{-# OPTIONS --without-K --safe --guardedness #-}
module Data.Container.Indexed.Combinator where
open import Axiom.Extensionality.Propositional using (Extensionality)
open import Data.Container.Indexed
open import Data.Empty using (⊥; ⊥-elim)
open import Data.Unit.Base using (⊤)
open import Data.Product as Prod hiding (Σ) renaming (_×_ to _⟨×⟩_)
open import Data.Sum renaming (_⊎_ to _⟨⊎⟩_)
open import Function as F hiding (id; const) renaming (_∘_ to _⟨∘⟩_)
open import Function.Inverse using (_↔̇_; inverse)
open import Level
open import Relation.Unary using (Pred; _⊆_; _∪_; _∩_; ⋃; ⋂)
renaming (_⟨×⟩_ to _⟪×⟫_; _⟨⊙⟩_ to _⟪⊙⟫_; _⟨⊎⟩_ to _⟪⊎⟫_)
open import Relation.Binary.PropositionalEquality as P
using (_≗_; refl)
id : ∀ {o c r} {O : Set o} → Container O O c r
id = F.const (Lift _ ⊤) ◃ (λ _ → Lift _ ⊤) / (λ {o} _ _ → o)
const : ∀ {i o c r} {I : Set i} {O : Set o} →
Pred O c → Container I O c r
const X = X ◃ (λ _ → Lift _ ⊥) / λ _ → ⊥-elim ⟨∘⟩ lower
_^⊥ : ∀ {i o c r} {I : Set i} {O : Set o} →
Container I O c r → Container I O (c ⊔ r) c
(C ◃ R / n) ^⊥ = record
{ Command = λ o → (c : C o) → R c
; Response = λ {o} _ → C o
; next = λ f c → n c (f c)
}
infixl 3 _⋊_
_⋊_ : ∀ {i o c r z} {I : Set i} {O : Set o} (C : Container I O c r)
(Z : Set z) → Container (I ⟨×⟩ Z) (O ⟨×⟩ Z) c r
C ◃ R / n ⋊ Z = C ⟨∘⟩ proj₁ ◃ R / λ {oz} c r → n c r , proj₂ oz
infixr 3 _⋉_
_⋉_ : ∀ {i o z c r} {I : Set i} {O : Set o} (Z : Set z)
(C : Container I O c r) → Container (Z ⟨×⟩ I) (Z ⟨×⟩ O) c r
Z ⋉ C ◃ R / n = C ⟨∘⟩ proj₂ ◃ R / λ {zo} c r → proj₁ zo , n c r
infixr 9 _∘_
_∘_ : ∀ {i j k c r} {I : Set i} {J : Set j} {K : Set k} →
Container J K c r → Container I J c r → Container I K _ _
C₁ ∘ C₂ = C ◃ R / n
where
C : ∀ k → Set _
C = ⟦ C₁ ⟧ (Command C₂)
R : ∀ {k} → ⟦ C₁ ⟧ (Command C₂) k → Set _
R (c , k) = ◇ C₁ {X = Command C₂} (Response C₂ ⟨∘⟩ proj₂) (_ , c , k)
n : ∀ {k} (c : ⟦ C₁ ⟧ (Command C₂) k) → R c → _
n (_ , f) (r₁ , r₂) = next C₂ (f r₁) r₂
infixr 2 _×_
_×_ : ∀ {i o c r} {I : Set i} {O : Set o} →
Container I O c r → Container I O c r → Container I O c r
(C₁ ◃ R₁ / n₁) × (C₂ ◃ R₂ / n₂) = record
{ Command = C₁ ∩ C₂
; Response = R₁ ⟪⊙⟫ R₂
; next = λ { (c₁ , c₂) → [ n₁ c₁ , n₂ c₂ ] }
}
Π : ∀ {x i o c r} {X : Set x} {I : Set i} {O : Set o} →
