infix 1 begin⟨_⟩_
infixr 2 _≈⟨_⟩_ _≡⟨_⟩_ _≡˘⟨_⟩_ _≡⟨⟩_
infix 3 _∎
begin⟨_⟩_ : ∀ {c l} (S : Setoid c l) {x y} → _IsRelatedTo_ S x y → [ S ] x ≈ y
begin⟨_⟩_ S p = EqR.begin_ S p
_≈⟨_⟩_ : ∀ {c l} {S : Setoid c l} x {y z} → [ S ] x ≈ y → _IsRelatedTo_ S y z → _IsRelatedTo_ S x z
_≈⟨_⟩_ {S = S} = EqR._≈⟨_⟩_ S
_≡⟨_⟩_ : ∀ {c l} {S : Setoid c l} x {y z} → x ≡ y → _IsRelatedTo_ S y z → _IsRelatedTo_ S x z
_≡⟨_⟩_ {S = S} = EqR._≡⟨_⟩_ S
_≡˘⟨_⟩_ : ∀ {c l} {S : Setoid c l} x {y z} → y ≡ x → _IsRelatedTo_ S y z → _IsRelatedTo_ S x z
_≡˘⟨_⟩_ {S = S} = EqR._≡˘⟨_⟩_ S
_≡⟨⟩_ : ∀ {c l} {S : Setoid c l} x {y} → _IsRelatedTo_ S x y → _IsRelatedTo_ S x y
_≡⟨⟩_ {S = S} = EqR._≡⟨⟩_ S
_∎ : ∀ {c l} {S : Setoid c l} x → _IsRelatedTo_ S x x
_∎ {S = S} = EqR._∎ S