------------------------------------------------------------------------
-- The Agda standard library
--
-- Consequences of a monomorphism between ring-like structures
------------------------------------------------------------------------

-- See Data.Nat.Binary.Properties for examples of how this and similar
-- modules can be used to easily translate properties between types.

{-# OPTIONS --without-K --safe #-}

open import Algebra.Bundles
open import Algebra.Morphism.Structures
open import Relation.Binary.Core

module Algebra.Morphism.RingMonomorphism
  {a b ℓ₁ ℓ₂} {R₁ : RawRing a ℓ₁} {R₂ : RawRing b ℓ₂} {⟦_⟧}
  (isRingMonomorphism : IsRingMonomorphism R₁ R₂ ⟦_⟧)
  where

open IsRingMonomorphism isRingMonomorphism
open RawRing R₁ renaming (Carrier to A; _≈_ to _≈₁_)
open RawRing R₂ renaming
  ( Carrier to B; _≈_ to _≈₂_; _+_ to _⊕_
  ; _*_ to _⊛_; 1# to 1#₂; 0# to 0#₂; -_ to ⊝_)

open import Algebra.Definitions
open import Algebra.Structures
open import Data.Product
import Relation.Binary.Reasoning.Setoid as SetoidReasoning

------------------------------------------------------------------------
-- Re-export all properties of group and monoid monomorphisms

open import Algebra.Morphism.GroupMonomorphism
  +-isGroupMonomorphism renaming
  ( assoc to +-assoc
  ; comm to +-comm
  ; cong to +-cong
  ; idem to +-idem
  ; identity to +-identity; identityˡ to +-identityˡ; identityʳ to +-identityʳ
  ; cancel to +-cancel; cancelˡ to +-cancelˡ; cancelʳ to +-cancelʳ
  ; zero to +-zero; zeroˡ to +-zeroˡ; zeroʳ to +-zeroʳ
  ; isMagma to +-isMagma
  ; isSemigroup to +-isSemigroup
  ; isMonoid to +-isMonoid
  ; isSelectiveMagma to +-isSelectiveMagma
  ; isSemilattice to +-isSemilattice
  ; sel to +-sel
  ; isBand to +-isBand
  ; isCommutativeMonoid to +-isCommutativeMonoid
  ) public

open import Algebra.Morphism.MonoidMonomorphism
  *-isMonoidMonomorphism renaming
  ( assoc to *-assoc
  ; comm to *-comm
  ; cong to *-cong
  ; idem to *-idem
  ; identity to *-identity; identityˡ to *-identityˡ; identityʳ to *-identityʳ
  ; cancel to *-cancel; cancelˡ to *-cancelˡ; cancelʳ to *-cancelʳ
  ; zero to *-zero; zeroˡ to *-zeroˡ; zeroʳ to *-zeroʳ
  ; isMagma to *-isMagma
  ; isSemigroup to *-isSemigroup
  ; isMonoid to *-isMonoid
  ; isSelectiveMagma to *-isSelectiveMagma
  ; isSemilattice to *-isSemilattice
  ; sel to *-sel
  ; isBand to *-isBand
  ; isCommutativeMonoid to *-isCommutativeMonoid
  ) public

------------------------------------------------------------------------
-- Properties

module _ (+-isGroup : IsGroup  _≈₂_ _⊕_ 0#₂ ⊝_)
         (*-isMagma : IsMagma _≈₂_ _⊛_) where

  open IsGroup +-isGroup hiding (setoid; refl)
  open IsMagma *-isMagma renaming (∙-cong to ◦-cong)
  open SetoidReasoning setoid

  distribˡ : _DistributesOverˡ_ _≈₂_ _⊛_ _⊕_  _DistributesOverˡ_ _≈₁_ _*_ _+_
  distribˡ distribˡ x y z = injective (begin
     x * (y + z)                ≈⟨ *-homo x (y + z) 
     x    y + z              ≈⟨ ◦-cong refl (+-homo y z) 
     x   ( y    z )       ≈⟨ distribˡ  x   y   z  
     x    y    x    z  ≈˘⟨ ∙-cong (*-homo x y) (*-homo x z) 
     x * y    x * z          ≈˘⟨ +-homo (x * y) (x * z) 
     x * y + x * z  )

  distribʳ : _DistributesOverʳ_ _≈₂_ _⊛_ _⊕_  _DistributesOverʳ_ _≈₁_ _*_ _+_
  distribʳ distribˡ x y z = injective (begin
     (y + z) * x                ≈⟨ *-homo (y + z) x 
     y + z    x              ≈⟨ ◦-cong (+-homo y z) refl 
    ( y    z )   x        ≈⟨ distribˡ  x   y   z  
     y    x    z    x  ≈˘⟨ ∙-cong (*-homo y x) (*-homo z x) 
     y * x    z * x          ≈˘⟨ +-homo (y * x) (z * x) 
     y * x + z * x  )

  distrib : _DistributesOver_ _≈₂_ _⊛_ _⊕_  _DistributesOver_ _≈₁_ _*_ _+_
  distrib distrib = distribˡ (proj₁ distrib) , distribʳ (proj₂ distrib)

  zeroˡ : LeftZero _≈₂_ 0#₂ _⊛_  LeftZero _≈₁_ 0# _*_
  zeroˡ zeroˡ x = injective (begin
     0# * x      ≈⟨ *-homo 0# x 
     0#    x  ≈⟨ ◦-cong 0#-homo refl 
    0#₂   x     ≈⟨ zeroˡ  x  
    0#₂            ≈˘⟨ 0#-homo 
     0#          )

  zeroʳ : RightZero _≈₂_ 0#₂ _⊛_  RightZero _≈₁_ 0# _*_
  zeroʳ zeroʳ x = injective (begin
     x * 0#      ≈⟨ *-homo x 0# 
     x    0#  ≈⟨ ◦-cong refl 0#-homo 
     x   0#₂    ≈⟨ zeroʳ  x  
    0#₂            ≈˘⟨ 0#-homo 
     0#          )

  zero : Zero _≈₂_ 0#₂ _⊛_  Zero _≈₁_ 0# _*_
  zero zero = zeroˡ (proj₁ zero) , zeroʳ (proj₂ zero)

isRing : IsRing _≈₂_ _⊕_ _⊛_ ⊝_ 0#₂ 1#₂  IsRing _≈₁_ _+_ _*_ -_ 0# 1#
isRing isRing = record
  { +-isAbelianGroup = isAbelianGroup R.+-isAbelianGroup
  ; *-isMonoid       = *-isMonoid R.*-isMonoid
  ; distrib          = distrib R.+-isGroup R.*-isMagma R.distrib
  ; zero             = zero R.+-isGroup R.*-isMagma R.zero
  } where module R = IsRing isRing