------------------------------------------------------------------------ -- The Agda standard library -- -- Decidable pointwise equality over lists using propositional equality ------------------------------------------------------------------------ -- Note think carefully about using this module as pointwise -- propositional equality can usually be replaced with propositional -- equality. {-# OPTIONS --without-K --safe #-} open import Relation.Binary open import Relation.Binary.PropositionalEquality module Data.List.Relation.Binary.Equality.DecPropositional {a} {A : Set a} (_≟_ : Decidable {A = A} _≡_) where open import Data.List using (List) open import Data.List.Properties using (≡-dec) import Data.List.Relation.Binary.Equality.Propositional as PropositionalEq import Data.List.Relation.Binary.Equality.DecSetoid as DecSetoidEq ------------------------------------------------------------------------ -- Publically re-export everything from decSetoid and propositional -- equality open PropositionalEq public open DecSetoidEq (decSetoid _≟_) public using (_≋?_; ≋-isDecEquivalence; ≋-decSetoid) ------------------------------------------------------------------------ -- Additional proofs _≡?_ : Decidable (_≡_ {A = List A}) _≡?_ = ≡-dec _≟_