{-# OPTIONS --without-K --safe #-}
module Data.Fin.Permutation where
open import Data.Empty using (⊥-elim)
open import Data.Fin.Base
open import Data.Fin.Properties
import Data.Fin.Permutation.Components as PC
open import Data.Nat.Base using (ℕ; suc; zero)
open import Data.Product using (proj₂)
open import Function.Inverse as Inverse using (_↔_; Inverse; _InverseOf_)
open import Function.Equality using (_⟨$⟩_)
open import Function using (_∘_)
open import Relation.Nullary using (¬_; yes; no)
open import Relation.Nullary.Negation using (contradiction)
open import Relation.Binary.PropositionalEquality as P
using (_≡_; _≢_; refl; trans; sym; →-to-⟶; cong; cong₂)
open P.≡-Reasoning
Permutation : ℕ → ℕ → Set
Permutation m n = Fin m ↔ Fin n
Permutation′ : ℕ → Set
Permutation′ n = Permutation n n
permutation : ∀ {m n} (f : Fin m → Fin n) (g : Fin n → Fin m) →
(→-to-⟶ g) InverseOf (→-to-⟶ f) → Permutation m n
permutation f g inv = record
{ to = →-to-⟶ f
; from = →-to-⟶ g
; inverse-of = inv
}
_⟨$⟩ʳ_ : ∀ {m n} → Permutation m n → Fin m → Fin n
_⟨$⟩ʳ_ = _⟨$⟩_ ∘ Inverse.to
_⟨$⟩ˡ_ : ∀ {m n} → Permutation m n → Fin n → Fin m
_⟨$⟩ˡ_ = _⟨$⟩_ ∘ Inverse.from
inverseˡ : ∀ {m n} (π : Permutation m n) {i} → π ⟨$⟩ˡ (π ⟨$⟩ʳ i) ≡ i
inverseˡ π = Inverse.left-inverse-of π _
inverseʳ : ∀ {m n} (π : Permutation m n) {i} → π ⟨$⟩ʳ (π ⟨$⟩ˡ i) ≡ i
inverseʳ π = Inverse.right-inverse-of π _
id : ∀ {n} → Permutation′ n
id = Inverse.id
transpose : ∀ {n} → Fin n → Fin n → Permutation′ n
transpose i j = permutation (PC.transpose i j) (PC.transpose j i)
record
{ left-inverse-of = λ _ → PC.transpose-inverse _ _
; right-inverse-of = λ _ → PC.transpose-inverse _ _
}
reverse : ∀ {n} → Permutation′ n
reverse = permutation PC.reverse PC.reverse
record
{ left-inverse-of = PC.reverse-involutive
; right-inverse-of = PC.reverse-involutive
}
_∘ₚ_ : ∀ {m n o} → Permutation m n → Permutation n o → Permutation m o
π₁ ∘ₚ π₂ = π₂ Inverse.∘ π₁
flip : ∀ {m n} → Permutation m n → Permutation n m
flip = Inverse.sym
remove : ∀ {m n} → Fin (suc m) →
Permutation (suc m) (suc n) → Permutation m n
remove {m} {n} i π = permutation to from
record
{ left-inverse-of = left-inverse-of
; right-inverse-of = right-inverse-of
}
where
πʳ = π ⟨$⟩ʳ_
πˡ = π ⟨$⟩ˡ_
permute-≢ : ∀ {i j} → i ≢ j → πʳ i ≢ πʳ j
permute-≢ p = p ∘ (Inverse.injective π)
to-punchOut : ∀ {j : Fin m} → πʳ i ≢ πʳ (punchIn i j)
to-punchOut = permute-≢ (punchInᵢ≢i _ _ ∘ sym)
from-punchOut : ∀ {j : Fin n} → i ≢ πˡ (punchIn (πʳ i) j)
from-punchOut {j} p = punchInᵢ≢i (πʳ i) j (sym (begin
πʳ i ≡⟨ cong πʳ p ⟩
πʳ (πˡ (punchIn (πʳ i) j)) ≡⟨ inverseʳ π ⟩
punchIn (πʳ i) j ∎))
to : Fin m → Fin n
to j = punchOut (to-punchOut {j})
from : Fin n → Fin m
from j = punchOut {j = πˡ (punchIn (πʳ i) j)} from-punchOut
left-inverse-of : ∀ j → from (to j) ≡ j
left-inverse-of j = begin
from (to j) ≡⟨⟩
punchOut {i = i} {πˡ (punchIn (πʳ i) (punchOut to-punchOut))} _ ≡⟨ punchOut-cong′ i (cong πˡ (punchIn-punchOut {i = πʳ i} _)) ⟩
punchOut {i = i} {πˡ (πʳ (punchIn i j))} _ ≡⟨ punchOut-cong i (inverseˡ π) ⟩
punchOut {i = i} {punchIn i j} _ ≡⟨ punchOut-punchIn i ⟩
j ∎
right-inverse-of : ∀ j → to (from j) ≡ j
right-inverse-of j = begin
to (from j) ≡⟨⟩
punchOut {i = πʳ i} {πʳ (punchIn i (punchOut from-punchOut))} _ ≡⟨ punchOut-cong′ (πʳ i) (cong πʳ (punchIn-punchOut {i = i} _)) ⟩
punchOut {i = πʳ i} {πʳ (πˡ (punchIn (πʳ i) j))} _ ≡⟨ punchOut-cong (πʳ i) (inverseʳ π) ⟩
punchOut {i = πʳ i} {punchIn (πʳ i) j} _ ≡⟨ punchOut-punchIn (πʳ i) ⟩
j ∎
module _ {m n} (π : Permutation (suc m) (suc n)) where
private
πʳ = π ⟨$⟩ʳ_
πˡ = π ⟨$⟩ˡ_
punchIn-permute : ∀ i j → πʳ (punchIn i j) ≡ punchIn (πʳ i) (remove i π ⟨$⟩ʳ j)
punchIn-permute i j = begin
πʳ (punchIn i j) ≡⟨ sym (punchIn-punchOut {i = πʳ i} _) ⟩
punchIn (πʳ i) (punchOut {i = πʳ i} {πʳ (punchIn i j)} _) ≡⟨⟩
punchIn (πʳ i) (remove i π ⟨$⟩ʳ j) ∎
punchIn-permute′ : ∀ i j → πʳ (punchIn (πˡ i) j) ≡ punchIn i (remove (πˡ i) π ⟨$⟩ʳ j)
punchIn-permute′ i j = begin
πʳ (punchIn (πˡ i) j) ≡⟨ punchIn-permute _ _ ⟩
punchIn (πʳ (πˡ i)) (remove (πˡ i) π ⟨$⟩ʳ j) ≡⟨ cong₂ punchIn (inverseʳ π) refl ⟩
punchIn i (remove (πˡ i) π ⟨$⟩ʳ j) ∎
↔⇒≡ : ∀ {m n} → Permutation m n → m ≡ n
↔⇒≡ {zero} {zero} π = refl
↔⇒≡ {zero} {suc n} π = contradiction (π ⟨$⟩ˡ zero) ¬Fin0
↔⇒≡ {suc m} {zero} π = contradiction (π ⟨$⟩ʳ zero) ¬Fin0
↔⇒≡ {suc m} {suc n} π = cong suc (↔⇒≡ (remove zero π))
fromPermutation : ∀ {m n} → Permutation m n → Permutation′ m
fromPermutation π = P.subst (Permutation _) (sym (↔⇒≡ π)) π
refute : ∀ {m n} → m ≢ n → ¬ Permutation m n
refute m≢n π = contradiction (↔⇒≡ π) m≢n