(X → Container I O c r) → Container I O _ _
Π {X = X} C = record
{ Command = ⋂ X (Command ⟨∘⟩ C)
; Response = ⋃[ x ∶ X ] λ c → Response (C x) (c x)
; next = λ { c (x , r) → next (C x) (c x) r }
}
infixr 1 _⊎_
_⊎_ : ∀ {i o c r} {I : Set i} {O : Set o} →
Container I O c r → Container I O c r → Container I O _ _
(C₁ ◃ R₁ / n₁) ⊎ (C₂ ◃ R₂ / n₂) = record
{ Command = C₁ ∪ C₂
; Response = R₁ ⟪⊎⟫ R₂
; next = [ n₁ , n₂ ]
}
Σ : ∀ {x i o c r} {X : Set x} {I : Set i} {O : Set o} →
(X → Container I O c r) → Container I O _ r
Σ {X = X} C = record
{ Command = ⋃ X (Command ⟨∘⟩ C)
; Response = λ { (x , c) → Response (C x) c }
; next = λ { (x , c) r → next (C x) c r }
}
infix 0 const[_]⟶_
const[_]⟶_ : ∀ {i o c r ℓ} {I : Set i} {O : Set o} →
Set ℓ → Container I O c r → Container I O _ _
const[ X ]⟶ C = Π {X = X} (F.const C)
module Identity where
correct : ∀ {o ℓ c r} {O : Set o} {X : Pred O ℓ} →
⟦ id {c = c}{r} ⟧ X ↔̇ F.id X
correct {X = X} = inverse to from (λ _ → refl) (λ _ → refl)
where
to : ∀ {x} → ⟦ id ⟧ X x → F.id X x
to xs = proj₂ xs _
from : ∀ {x} → F.id X x → ⟦ id ⟧ X x
from x = (_ , λ _ → x)
module Constant (ext : ∀ {ℓ} → Extensionality ℓ ℓ) where
correct : ∀ {i o ℓ₁ ℓ₂} {I : Set i} {O : Set o} (X : Pred O ℓ₁)
{Y : Pred O ℓ₂} → ⟦ const X ⟧ Y ↔̇ F.const X Y
correct X {Y} = record
{ to = P.→-to-⟶ to
; from = P.→-to-⟶ from
; inverse-of = record
{ right-inverse-of = λ _ → refl
; left-inverse-of = to∘from
}
}
where
to : ⟦ const X ⟧ Y ⊆ X
to = proj₁
from : X ⊆ ⟦ const X ⟧ Y
from = < F.id , F.const (⊥-elim ⟨∘⟩ lower) >
to∘from : _
to∘from xs = P.cong (proj₁ xs ,_) (ext (⊥-elim ⟨∘⟩ lower))
module Duality where
correct : ∀ {i o c r ℓ} {I : Set i} {O : Set o}
(C : Container I O c r) (X : Pred I ℓ) →
⟦ C ^⊥ ⟧ X ↔̇ (λ o → (c : Command C o) → ∃ λ r → X (next C c r))
correct C X = inverse (λ { (f , g) → < f , g > }) (λ f → proj₁ ⟨∘⟩ f , proj₂ ⟨∘⟩ f)
(λ _ → refl) (λ _ → refl)
module Composition where
correct : ∀ {i j k ℓ c r} {I : Set i} {J : Set j} {K : Set k}
(C₁ : Container J K c r) (C₂ : Container I J c r) →
{X : Pred I ℓ} → ⟦ C₁ ∘ C₂ ⟧ X ↔̇ (⟦ C₁ ⟧ ⟨∘⟩ ⟦ C₂ ⟧) X
correct C₁ C₂ {X} = inverse to from (λ _ → refl) (λ _ → refl)
where
to : ⟦ C₁ ∘ C₂ ⟧ X ⊆ ⟦ C₁ ⟧ (⟦ C₂ ⟧ X)
to ((c , f) , g) = (c , < f , curry g >)
