{-# OPTIONS --without-K --safe #-}
module Data.List.Relation.Unary.Linked.Properties where
open import Data.List hiding (any)
open import Data.List.Relation.Unary.AllPairs as AllPairs
using (AllPairs; []; _∷_)
open import Data.List.Relation.Unary.All using (All; []; _∷_)
open import Data.List.Relation.Unary.Linked as Linked
using (Linked; []; [-]; _∷_)
open import Data.Fin using (Fin)
open import Data.Fin.Properties using (suc-injective)
open import Data.Nat using (zero; suc; _<_; z≤n; s≤s)
open import Data.Nat.Properties using (≤-refl; ≤-pred; ≤-step)
open import Level using (Level)
open import Function using (_∘_; flip)
open import Relation.Binary using (Rel; Transitive; DecSetoid)
open import Relation.Binary.PropositionalEquality using (_≢_)
open import Relation.Unary using (Pred; Decidable)
open import Relation.Nullary using (yes; no)
private
variable
a b p ℓ : Level
A : Set a
B : Set b
module _ {R : Rel A ℓ} where
AllPairs⇒Linked : ∀ {xs} → AllPairs R xs → Linked R xs
AllPairs⇒Linked [] = []
AllPairs⇒Linked (px ∷ []) = [-]
AllPairs⇒Linked ((px ∷ _) ∷ py ∷ pxs) =
px ∷ (AllPairs⇒Linked (py ∷ pxs))
module _ {R : Rel A ℓ} (trans : Transitive R) where
Linked⇒All : ∀ {v x xs} → R v x →
Linked R (x ∷ xs) → All (R v) (x ∷ xs)
Linked⇒All Rvx [-] = Rvx ∷ []
Linked⇒All Rvx (Rxy ∷ Rxs) = Rvx ∷ Linked⇒All (trans Rvx Rxy) Rxs
Linked⇒AllPairs : ∀ {xs} → Linked R xs → AllPairs R xs
Linked⇒AllPairs [] = []
Linked⇒AllPairs [-] = [] ∷ []
Linked⇒AllPairs (Rxy ∷ Rxs) = Linked⇒All Rxy Rxs ∷ Linked⇒AllPairs Rxs
module _ {R : Rel A ℓ} {f : B → A} where
map⁺ : ∀ {xs} → Linked (λ x y → R (f x) (f y)) xs →
Linked R (map f xs)
map⁺ [] = []
map⁺ [-] = [-]
map⁺ (Rxy ∷ Rxs) = Rxy ∷ map⁺ Rxs
module _ {R : Rel A ℓ} where
applyUpTo⁺₁ : ∀ f n → (∀ {i} → suc i < n → R (f i) (f (suc i))) →
Linked R (applyUpTo f n)
applyUpTo⁺₁ f zero Rf = []
applyUpTo⁺₁ f (suc zero) Rf = [-]
applyUpTo⁺₁ f (suc (suc n)) Rf =
Rf (s≤s (s≤s z≤n)) ∷ (applyUpTo⁺₁ (f ∘ suc) (suc n) (Rf ∘ s≤s))
applyUpTo⁺₂ : ∀ f n → (∀ i → R (f i) (f (suc i))) →
Linked R (applyUpTo f n)
applyUpTo⁺₂ f n Rf = applyUpTo⁺₁ f n (λ _ → Rf _)
module _ {R : Rel A ℓ} where
applyDownFrom⁺₁ : ∀ f n → (∀ {i} → suc i < n → R (f (suc i)) (f i)) →
Linked R (applyDownFrom f n)
applyDownFrom⁺₁ f zero Rf = []
applyDownFrom⁺₁ f (suc zero) Rf = [-]
applyDownFrom⁺₁ f (suc (suc n)) Rf =
Rf ≤-refl ∷ applyDownFrom⁺₁ f (suc n) (Rf ∘ ≤-step)
applyDownFrom⁺₂ : ∀ f n → (∀ i → R (f (suc i)) (f i)) →
Linked R (applyDownFrom f n)
applyDownFrom⁺₂ f n Rf = applyDownFrom⁺₁ f n (λ _ → Rf _)