{-# OPTIONS --without-K --safe #-}
module Data.W where
open import Level
open import Function
open import Data.Product hiding (map)
open import Data.Container.Core hiding (map)
open import Data.Container.Relation.Unary.All using (□; all)
open import Relation.Nullary
open import Agda.Builtin.Equality
data W {s p} (C : Container s p) : Set (s ⊔ p) where
sup : ⟦ C ⟧ (W C) → W C
module _ {s p} {C : Container s p} {s : Shape C} {f : Position C s → W C} where
sup-injective₁ : ∀ {t g} → sup (s , f) ≡ sup (t , g) → s ≡ t
sup-injective₁ refl = refl
module _ {s p} {C : Container s p} where
head : W C → Shape C
head (sup (x , f)) = x
tail : (x : W C) → Position C (head x) → W C
tail (sup (x , f)) = f
module _ {s₁ s₂ p₁ p₂} {C₁ : Container s₁ p₁} {C₂ : Container s₂ p₂}
(m : C₁ ⇒ C₂) where
map : W C₁ → W C₂
map (sup (x , f)) = sup (⟪ m ⟫ (x , λ p → map (f p)))
module _ {s p ℓ} {C : Container s p} (P : W C → Set ℓ)
(alg : ∀ {t} → □ C P t → P (sup t)) where
induction : (w : W C) → P w
induction (sup (s , f)) = alg $ all (induction ∘ f)
module _ {s p ℓ} {C : Container s p} (open Container C)
{P : Set ℓ} (alg : ⟦ C ⟧ P → P) where
foldr : W C → P
foldr = induction (const P) (alg ∘ -,_ ∘ □.proof)
module _ {s p} {C : Container s p} where
inhabited⇒empty : (∀ s → Position C s) → ¬ W C
inhabited⇒empty b = foldr ((_$ b _) ∘ proj₂)