{-# OPTIONS --without-K --safe #-}
open import Relation.Binary using (Setoid)
module Data.List.Relation.Ternary.Interleaving.Setoid.Properties
{c ℓ} (S : Setoid c ℓ) where
open import Data.List.Base using (List; []; _∷_; filter; _++_)
open import Relation.Unary using (Decidable)
open import Relation.Nullary using (yes; no)
open import Relation.Nullary.Negation using (¬?)
open import Function
open import Data.List.Relation.Binary.Equality.Setoid S using (≋-refl)
open import Data.List.Relation.Ternary.Interleaving.Setoid S
open Setoid S renaming (Carrier to A)
open import Data.List.Relation.Ternary.Interleaving.Properties public
++-linear : (xs ys : List A) → Interleaving xs ys (xs ++ ys)
++-linear xs ys = ++-disjoint (left ≋-refl) (right ≋-refl)
module _ {p} {P : A → Set p} (P? : Decidable P) where
filter⁺ : ∀ xs → Interleaving (filter P? xs) (filter (¬? ∘ P?) xs) xs
filter⁺ [] = []
filter⁺ (x ∷ xs) with P? x
... | yes px = refl ∷ˡ filter⁺ xs
... | no ¬px = refl ∷ʳ filter⁺ xs