{-# OPTIONS --without-K --safe #-}
module Data.Container.Combinator.Properties where
open import Axiom.Extensionality.Propositional using (Extensionality)
open import Data.Container.Core
open import Data.Container.Combinator
open import Data.Container.Relation.Unary.Any
open import Data.Empty using (⊥-elim)
open import Data.Product as Prod using (∃; _,_; proj₁; proj₂; <_,_>; uncurry; curry)
open import Data.Sum as S using (inj₁; inj₂; [_,_]′; [_,_])
open import Function as F using (_∘′_)
open import Function.Inverse as Inv using (_↔_; inverse; module Inverse)
open import Level using (_⊔_; lower)
open import Relation.Binary.PropositionalEquality as P using (_≡_; _≗_)
module Identity where
correct : ∀ {s p x} {X : Set x} → ⟦ id {s} {p} ⟧ X ↔ F.id X
correct {X = X} = inverse to from (λ _ → P.refl) (λ _ → P.refl)
where
to : ⟦ id ⟧ X → F.id X
to xs = proj₂ xs _
from : F.id X → ⟦ id ⟧ X
from x = (_ , λ _ → x)
module Constant (ext : ∀ {ℓ ℓ′} → Extensionality ℓ ℓ′) where
correct : ∀ {x p y} (X : Set x) {Y : Set y} → ⟦ const {x} {p ⊔ y} X ⟧ Y ↔ F.const X Y
correct {x} {y} X {Y} = inverse proj₁ from from∘to λ _ → P.refl
where
from : X → ⟦ const X ⟧ Y
from = < F.id , F.const (⊥-elim ∘′ lower) >
from∘to : (x : ⟦ const X ⟧ Y) → from (proj₁ x) ≡ x
from∘to xs = P.cong (proj₁ xs ,_) (ext (λ x → ⊥-elim (lower x)))
module Composition {s₁ s₂ p₁ p₂} (C₁ : Container s₁ p₁) (C₂ : Container s₂ p₂) where
correct : ∀ {x} {X : Set x} → ⟦ C₁ ∘ C₂ ⟧ X ↔ (⟦ C₁ ⟧ F.∘ ⟦ C₂ ⟧) X
correct {X = X} = inverse to from (λ _ → P.refl) (λ _ → P.refl)
where
to : ⟦ C₁ ∘ C₂ ⟧ X → ⟦ C₁ ⟧ (⟦ C₂ ⟧ X)
to ((s , f) , g) = (s , < f , curry (g ∘′ any) >)
from : ⟦ C₁ ⟧ (⟦ C₂ ⟧ X) → ⟦ C₁ ∘ C₂ ⟧ X
from (s , f) = ((s , proj₁ F.∘ f) , uncurry (proj₂ F.∘ f) ∘′ ◇.proof)
module Product (ext : ∀ {ℓ ℓ′} → Extensionality ℓ ℓ′)
{s₁ s₂ p₁ p₂} (C₁ : Container s₁ p₁) (C₂ : Container s₂ p₂) where
correct : ∀ {x} {X : Set x} → ⟦ C₁ × C₂ ⟧ X ↔ (⟦ C₁ ⟧ X Prod.× ⟦ C₂ ⟧ X)
correct {X = X} = inverse to from from∘to (λ _ → P.refl)
where
to : ⟦ C₁ × C₂ ⟧ X → ⟦ C₁ ⟧ X Prod.× ⟦ C₂ ⟧ X
to ((s₁ , s₂) , f) = ((s₁ , f F.∘ inj₁) , (s₂ , f F.∘ inj₂))
from : ⟦ C₁ ⟧ X Prod.× ⟦ C₂ ⟧ X → ⟦ C₁ × C₂ ⟧ X
from ((s₁ , f₁) , (s₂ , f₂)) = ((s₁ , s₂) , [ f₁ , f₂ ]′)
from∘to : from F.∘ to ≗ F.id
from∘to (s , f) =
P.cong (s ,_) (ext [ (λ _ → P.refl) , (λ _ → P.refl) ])
module IndexedProduct {i s p} {I : Set i} (Cᵢ : I → Container s p) where
correct : ∀ {x} {X : Set x} → ⟦ Π I Cᵢ ⟧ X ↔ (∀ i → ⟦ Cᵢ i ⟧ X)
correct {X = X} = inverse to from (λ _ → P.refl) (λ _ → P.refl)
where
to : ⟦ Π I Cᵢ ⟧ X → ∀ i → ⟦ Cᵢ i ⟧ X
to (s , f) = λ i → (s i , λ p → f (i , p))
from : (∀ i → ⟦ Cᵢ i ⟧ X) → ⟦ Π I Cᵢ ⟧ X
from f = (proj₁ F.∘ f , uncurry (proj₂ F.∘ f))
module Sum {s₁ s₂ p} (C₁ : Container s₁ p) (C₂ : Container s₂ p) where
correct : ∀ {x} {X : Set x} → ⟦ C₁ ⊎ C₂ ⟧ X ↔ (⟦ C₁ ⟧ X S.⊎ ⟦ C₂ ⟧ X)
correct {X = X} = inverse to from from∘to to∘from
where
to : ⟦ C₁ ⊎ C₂ ⟧ X → ⟦ C₁ ⟧ X S.⊎ ⟦ C₂ ⟧ X
to (inj₁ s₁ , f) = inj₁ (s₁ , f)
to (inj₂ s₂ , f) = inj₂ (s₂ , f)
from : ⟦ C₁ ⟧ X S.⊎ ⟦ C₂ ⟧ X → ⟦ C₁ ⊎ C₂ ⟧ X
from = [ Prod.map inj₁ F.id , Prod.map inj₂ F.id ]′
from∘to : from F.∘ to ≗ F.id
from∘to (inj₁ s₁ , f) = P.refl
from∘to (inj₂ s₂ , f) = P.refl
to∘from : to F.∘ from ≗ F.id
to∘from = [ (λ _ → P.refl) , (λ _ → P.refl) ]
module IndexedSum {i s p} {I : Set i} (C : I → Container s p) where
correct : ∀ {x} {X : Set x} → ⟦ Σ I C ⟧ X ↔ (∃ λ i → ⟦ C i ⟧ X)
correct {X = X} = inverse to from (λ _ → P.refl) (λ _ → P.refl)
where
to : ⟦ Σ I C ⟧ X → ∃ λ i → ⟦ C i ⟧ X
to ((i , s) , f) = (i , (s , f))
from : (∃ λ i → ⟦ C i ⟧ X) → ⟦ Σ I C ⟧ X
from (i , (s , f)) = ((i , s) , f)
module ConstantExponentiation {i s p} {I : Set i} (C : Container s p) where
correct : ∀ {x} {X : Set x} → ⟦ const[ I ]⟶ C ⟧ X ↔ (I → ⟦ C ⟧ X)
correct = IndexedProduct.correct (F.const C)