{-# OPTIONS --without-K --safe #-}
open import Relation.Binary using (StrictTotalOrder)
module Data.AVL
{a ℓ₁ ℓ₂} (strictTotalOrder : StrictTotalOrder a ℓ₁ ℓ₂)
where
open import Data.Bool.Base using (Bool)
import Data.DifferenceList as DiffList
open import Data.List.Base as List using (List)
open import Data.Maybe.Base using (Maybe; nothing; just; is-just)
open import Data.Nat.Base using (suc)
open import Data.Product hiding (map)
open import Function as F
open import Level using (_⊔_)
open import Relation.Unary
open StrictTotalOrder strictTotalOrder renaming (Carrier to Key)
import Data.AVL.Indexed strictTotalOrder as Indexed
open Indexed using (K&_ ; ⊥⁺ ; ⊤⁺; ⊥⁺<⊤⁺; ⊥⁺<[_]<⊤⁺; ⊥⁺<[_]; [_]<⊤⁺)
open Indexed using (Value; MkValue; const) public
data Tree {v} (V : Value v) : Set (a ⊔ v ⊔ ℓ₂) where
tree : ∀ {h} → Indexed.Tree V ⊥⁺ ⊤⁺ h → Tree V
module _ {v} {V : Value v} where
private
Val = Value.family V
empty : Tree V
empty = tree $′ Indexed.empty ⊥⁺<⊤⁺
singleton : (k : Key) → Val k → Tree V
singleton k v = tree (Indexed.singleton k v ⊥⁺<[ k ]<⊤⁺)
insert : (k : Key) → Val k → Tree V → Tree V
insert k v (tree t) = tree $′ proj₂ $ Indexed.insert k v t ⊥⁺<[ k ]<⊤⁺
insertWith : (k : Key) → (Maybe (Val k) → Val k) →
Tree V → Tree V
insertWith k f (tree t) = tree $′ proj₂ $ Indexed.insertWith k f t ⊥⁺<[ k ]<⊤⁺
delete : Key → Tree V → Tree V
delete k (tree t) = tree $′ proj₂ $ Indexed.delete k t ⊥⁺<[ k ]<⊤⁺
lookup : (k : Key) → Tree V → Maybe (Val k)
lookup k (tree t) = Indexed.lookup k t ⊥⁺<[ k ]<⊤⁺
module _ {v w} {V : Value v} {W : Value w} where
private
Val = Value.family V
Wal = Value.family W
map : ∀[ Val ⇒ Wal ] → Tree V → Tree W
map f (tree t) = tree $ Indexed.map f t
module _ {v} {V : Value v} where
private
Val = Value.family V
infix 4 _∈?_
_∈?_ : Key → Tree V → Bool
k ∈? t = is-just (lookup k t)
headTail : Tree V → Maybe ((K& V) × Tree V)
headTail (tree (Indexed.leaf _)) = nothing
headTail (tree {h = suc _} t) with Indexed.headTail t
... | (k , _ , _ , t′) = just (k , tree (Indexed.castˡ ⊥⁺<[ _ ] t′))
initLast : Tree V → Maybe (Tree V × (K& V))
initLast (tree (Indexed.leaf _)) = nothing
initLast (tree {h = suc _} t) with Indexed.initLast t
... | (k , _ , _ , t′) = just (tree (Indexed.castʳ t′ [ _ ]<⊤⁺) , k)
fromList : List (K& V) → Tree V
fromList = List.foldr (uncurry insert) empty
toList : Tree V → List (K& V)
toList (tree t) = DiffList.toList (Indexed.toDiffList t)
module _ {v w} {V : Value v} {W : Value w} where
private
Val = Value.family V
Wal = Value.family W
unionWith : (∀ {k} → Val k → Maybe (Wal k) → Wal k) →
Tree V → Tree W → Tree W
unionWith f t₁ t₂ =
List.foldr (uncurry $ λ k v → insertWith k (f v)) t₂ (toList t₁)
module _ {v} {V : Value v} where
private Val = Value.family V
union : Tree V → Tree V → Tree V
union = unionWith F.const
unionsWith : (∀ {k} → Val k → Maybe (Val k) → Val k) → List (Tree V) → Tree V
unionsWith f ts = List.foldr (unionWith f) empty ts
unions : List (Tree V) → Tree V
unions = unionsWith F.const