------------------------------------------------------------------------ -- The Agda standard library -- -- Closures of a unary relation with respect to a binary one. ------------------------------------------------------------------------ {-# OPTIONS --without-K --safe #-} open import Relation.Binary module Relation.Unary.Closure.Base {a b} {A : Set a} (R : Rel A b) where open import Level open import Relation.Unary using (Pred) ------------------------------------------------------------------------ -- Definitions -- We start with the definition of □ ("box") which is named after the box -- modality in modal logic. `□ T x` states that all the elements one step -- away from `x` with respect to the relation R satisfy `T`. □ : ∀ {t} → Pred A t → Pred A (a ⊔ b ⊔ t) □ T x = ∀ {y} → R x y → T y -- Use cases of □ include: -- * The definition of the accessibility predicate corresponding to R: -- data Acc (x : A) : Set (a ⊔ b) where -- step : □ Acc x → Acc x -- * The characterization of stability under weakening: picking R to be -- `Data.List.Relation.Sublist.Inductive`, `∀ {Γ} → Tm Γ → □ T Γ` -- corresponds to the fact that we have a notion of weakening for `Tm`. -- Closed: whenever we have a value in one context, we can get one in any -- related context. record Closed {t} (T : Pred A t) : Set (a ⊔ b ⊔ t) where field next : ∀ {x} → T x → □ T x ------------------------------------------------------------------------ -- Properties module _ {t} {T : Pred A t} where reindex : Transitive R → ∀ {x y} → R x y → □ T x → □ T y reindex trans x∼y □Tx y∼z = □Tx (trans x∼y y∼z) -- Provided that R is reflexive and Transitive, □ is a comonad map : ∀ {u} {U : Pred A u} {x} → (∀ {x} → T x → U x) → □ T x → □ U x map f □Tx x~y = f (□Tx x~y) extract : Reflexive R → ∀ {x} → □ T x → T x extract refl □Tx = □Tx refl duplicate : Transitive R → ∀ {x} → □ T x → □ (□ T) x duplicate trans □Tx x∼y y∼z = □Tx (trans x∼y y∼z) -- Provided that R is transitive, □ is the Closure operator -- i.e. for any `T`, `□ T` is closed. □-closed : Transitive R → ∀ {t} {T : Pred A t} → Closed (□ T) □-closed trans = record { next = duplicate trans }