{-# OPTIONS --without-K --safe --sized-types #-}
module Codata.Stream.Properties where
open import Size
open import Codata.Thunk as Thunk using (Thunk; force)
open import Codata.Stream
open import Codata.Stream.Bisimilarity
open import Data.Nat.Base
open import Data.Nat.GeneralisedArithmetic using (fold; fold-pull)
open import Data.List.Base as List using ([]; _∷_)
open import Data.List.NonEmpty as List⁺ using (List⁺; _∷_)
import Data.List.Relation.Binary.Equality.Propositional as Eq
open import Data.Product as Prod using (_,_)
open import Data.Vec as Vec using (_∷_)
open import Function
open import Relation.Binary.PropositionalEquality as P using (_≡_; _≢_)
module _ {a} {A : Set a} where
  lookup-repeat-identity : (n : ℕ) (a : A) → lookup n (repeat a) ≡ a
  lookup-repeat-identity zero    a = P.refl
  lookup-repeat-identity (suc n) a = lookup-repeat-identity n a
  take-repeat-identity : (n : ℕ) (a : A) → take n (repeat a) ≡ Vec.replicate a
  take-repeat-identity zero    a = P.refl
  take-repeat-identity (suc n) a = P.cong (a Vec.∷_) (take-repeat-identity n a)
  splitAt-repeat-identity : (n : ℕ) (a : A) → splitAt n (repeat a) ≡ (Vec.replicate a , repeat a)
  splitAt-repeat-identity zero    a = P.refl
  splitAt-repeat-identity (suc n) a = P.cong (Prod.map₁ (a ∷_)) (splitAt-repeat-identity n a)
  replicate-repeat : ∀ {i} (n : ℕ) (a : A) → i ⊢ List.replicate n a ++ repeat a ≈ repeat a
  replicate-repeat zero    a = refl
  replicate-repeat (suc n) a = P.refl ∷ λ where .force → replicate-repeat n a
  cycle-replicate : ∀ {i} (n : ℕ) (n≢0 : n ≢ 0) (a : A) → i ⊢ cycle (List⁺.replicate n n≢0 a) ≈ repeat a
  cycle-replicate {i} n n≢0 a = let as = List⁺.replicate n n≢0 a in begin
    cycle as                           ≡⟨⟩
    as ⁺++ _                           ≈⟨ ⁺++⁺ Eq.≋-refl (λ where .force → cycle-replicate n n≢0 a) ⟩
    as ⁺++ (λ where .force → repeat a) ≈⟨ P.refl ∷ (λ where .force → replicate-repeat (pred n) a) ⟩
    repeat a                           ∎ where open ≈-Reasoning
module _ {a b} {A : Set a} {B : Set b} where
  map-repeat : ∀ (f : A → B) a {i} → i ⊢ map f (repeat a) ≈ repeat (f a)
  map-repeat f a = P.refl ∷ λ where .force → map-repeat f a
  ap-repeat : ∀ (f : A → B) a {i} → i ⊢ ap (repeat f) (repeat a) ≈ repeat (f a)
  ap-repeat f a = P.refl ∷ λ where .force → ap-repeat f a
  ap-repeatˡ : ∀ (f : A → B) as {i} → i ⊢ ap (repeat f) as ≈ map f as
  ap-repeatˡ f (a ∷ as) = P.refl ∷ λ where .force → ap-repeatˡ f (as .force)
  ap-repeatʳ : ∀ (fs : Stream (A → B) ∞) (a : A) {i} → i ⊢ ap fs (repeat a) ≈ map (_$ a) fs
  ap-repeatʳ (f ∷ fs) a = P.refl ∷ λ where .force → ap-repeatʳ (fs .force) a
  map-++ : ∀ {i} (f : A → B) as xs → i ⊢ map f (as ++ xs) ≈ List.map f as ++ map f xs
  map-++ f []       xs = refl
  map-++ f (a ∷ as) xs = P.refl ∷ λ where .force → map-++ f as xs
  map-⁺++ : ∀ {i} (f : A → B) as xs → i ⊢ map f (as ⁺++ xs) ≈ List⁺.map f as ⁺++ Thunk.map (map f) xs
  map-⁺++ f (a ∷ as) xs = P.refl ∷ (λ where .force → map-++ f as (xs .force))
  map-cycle : ∀ {i} (f : A → B) as → i ⊢ map f (cycle as) ≈ cycle (List⁺.map f as)
  map-cycle f as = begin
    map f (cycle as)       ≈⟨ map-⁺++ f as _ ⟩
    List⁺.map f as ⁺++ _   ≈⟨ ⁺++⁺ Eq.≋-refl (λ where .force → map-cycle f as) ⟩
    cycle (List⁺.map f as) ∎ where open ≈-Reasoning
module _ {a} {A : Set a} where
 map-identity : ∀ (as : Stream A ∞) {i} → i ⊢ map id as ≈ as
 map-identity (a ∷ as) = P.refl ∷ λ where .force → map-identity (as .force)
module _ {a b c} {A : Set a} {B : Set b} {C : Set c} where
 map-map-fusion : ∀ (f : A → B) (g : B → C) as {i} → i ⊢ map g (map f as) ≈ map (g ∘ f) as
 map-map-fusion f g (a ∷ as) = P.refl ∷ λ where .force → map-map-fusion f g (as .force)
module _ {a b} {A : Set a} {B : Set b} where
  splitAt-map : ∀ n (f : A → B) xs →
    splitAt n (map f xs) ≡ Prod.map (Vec.map f) (map f) (splitAt n xs)
  splitAt-map zero    f xs       = P.refl
  splitAt-map (suc n) f (x ∷ xs) =
    P.cong (Prod.map₁ (f x Vec.∷_)) (splitAt-map n f (xs .force))
module _ {a} {A : Set a} where
  lookup-iterate-identity : ∀ n f (a : A) → lookup n (iterate f a) ≡ fold a f n
  lookup-iterate-identity zero     f a = P.refl
  lookup-iterate-identity (suc n)  f a = begin
    lookup (suc n) (iterate f a) ≡⟨⟩
    lookup n (iterate f (f a))   ≡⟨ lookup-iterate-identity n f (f a) ⟩
    fold (f a) f n               ≡⟨ fold-pull (const ∘′ f) (f a) P.refl (λ _ → P.refl) n ⟩
    f (fold a f n)               ≡⟨⟩
    fold a f (suc n)             ∎ where open P.≡-Reasoning
repeat-ap-identity = ap-repeatˡ
{-# WARNING_ON_USAGE repeat-ap-identity
"Warning: repeat-ap-identity was deprecated in v1.1.
Please use ap-repeatˡ instead."
#-}
ap-repeat-identity = ap-repeatʳ
{-# WARNING_ON_USAGE ap-repeat-identity
"Warning: ap-repeat-identity was deprecated in v1.1.
Please use ap-repeatʳ instead."
#-}
ap-repeat-commute = ap-repeat
{-# WARNING_ON_USAGE ap-repeat-commute
"Warning: ap-repeat-commute was deprecated in v1.1.
Please use ap-repeat instead."
#-}
map-repeat-commute = map-repeat
{-# WARNING_ON_USAGE map-repeat-commute
"Warning: map-repeat-commute was deprecated in v1.1.
Please use map-repeat instead."
#-}