from : ⟦ C₁ ⟧ (⟦ C₂ ⟧ X) ⊆ ⟦ C₁ ∘ C₂ ⟧ X
from (c , f) = ((c , proj₁ ⟨∘⟩ f) , uncurry (proj₂ ⟨∘⟩ f))
module Product (ext : ∀ {ℓ} → Extensionality ℓ ℓ) where
correct : ∀ {i o c r} {I : Set i} {O : Set o}
(C₁ C₂ : Container I O c r) {X} →
⟦ C₁ × C₂ ⟧ X ↔̇ (⟦ C₁ ⟧ X ∩ ⟦ C₂ ⟧ X)
correct C₁ C₂ {X} = inverse to from from∘to (λ _ → refl)
where
to : ⟦ C₁ × C₂ ⟧ X ⊆ ⟦ C₁ ⟧ X ∩ ⟦ C₂ ⟧ X
to ((c₁ , c₂) , k) = ((c₁ , k ⟨∘⟩ inj₁) , (c₂ , k ⟨∘⟩ inj₂))
from : ⟦ C₁ ⟧ X ∩ ⟦ C₂ ⟧ X ⊆ ⟦ C₁ × C₂ ⟧ X
from ((c₁ , k₁) , (c₂ , k₂)) = ((c₁ , c₂) , [ k₁ , k₂ ])
from∘to : from ⟨∘⟩ to ≗ F.id
from∘to (c , _) =
P.cong (c ,_) (ext [ (λ _ → refl) , (λ _ → refl) ])
module IndexedProduct where
correct : ∀ {x i o c r ℓ} {X : Set x} {I : Set i} {O : Set o}
(C : X → Container I O c r) {Y : Pred I ℓ} →
⟦ Π C ⟧ Y ↔̇ ⋂[ x ∶ X ] ⟦ C x ⟧ Y
correct {X = X} C {Y} = inverse to from (λ _ → refl) (λ _ → refl)
where
to : ⟦ Π C ⟧ Y ⊆ ⋂[ x ∶ X ] ⟦ C x ⟧ Y
to (c , k) = λ x → (c x , λ r → k (x , r))
from : ⋂[ x ∶ X ] ⟦ C x ⟧ Y ⊆ ⟦ Π C ⟧ Y
from f = (proj₁ ⟨∘⟩ f , uncurry (proj₂ ⟨∘⟩ f))
module Sum where
correct : ∀ {i o c r ℓ} {I : Set i} {O : Set o}
(C₁ C₂ : Container I O c r) {X : Pred I ℓ} →
⟦ C₁ ⊎ C₂ ⟧ X ↔̇ (⟦ C₁ ⟧ X ∪ ⟦ C₂ ⟧ X)
correct C₁ C₂ {X} = inverse to from from∘to to∘from
where
to : ⟦ C₁ ⊎ C₂ ⟧ X ⊆ ⟦ C₁ ⟧ X ∪ ⟦ C₂ ⟧ X
to (inj₁ c₁ , k) = inj₁ (c₁ , k)
to (inj₂ c₂ , k) = inj₂ (c₂ , k)
from : ⟦ C₁ ⟧ X ∪ ⟦ C₂ ⟧ X ⊆ ⟦ C₁ ⊎ C₂ ⟧ X
from = [ Prod.map inj₁ F.id , Prod.map inj₂ F.id ]
from∘to : from ⟨∘⟩ to ≗ F.id
from∘to (inj₁ _ , _) = refl
from∘to (inj₂ _ , _) = refl
to∘from : to ⟨∘⟩ from ≗ F.id
to∘from = [ (λ _ → refl) , (λ _ → refl) ]
module IndexedSum where
correct : ∀ {x i o c r ℓ} {X : Set x} {I : Set i} {O : Set o}
(C : X → Container I O c r) {Y : Pred I ℓ} →
⟦ Σ C ⟧ Y ↔̇ ⋃[ x ∶ X ] ⟦ C x ⟧ Y
correct {X = X} C {Y} = inverse to from (λ _ → refl) (λ _ → refl)
where
to : ⟦ Σ C ⟧ Y ⊆ ⋃[ x ∶ X ] ⟦ C x ⟧ Y
to ((x , c) , k) = (x , (c , k))
from : ⋃[ x ∶ X ] ⟦ C x ⟧ Y ⊆ ⟦ Σ C ⟧ Y
from (x , (c , k)) = ((x , c) , k)
module ConstantExponentiation where
correct : ∀ {x i o c r ℓ} {X : Set x} {I : Set i} {O : Set o}
(C : Container I O c r) {Y : Pred I ℓ} →
⟦ const[ X ]⟶ C ⟧ Y ↔̇ (⋂ X (F.const (⟦ C ⟧ Y)))
correct C {Y} = IndexedProduct.correct (F.const C) {Y}