{-# OPTIONS --without-K --safe #-}
open import Algebra
open import Level
module Data.Product.Categorical.Left
  {a e} (A : RawMonoid a e) (b : Level) where
open import Data.Product
import Data.Product.Categorical.Left.Base as Base
open import Category.Applicative using (RawApplicative)
open import Category.Monad using (RawMonad; RawMonadT)
open import Function using (id; flip; _∘_; _∘′_)
import Function.Identity.Categorical as Id
open RawMonoid A
open Base Carrier b public
applicative : RawApplicative Productₗ
applicative = record
  { pure = ε ,_
  ; _⊛_  = zip _∙_ id
  }
monadT : RawMonadT (_∘′ Productₗ)
monadT M = record
  { return = pure ∘′ (ε ,_)
  ; _>>=_  = λ ma f → ma >>= uncurry λ a x → map₁ (a ∙_) <$> f x
  } where open RawMonad M
monad : RawMonad Productₗ
monad = monadT Id.monad
module TraversableA {F} (App : RawApplicative {a ⊔ b} F) where
  open RawApplicative App
  sequenceA : ∀ {A} → Productₗ (F A) → F (Productₗ A)
  sequenceA (x , fa) = (x ,_) <$> fa
  mapA : ∀ {A B} → (A → F B) → Productₗ A → F (Productₗ B)
  mapA f = sequenceA ∘ map₂ f
  forA : ∀ {A B} → Productₗ A → (A → F B) → F (Productₗ B)
  forA = flip mapA
module TraversableM {M} (Mon : RawMonad {a ⊔ b} M) where
  open RawMonad Mon
  open TraversableA rawIApplicative public
    renaming
    ( sequenceA to sequenceM
    ; mapA      to mapM
    ; forA      to forM
    )