------------------------------------------------------------------------
-- The Agda standard library
--
-- Convenient syntax for "equational reasoning" in multiple Setoids
------------------------------------------------------------------------

-- Example use:
--
--   open import Data.Maybe
--   open import Relation.Binary.Reasoning.MultiSetoid
--
--   begin⟨ S ⟩
--     x ≈⟨ drop-just (begin⟨ setoid S ⟩
--          just x ≈⟨ justx≈mz ⟩
--          mz     ≈⟨ mz≈justy ⟩
--          just y ∎)⟩
--     y ≈⟨ y≈z ⟩
--     z ∎

{-# OPTIONS --without-K --safe #-}

module Relation.Binary.Reasoning.MultiSetoid where

open import Relation.Binary
open import Relation.Binary.Reasoning.Setoid as EqR using (_IsRelatedTo_)
open import Relation.Binary.PropositionalEquality

open Setoid renaming (_≈_ to [_]_≈_)

infix 1 begin⟨_⟩_
infixr 2 _≈⟨_⟩_ _≡⟨_⟩_ _≡˘⟨_⟩_ _≡⟨⟩_
infix 3 _∎

begin⟨_⟩_ :  {c l} (S : Setoid c l) {x y}  _IsRelatedTo_ S x y  [ S ] x  y
begin⟨_⟩_ S p = EqR.begin_ S p

_≈⟨_⟩_ :  {c l} {S : Setoid c l} x {y z}  [ S ] x  y  _IsRelatedTo_ S y z  _IsRelatedTo_ S x z
_≈⟨_⟩_ {S = S} = EqR._≈⟨_⟩_ S

_≡⟨_⟩_ :  {c l} {S : Setoid c l} x {y z}  x  y  _IsRelatedTo_ S y z  _IsRelatedTo_ S x z
_≡⟨_⟩_ {S = S} = EqR._≡⟨_⟩_ S

_≡˘⟨_⟩_ :  {c l} {S : Setoid c l} x {y z}  y  x  _IsRelatedTo_ S y z  _IsRelatedTo_ S x z
_≡˘⟨_⟩_ {S = S} = EqR._≡˘⟨_⟩_ S

_≡⟨⟩_ :  {c l} {S : Setoid c l} x {y}  _IsRelatedTo_ S x y  _IsRelatedTo_ S x y
_≡⟨⟩_ {S = S} = EqR._≡⟨⟩_ S

_∎ :  {c l} {S : Setoid c l} x  _IsRelatedTo_ S x x
_∎ {S = S} = EqR._∎ S